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Abstract

In previous work, we presented a statistical model of natarages that produced outputs similar to receptive
fields of complex cells in primary visual cortex. However, aakness of that model was that the structure of the
pooling was assumed a priori and not learned from the statigiroperties of natural images. Here, we present
an extended model in which the pooling nonlinearity and the sf the the subspaces are optimized rather than
fixed, so we make much fewer assumptions about the poolingul®eon natural images indicate that the best
probabilistic representation is formed when the size ofsiliiespaces is relatively large, and that the likelihood is
considerably higher than for a simple linear model with nolpw. Further, we show that the optimal nonlinear-
ity for the pooling is squaring. We also highlight the imgorte of contrast gain control for the performance of
the model. Our model is novel in that it is the first to analypéroal subspace size and how this size is influenced
by contrast normalization.

Keywords: Independent Subspace Analysis, Natural Imagistts, Lp-norm spherical distribution, Contrast
gain control

1 Introduction

The low-level processing in primary visual cortex (V1) ipiyally modeled as a linear filtering followed by an
energy pooling stage [1]. While there is no clear evideneