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Abstract

In previous work, we presented a statistical model of natural images that produced outputs similar to receptive
fields of complex cells in primary visual cortex. However, a weakness of that model was that the structure of the
pooling was assumed a priori and not learned from the statistical properties of natural images. Here, we present
an extended model in which the pooling nonlinearity and the size of the the subspaces are optimized rather than
fixed, so we make much fewer assumptions about the pooling. Results on natural images indicate that the best
probabilistic representation is formed when the size of thesubspaces is relatively large, and that the likelihood is
considerably higher than for a simple linear model with no pooling. Further, we show that the optimal nonlinear-
ity for the pooling is squaring. We also highlight the importance of contrast gain control for the performance of
the model. Our model is novel in that it is the first to analyze optimal subspace size and how this size is influenced
by contrast normalization.

Keywords: Independent Subspace Analysis, Natural Image statistics, Lp-norm spherical distribution, Contrast
gain control

1 Introduction

The low-level processing in primary visual cortex (V1) is typically modeled as a linear filtering followed by an
energy pooling stage [1]. While there is no clear evidence that such a hierarchical structure is present in the brain
[2, 3], this kind of model has been applied successfully to explain a variety of observations [4]. The filtering
stage, characterized by receptive fields which are localized, oriented and bandpass can be modelled by Gabor-like
filters. In the pooling stage, the squares of the linear filteroutputs are summed among filters of similar orientation,
frequency, and location.

An important question is the functional utility of the observed receptive field shapes. Here, the currently
dominant approach is based on linking the receptive field structure to the statistical structure of ecologically valid
stimuli, i.e. natural images. Successful approaches include sparse coding and Independent Component Analysis
(ICA) of natural images [5, 6, 7].

The pooling of these responses in the second stage produces features with invariance to spatial phase and
exact location. Attempts have been made to model this with Independent Subspace Analysis (ISA) [8]. ISA
is an extension to ICA that groups the features into multidimensional subspaces, inside which dependencies are
allowed, and minimizes dependencies between the norms of projections onto subspaces. This produces outputs
very similar to those of complex cells, where features with similar location and orientation but different phase are
pooled. However, some authors [9, 10] have objected that it is not valid to extract complex cell properties from
static images by this approach, reasoning that there is no justification for a forced pooling of the ICA features to
complex cells.

This paper discusses how ISA can be extended to learn the optimal subspace size and pooling nonlinearity
from the data by directly comparing the likelihoods of imagemodels. The extended ISA model is a two layer
model which does not simply square and sum fixed groups simplecell outputs, but which estimates the optimal
nonlinearity and subspace size. This makes it possible to test the hypothesis that pooling is favorable.

First, we introduce a novel likelihood function which is based on a Lp-spherical probability distribution and
covers both ICA and ISA (subspace) type of models. Then we present the results from our simulations that show
that a relatively large subspace size is optimal, dependingon what kind of nonlinearity accompanies the pooling.
We emphasize the importance of contrast gain control, for pooling to be the favorable model.
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2 Methods

2.1 Independent Subspace Analysis

A fundamental model for natural images is given by ICA [6]. ICA tries to find filters that are as independent as
possible. Image patchesI(x,y) are modeled as a superposition of featuresAk(x,y) as in

I(x,y) =
q

∑
k=1

Ak(x,y)sk (1)

where the activities or independent componentssk are assumed independent and non-Gaussian. The indexj runs
over theq different features. This is a system of linear equations which can be inverted if the number of features is
equal to the dimensionality of the data. We can then compute the independent components,

sk = ∑
x,y

Wk(x,y)I(x,y) = 〈Wk, I〉 (2)

where the filtersWk correspond to the inverse of the features, and〈.〉 denotes an inner product. The filters are found
by modelling the activities by a supergaussian probabilitydensity function (PDF), e.g. a Laplace distribution. Since
theq individual components are assumed independent their jointdensity factorizes,

p(s1,s2, . . . ,sq) =
q

∏
k=1

pk(sk) =
q

∏
k=1

1√
2

e−
√

2|sk| (3)

Then we maximize the log-likelihood given this probability. This can easily be done with gradient methods, but
faster alternatives are available [11]. This method has been employed to explain simple cell properties in terms of
statistical optimality [5, 6].

ISA is a multidimensional equivalent to ICA where not the outputs of linear filters themselves are assumed
independent, but the images are projected onto subspaces and the norms of these projections are assumed indepen-
dent [8]. In practice the individual filter outputs are squared, divided into groups (subspaces), the members of a
subspace are summed and finally the square root of the sum is taken as in

u j =

√

∑
i∈Sj

s2
i (4)

whereu now denotes the ”output” of one subspace with the indexi running over then constituent filters in thejth

subspace whose indices are in the setSj . In analogy to ICA using the Laplace distribution we can simply define the
log-probability as the negative of the norm of the projection summed over them individual subspaces. Finally, the
parameterb is adjusted to make the variance of thesi equal to one, andZ to normalize the probability distribution:

logp(s1, ...,sq) =
m

∑
j=1



− logZ j −

√

∑i∈Sj
s2
i

b



 (5)

For estimating the model, we maximize the likelihood of the distribution over the data with respect to the features
and the parameters of the nonlinearity. This maximizes the independence of the subspace norms. The obvious
interpretation of subspaces is that they correspond to complex cells. The pooling reproduces complex cell proper-
ties like phase invariance [8]. However, other authors havecriticized that using a fixed subspace size and forced
pooling is too ad hoc to explain the properties of complex cells. To address this issue, we describe how the results
can be obtained without forcing the pooling but estimating the optimal subspace size from the statistical structure
of natural images.

2.2 Extensions to Independent Subspace Analysis

We propose a generalized form of ISA where the data is modeledby a log-PDF of the form

logp(s1, ...,sq) =
m

∑
j=1

(

− logZ j −
(∑i∈Sj

|si |d)a j

b
a j
j

)

(6)

Given the observed imagesI1...It we obtain the log-likelihood of the model

logL(W1...Wk,d,a,b|I1...IT) =
T

∑
t=1

m

∑
j=1

(

− logZ j −
(∑i∈Sj

|〈Wi , It〉|d)a j

.
..b

a j
j

)

(7)
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for orthonormalWk. We sum overT observations,j runs over the different subspaces which all have dimensionality
n, and the indexi runs over the filters inside one subspace. This corresponds to a distribution whose isocontours
have the form ofn-dimensional spheres under theLp norm, i.e. we are using anLp-spherical distribution [12]. The
subspace sizen can be varied including both extremes of one filter per subspace and all filters in one subspace,
so both the ICA and general ISA case are included. Further, the use of theLp norm lifts the contraint of the
squaring nonlinearity (we had a spherical subgaussian probability density with fixedd = 2 anda = 1/2 in our
previous implementations of ISA) but it is still possible tomanipulate the expression algebraically. In particular
the normalization constantZ j can be calculated in closed form, as shown in appendix A, to give

Z j =
2nb j

n/dnΓ( n
a j d

)Γ(1/d)n

a jdn+1Γ( n
d +1)

(8)

The filtersWk(x,y) are then optimized for maximum likelihood over the data witha gradient algorithm. The
gradient step for the likelihood with respect to one filterWk(x,y) in the jth subspace is straightforward to compute,
yielding

∆Wk(x,y) = γ
∂ logL

∂Wk(x,y)
= γb−a j

j d

(

∑
i∈Sj

|〈Wi , I〉|d
)a j−1

I(x,y)|〈Wk, I〉|d−1 (9)

whereγ is the gradient step size. This sets the frame for computing aset of independent feature subspaces from
image data. For initial experiments, a brute force search was used to determine the optimal parametersd, a j and
b j . In later experiments, we fixedd = 2, so the variance parameterb j could be computed analytically.

b =

√

nΓ( n
2a)

Γ(n+2
2a )

(10)

Therefore, onlya remained to be determined by a brute force parameter search,considerably speeding up the
estimation procedure.

2.3 Identifiability of the model

To show that the estimation of the model by maximization of likelihood is valid, we created artificial data with
a known subspace size and then analyzed it usingLp-ISA. The data was created as follows, using 8-dimensional
subspaces as an example: First, we take 10000 samples from a 128-dimensional Gaussian distribution. Since we
have 128/8 = 16 subspaces, we also take 10000 samples from a 16-dimensional uniform distribution. Now we
introduce dependencies into the subspaces. This is done by multiplying the group of 8 Gaussians generated for the
subspace by the random variable from the uniform distribution. The product of the Gaussian and uniform gives
a supergaussian distribution, and due to the common sample from the uniform distribution, the variables in the
subspace have dependencies. This gave us the componentssi . We then created a random 128×128 mixing matrix
and multiplied the vector of thesi by that matrix, thus obtaining simulated data.

2.4 Preprocessing and Contrast Gain Control

The higher order statistical structure in natural images isvery complex and cannot be fully captured by a simple
two-layer model. Therefore considerable preprocessing isusually applied to simplify the statistical structure of
the images and make the assumption of independence hold better. This is of particular importance with the new
model presented here, since it is not forced to model the images in terms of independent sources, but is also given
the option to model arbitrary dependencies when all features fall in one single subspace. We have adopted the
following procedure for preprocessing, following [13]: First, the frequency spectrum of the images, which usually
falls off with the second power, is normalized (i.e. the datais whitened), but cut off at high frequencies to remove
sampling artifacts. In the second step, the contrast of the images is normalized. This is done by computing the
activity in the neighborhood of the pixel under consideration, which is given by the weighted sum of squares of
pixel values, and dividing by this activity. Since the choice of the neighborhood is an important factor for the
success of the model, we have used Gaussian neighborhoods ofvarying size, specified byσ2 which we varied from
12 to 32 pixels, so we could analyze the effect of the neighborhood size. See figure 1 for a visualization of these
processing stages. Whitening and Contrast Gain Control (CGC) can be considered as a simple model of visual
processing in the retina and lateral geniculate nucleus. The importance is evident from previous work like [14] and
backed up physiologically[15].
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Figure 1: Example of preprocessing on a natural image: We first flatten the frequency spectrum, which puts more
emphasis on the high frequency components of the image. Thenwe compute a contrast map, and normalize the
image by dividing each pixel by its associated contrast. Note that in order to avoid over-amplification of noise, we
cut out image regions with too little contrast. After drawing random patches from the images, these are whitened
again to remove residual first-order correlations that are introduced by the normalization. The image shown here
is for illustrative purposes only and does not belong to the original data set.

We compared this to a different method of contrast gain control, where image patches are sampled first, then
whitened and divided by their norms. This method is computationally easier to perform but has the drawback that
the contrast neighborhood size is tied to the image patch size.

Finally, we randomly sampled patches of various size (12×12 ,16×16 and 24×24 pixels) from the images,
and whitened these patches. Whitening correspond to decorrelation, i.e. it removes all linear dependencies from
the data. Simultaneously we used PCA to reduce the dimensionality of the data, which corresponds to low-pass
filtering. For 12× 12 pixels we retained 120, for 16× 16 pixels 240 and for 24× 24 pixels 480 dimensions.
Removing the highest frequency components makes sure sampling artifacts do not affect the results. The exact
number of dimensions was chosen so it can be factorized into alarge number of different possible subspace sizes.
All image patches were randomly selected from natural images taken from P.O. Hoyer’simageicapackage [16].

2.5 Simplifications of the model

2.5.1 Initializing the algorithm

Our original estimation procedure used a gradient algorithm to simultaneously update the features and the parame-
ters of the nonlinearity. However, the algorithm convergedto local minima indicated by multiple Gabor features in
some of the receptive fields. This problem could not be alleviated using a stochastic gradient method, i.e. simulated
annealing, so the full gradient estimation had to be abandoned.

Therefore we decided to use an iterative method which proceeded in two stages. In the first stage, classical ISA
(i.e. clampingd = 2 anda = 1/2) is used to compute a set of feature vectorsW as a starting point. In the second
stage, we estimated the nonlinearity parametersd, a andb with a brute force method, while keeping the features
fixed. To show that this is sufficient for learning both the optimal features as well as the optimal nonlinearity
parameters, we evaluated the effects of alternating training of the two layers. This did not change the results
quantitatively or qualitatively in a significant way, so we could procede with the simpler problem of two separate
optimizations. To further test the validity of this approach we performed experiments with 120-dimensional data
from 16×16 image patches, and a subspace size of 4. Here the log-likelihood of the original method had a mean
of -1.36 with a low variance, compared to of -1.34 (see results for more details) with the improved method.

The need for this brute force procedure arose because gradient descent is not a suitable algorithm for deter-
mining the correct values of the parametersa, b andd. The error surface for the optimization has a very narrow
maximum where the error changes by several orders of magnitude within a small volume of parameter space, and
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the log-likelihood is far from being concave. Gradient algorithms are not suitable for this sort of optimization
problem, so we had to resort to an iterative search of parameter space, which does not suffer from these problems,
but is considerably slower.

2.5.2 ICA inside subspaces

Our estimations starting with classical ISA introduces theproblem that the estimation ofd may not be reliable
because the ISA estimation with fixedd = 2 does not take into account the direction of the feature vectors inside
the subspaces, but only determines them up to an orthogonal transform. Thus, estimatingd after ordinary ISA
estimation of the subspace may bias the value towards 2. To alleviate this problem, we decided to integrate another
stage of ICA which was done inside the subspaces, to rotate the subspaces into the most supergaussian components,
so we could remove the imprint of theL2-ISA and get a better estimate of the norm parameterd. We did this using
the FastICA algorithm with a tanh-nonlinearity.

To verify that this method would produce the same results as afull estimation, we also estimated features with
Lp-ISA and values ofd ranging from 1 to 3. We did this with image patches of 12× 12 pixels. After this we
estimated the optimal parameter ofd by brute force again, to test if the features estimated differently would lead
to a different optimum in the later parameter estimation. The estimation of theLp-ISA model with a fixed value of
d did not produce any stability problems.

3 Results

3.1 Identifiability of the model

When testing theLp-ISA Algorithm with artificial data, we could confirm that thehighest likelihood was reached
for the subspace size that was embedded in the data. This shows that the algorithm is correctly identifying any
subspace structure hidden in the data. As expected, when thealgorithm was run with plain Gaussian data the
likelihood was completely flat.

The results from these test runs are shown in figure 2.
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Figure 2: Test of identifiability of the model: The subspace dependencies we introduced into the Gaussian random
data are correctly identified by theLp-ISA model. The dotted line is Gaussian data, dashed line hasembedded
subspaces of size 8 and the solid line of 32. Error bars indicate standard error on the mean.

3.2 Pooling nonlinearity

The first result we present concerns the nature of the nonlinearity that is associated with the pooling. Our model
predicts that it is a squaring operation (d = 2), as can be seen from the maximum likelihood estimation in Fig 3.
To rule out that this value ofd is merely an artifact due to our estimation of the features byISA using a squaring
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Figure 3: The superimposed plots show how the likelihood varies with norm parameterd for Lp-ISA estimations
with five different norms, as indicated in the legend, corresponding to the five connected curves. The overall
maximum occurs whend = 2 for both the ISA estimation and the brute force likelihood maximization algorithm.
This shows that subspaces are for all practical purposes spherical. The experiment was performed on 8×8 image
patches. Each line is the mean of five random trials.

operation, we computed the features using five different values ofd in the initial ISA estimation, as explained in
section 2.5. The overall maximum was obtained whend was equal to two in the algorithm estimating the features,
in which case the parameter optimization method also found the valued = 2. Therefore we decided to fixd = 2
in the following experiments, which considerably simplified the brute-force parameter search, as the value forb
can also be calculated in closed form in this special case of spherical subspaces. The proof for this can be found in
Appendix B.

3.3 Finite optimal subspace size

The most notable aspect of our work is that we can directly compare the likelihood of ICA and ISA models. We
found that for a range of subspace dimensionalities ISA produces a higher likelihood and is therefore a better
model of the data. The optimal subspace size is strongly dependent on the size of the image windows and wether
CGC is performed, but it is not influenced by the details of theCGC procedure. We tested this on images patches
ranging in size from 8×8 pixels to 24×24 pixels. This finding provides evidence that some of the dependencies of
natural images, that cannot be removed by a linear transform, can be captured by subspaces or complex cells. This
gives complex cell receptive fields a statistical justification in terms of efficient coding. In figures 4 and 5 we show
how the likelihood changes with subspace size, and that a maximum is reached for a subspace size that depends on
the size of the image window. As the individual estimation ofa for each subspace leads to a larger number of free
parameters for smaller subspace size, which would naturally favor small subspaces, we investigated if the results
reproduced if we clamped the number of parameters by fixinga. We found that for a limited range of values this
was indeed the case. fig 4 b) was computed witha arbitrarily fixed to 0.2, a value which was typically encountered
for the optimal subspace size. While the overall likelihoodplummets, the maximum is still at 32, which proves
that the maximum was not an artifact due to the variable number of parameters. An intuitive explanation for the
approximately inversely proportional relation betweena and the subspace size we observed stems from the the
relatively larger probability volume far away from the origin for higher dimensions. This is compensated by small
values ofa moving probability volume towards the origin. For this reason, a was estimated for each subspace
unless otherwise noted.

3.4 Influence of Contrast Gain Control

Our experiments with different kinds of CGC on images patches of various size indicate that preprocessing to
reduce dependencies has a significant influence on the performance of the ISA model. If no CGC is performed, the
dependencies especially in small image patches are so strong that the highest likelihood is given to the case where
all linear filters are pooled into one big subspace as shown infigure 5 for 8×8 pixel windows. Only by performing
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Figure 4: Dependency of the likelihood of natural image dataon subspace dimensionality. A more pronounced
optimum appears whena is optimized, but it is persistent for fixeda as well. Error bars indicate standard error on
the mean from 10 trials with different random seeds. Image patches were of size 24×24 for this experiment, and
CGC was performed on individual image patches.

contrast gain control, subspaces of finite size are formed for the small image patches. With bigger image windows,
e.g. 16×16 even without CGC a significant maximum is found for a finite subspace size. In both cases, however,
a more significant maximum is obtained if divisive CGC is performed.

To analyze how the dependencies between filters are affectedby CGC, we plotted the correlations of squares
(energy dependencies) of the filter outputs as shown in figure6. Since linear correlations are removed by the
whitening, energy correlations are the dominant term. It can be seen that the histogram moves towards the origin
when CGC is performed, i.e. the overall amount of correlations is reduced considerably. We found that the exact
method of CGC does not have a significant effect on the results. However, a tradeoff considering the strength of
the normalization, which is controlled by the contrast neighborhood size, has to be made: Too strong CGC causes
negative energy correlations, instead of just moving them towards zero.

4 Discussion

4.1 Related work

Our results show that the pooling in ISA can be justified in terms of statistical modelling of natural images, and
that Complex Cell responses can be modelled in terms of the statistical properties of static natural images. Here
we compare our results to similar experiments, and then highlight the key features that are unique to our model.

Firstly we would like to draw attention to the recent work by Karklin and Lewicki [17], which also describes a
two-layer model of natural images. The main difference is that in their model the second layer is a general linear
transform, whereas we constrain the second layer to pool inputs for computing a norm. The cost for the more
general second layer is that the model is not normalizable and therefore requires the use of approximations for
the optimization. Another important difference is that fact that the first layer of the Karklin and Lewicki model is
identical to ICA, and the authors claim that the presence of the second layer does not affect the optimal features
in the first layer. On a more technical level, the key idea of the work is to model common variances within groups
of variables. The authors take the variance to be the higher order feature underlying the data. It seems fair to link
this to the squaring operation in our model, because ”energy” or ”activation” cannot clearly be distinguished from
variance.

The results are quite different from ours in that the authorsfind global structure in the images in the form of
spatially extended and diverse higher order units. They areable to distinguish areas of low and high contrast,
and they can classify image patches into visually differentgroups based on variance patterns. This is strikingly
different from our results showing higher order features describing local invariances. The reason for this difference
is likely to be only partly due to the different technical constraints of the two models, but is probably related to our
preprocessing with CGC. Conceivably it removes the global dependencies modelled by Karklin and Lewicki and
leaves local structure which replicate the properties of Complex Cells. Therefore our model tries to learn a sparse
pooling of only a few local features, which are themselves optimized to allow for this sparse pooling.
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Figure 5: Dependency of optimal subspace size on the size of the image window and the CGC neighborhood. The
top row shows the likelihood functions computed from 240-dimensional data (16×16 image patches), bottom row
is for 60-dimensional data (8×8 image patches). The graphs on the left hand side show the resulting likelihood
without CGC, the graphs on the right with CGC. CGC was performed with Gaussian neighborhoods of size as
indicated in the legend, where the uppermost plot corresponds to the uppermost legend item etc. Error bars indicate
standard error on the mean from 6 trials with different random seeds. Please note that only the position of the
maximum of the individual curves can be compared, but not theoverall likelihood value. In order to compare these,
it would be necessary to compute the likelihood of theoriginal data in a model where the data is transformed by
CGC and linear transform into independent subspaces. Here we ignore the influence of the CGC procedure entirely,
so there is a significant offset between the lines.
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Figure 6: Effect of CGC on energy correlations: Before performing CGC, the average energy correlations of
filter outputs are 0.2, as plotted above the corresponding graph. With CGC performed over a neighborhood of
16×16 pixels, the correlations are reduced and shifted towardszero. The average now is 0.07 and there are some
slight negative correlations. In the last plot, CGC on individual image patches (12×12) is shown to be almost
identical to the former method. Because of the smaller neighborhood, more negative correlations appear. These
plots corresponds to 12×12 image patches.

Also closely related to our work is the ”Product of Student-tModels” of Osindero et al. [18]. The model
described in this publication is an alternative to ICA-based approaches, and uses Contrastive Divergence [19]
to optimize a hierarchical ”product of experts” type distribution. By clamping the second layer to the identity
matrix, this model produces Simple Cell-like responses, and subsequent learning of the second layer gives rise
to connections between cells in a similar fashion to topographic ICA. By grouping the units with the strongest
connections, the authors are able to produce Complex Cell-like receptive fields with phase-invariance, while spatial
frequency and orientation tuning remain unchanged. In contrast to our model, no limitation on the number of
simple cells feeding one complex cell is enforced. This might be considered as an advantage since it is likely to
reflect the properties of biological neural networks, whichis in contrast to the advantage of a principled estimation
that our model offers.

Finally, [20] shows how modelling the energy dependencies between neighboring Gabor-wavelets can be used
for state-of-the-art denoising of images.

4.2 Likelihood and Sparseness

Our experiments showed that the likelihood increases as onegoes from ICA to the subspace model, and then
decreases again as very large subspaces are reached. For ourexperiments with 24× 24 pixels in particular,
subspaces with a size of 16 to 32 have a significantly larger likelihood than the simple ICA model. This shows that
the generalized ISA model provides a better statistical description for natural images than ICA, and hence provides
an adequate model of observed complex cell properties. It directly justifies pooling simple cell outputs from the
statistics of static images, and shows that the dynamics of image sequences are not required as claimed by other
authors[9, 10].

It is important to note that as the size of the subspaces grows, their number decreases. This means that with
large subspaces, only a few highly complex features were estimated. In principle this could have been avoided by
working with a fixed number of subspaces, but this would require an overcomplete set of linear filters, which is
difficult to estimate with ICA models. In any case it is natural to expect that experiments of this kind would lead
to pooling over an even large number of filters. In plot 7 it canbe seen that the features at a subspace size of 16
are much less clean and localized than results that are knownfrom ISA with 2 or 4 features per subspace. This is
presumably because there are only 16 complex features whichhave to represent the whole image. It is interesting
to note that the maximum likelihood still occurs at this rather large subspace size, again indicating that strong
residual dependencies make image data difficult to approximate with ICA models.

It should be noted that the goal of the estimation is not to maximize sparseness but this is merely a vehicle
for maximizing likelihood. The sparseness cannot be compared meaningfully between different subspace sizes
because the number of cells is different. As the number of cells decreases with increasing subspace size, it is
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Figure 7: A random selection of features at maximum likelihood with a subspace size of 16. One row corresponds
to one subspace. Note that there is a relatively small numberof features, so they are less selective than ICA
features.

natural that a larger percentage of these cells need to be activated, but the total number of active cells may still be
less than with the linear features. Thus the sparseness would have to be weighted in some way, which would make
comparisons difficult. Therefore likelihood is the only principled method of comparing ICA and ISA models.

4.3 Pooling nonlinearity

Our results indicate that the parameterd is always close to 2, which means that the subspaces are in fact spherical
in the Euclidean sense. This is in accordance with the results from physiological experiments, which agree that
nonlinearities are best modelled by squaring and not e.g. bytaking the absolute value[15]. Other recent theoretical
work such as [21] also supports the case for a squaring nonlinearity. The authors in [21] describe a somewhat
simpler model were a pooling of two subunits is forced. Sincethey allow for an individual estimation of the
optimal nonlinearity for each complex cell, they are able toshow that in addition to the predominant squaring,
some units compute theL∞-norm, corresponding to selecting the maximum input. The main difference to our
model is that the authors use the principle of temporal coherence on movie sequences to obtain the results that
we achieve from efficient coding on static images. Since theymainly obtain an exponent of two this result further
supports the notion that this is not merely an artifact of ourparticular method, but indeed an underlying feature of
the data.

The parametera however, which s related to the sparseness of the distribution, varied over a considerable range,
so it was important to determine its optimal value individually for each subspace size. There was a strong trend of
decreasinga with increasing subspace size.The fact that we finda close to 0.5 for small subspaces confirms that
the standard ISA model which fixesa to 0.5 - and has been used with subspace size of two or four - is in good
agreement with our new model. Only for larger subspaces dimensionalities, as those we found to have maximum
likelihood, we finda to be considerably smaller.

4.4 Contrast Gain Control

Our experiments showed that the way CGC is performed on the data has a strong impact on the performance of
the model. It is widely accepted that one important functionof the visual pathway up to V1 is normalization and
gain control[14]. This is not only required in real world perception, where luminance changes over six orders of
magnitude and more occur frequently, but it is also crucial in our model to make the underlying assumption of ICA
more realistic, i.e. that there exist independent sources which are mixed linearly. However it is not clear whether
there is a ’correct’ way to perform CGC, and what this would be. It should be noted that unlike whitening, CGC is
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a nonlinear process in which information is lost, so the gainfrom a simpler statistical structure has to be weighted
against a loss in image contents.

5 Conclusion

We have demonstrated that our proposed method of Lp-ISA is sufficient to learn complex cell responses from static
natural images.

After it was established that simple cell receptive fields can be obtained by imposing statistical constraints on
image data [5, 6], it was natural to investigate if complex cell properties could also be obtained from the statistical
properties of static images. Basic ISA indicated that forced pooling of simple cells gives complex cells [8], but
the question remained if the pooling could also be estimatedfrom the statistics of static images. With the present
results we have put forward strong evidence that this is the case, by directly comparing the likelihood of ICA
(simple cell) and ISA (complex cell) models, and finding thatsubspaces do in fact provide a description of natural
images with a higher likelihood than single independent features do. This is not only of theoretical interest, as we
also found evidence about the nature of the nonlinearity that is used for the pooling: We have shown that from a
statistical point of view squaring and not e.g. absolute value rectification fits image data better. For the future we
propose to exploit the idea of learned pooling further by adding another stage of pooling to the model, in order to
predict what the next stages of processing, for example in V2, might be [22].
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A The multivariate Lp-norm spherical distribution

A.1 Likelihood function

We consider the following probability density function in an n-dimensional (sub)space:

p(s) =
1
c

exp(− (∑n
i=1 |si |d)a

ba ) (11)

We want to determine the constantc (previously referred to asZ j ) as a function ofa, b, andd so that this is a
proper probability density (integrates to one). Closely related results were already derived in Lemma 2.3. of [12],
and Eq.(3)-(4) of [23]. Here we provide a simpler proof basedon geometrical considerations.

We define thed-sphere of radiusr0, denoted bySd
n(r0) as a generalization of an ordinary sphere as

Sd
n(r) = {s∈ R

n |
n

∑
i=1

|si |d ≤ rd} (12)

i.e. the set where thed-norm is smaller than a given quantity. We will need to know the volume of thed-sphere.
The following lemma is proven below.

Lemma 1 The volume of Sdn is given by

V(Sd
n(r)) = rn2nΓ(1/d)nd−nΓ(n/d+1)−1 (13)

In order forp to be a proper probability density, we need to have

c =
Z

exp(− (∑n
i=1 |si |d)a

ba )ds (14)

As the probability density only depends on thed-norm, we make a transformation that is somewhat similar to the
n-dimensional spherical coordinates. We define

r = (
n

∑
i=1

|si |d)1/d. (15)
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We can evaluate the integral by using the differential ofV as follows:

Z

exp(− (∑n
i=1 |si |d)a

ba )ds=

Z

exp(− rad

ba )dV (16)

wheredV is the differential element ofV, i.e. the infinitesimal change in volume induced byr. We have by
definition of differentials and by the Lemma

dV =
dV
dr

dr = rn−1n2nΓ(1/d)nd−nΓ(n/d+1)−1dr (17)

so we need to have

c =

Z

exp(− rad

ba )
dV
dr

dr (18)

=

Z

exp(− rad

ba )rn−1n2nΓ(1/d)nd−nΓ(n/d+1)−1dr (19)

Now we make the following transformation toq:

q =
rad

ba ⇔ r = b1/dq1/(ad) (20)

for which the differential element can be computed as

dr
dq

=
b1/d

ad
q1/(ad)−1 (21)

which gives

c = n2nΓ(1/d)nd−nΓ(n/d+1)−1
Z

exp(−q)q(n−1)/(ad)b(n−1)/d b1/d

ad
q1/(ad)−1dq (22)

= n2nΓ(1/d)nd−n bn/d

ad
Γ(n/d+1)−1

Z

exp(−q)qn/(ad)−1dq (23)

=
2nbn/dnΓ(n/(ad))Γ(1/d)n

adn+1Γ(n/d+1)
(24)

A.1.1 Proof of Lemma 1

First note that we only need to prove the lemma forr = 1. Due to the homogeneity of the definition of the set,
choosing anr 6= 1 simply expands the set by a factor ofr in every dimension, and thus multiplies the volume byrn.

The proof forr = 1 proceeds by induction with respect ton. For simplicity of notation, we denote the set by
Sn although it does still depend ond. For anyd, S1 is simply the line segment[−1,1] for anyd. Thus,

V(S1) = 2 (25)

For an arbitraryn, note that the cross-section ofSn for a fixedsn, defined by

Sn(sn) = {(s1, . . . ,sn) ∈ R
n−1|

n−1

∑
i=1

|si |d ≤ 1−sd
n} (26)

is simply ann− 1-dimensionald-sphere of radiusr = (1− sd
n)

1/d. Thus, the volume of the crosssection equals
(1− sd

n)
(n−1)/dV(Sn−1). We can compute the volume ofSn simply by lettingsn take all the values in[−1,1] and

summing the volumes of these crosssections together. This gives

V(Sn) =

Z 1

−1
(1−|sn|d)(n−1)/dV(Sn−1)dsn = 2V(Sn−1)

Z 1

0
(1−sd

n)
(n−1)/ddsn (27)

To evaluate this integral, we make the change of variables toy:

y = sd
n ⇐⇒ sn = y1/d ⇐⇒ dsn

dy
=

1
d

y1/d−1 (28)
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which gives

V(Sn) = V(Sn−1)
2
d

Z 1

0
(1−y)(n−1)/dy1/d−1dy (29)

The integral in this equation turns out to be equal to the definition of the classic beta function, which can be
expressed using the gamma function as

Z 1

0
(1−y)αyβdy=

Γ(α)Γ(β)

Γ(α+ β)
(30)

Thus, the recursive formula forV(Sn) can be expressed as

V(Sn) = V(Sn−1)
2
d

Γ(n−1
d +1)Γ( 1

d)

Γ( n
d +1)

(31)

The formula given in the lemma fulfills this recursive equation, as well as the initial value in (25). Thus the lemma
is proven.

B The multivariate spherical distribution

We consider the following probability density function in an n-dimensional (sub)space:

p(s) =
1
c

exp(− (∑n
i=1s2

i )
a

b2a ) (32)

We want to determine the constantsc andb as a function ofa so that this is a proper probability density (integrates
to one) and thesi have unit variance. By symmetry, thesi have zero mean.

Let us take then-dimensional polar coordinates by taking

r =

√

n

∑
i=1

s2
i (33)

andu which is an isometric parameterization of the unit sphereSn, i.e. the set wherer = 1, see e.g. [24, 25].
It is not necessary here to explicitly construct such a parameterization. The determinant of the Jacobian of the
transformation is given byrn−1.

Now, we can compute the normalizing constantc as follows.
Z

exp(− (∑n
i=1s2

i )
a

b2a )ds=

Z

Sn

Z ∞

0
exp(− r2a

b2a )rn−1drdu (34)

=

Z ∞

0
exp(− r2a

b2a )rn−1dr
Z

Sn

du (35)

The latter integral equals the surface of the unit sphereSn, which inn dimension is equal to

2πn/2

Γ(n/2)
(36)

Next, let us make the transformation of variables

t =
r2a

b2a ⇔ r = bt1/(2a) (37)

for which the volume element can be computed as

dr
dt

=
b
2a

t1/(2a)−1 (38)

So, we have
Z

exp(− (∑n
i=1s2

i )
a

b2a )ds=
2πn/2

Γ(n/2)

Z ∞

0
exp(−t)(bt1/(2a))n−1 b

2a
t1/(2a)−1dt (39)

=
2πn/2

Γ(n/2)

bn

2a

Z ∞

0
exp(−t)tn/(2a)−1dr (40)

=
πn/2bnΓ( n

2a)

aΓ(n/2)
(41)
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Thus, to makep a proper probability density function, we must have

c =
πn/2bnΓ( n

2a)

aΓ(n/2)
(42)

Next, we compute the value thatb should take to make the probability density standardized, i.e.E{s2
i } = 1 for

all i. We have by symmetry

E{s2
i } =

1
n

E{
n

∑
i=1

s2
i } (43)

So, we can use the same transformation of variables to compute

1
c

Z

1
n

E{
n

∑
i=1

s2
i }exp(− (∑n

i=1s2
i )

a

b2a )ds=
1
c

Z ∞

0

1
n

r2 exp(− r2a

b2a )rn−1dr
Z

Sn

du (44)

=
1
c

Z

Sn

du
Z ∞

0

1
n

exp(−t)(bt1/(2a))n+1 b
2a

t1/(2a)−1dt (45)

=
2a

nbnΓ( n
2a)

Z ∞

0

1
n

exp(−t)
bn+2

2a
t(n+2)/(2a)−1dt (46)

= b2 Γ(n+2
2a )

nΓ( n
2a)

(47)

In order for this to be equal to one for a positiveb, we must have

b =

√

nΓ( n
2a)

Γ(n+2
2a )

(48)
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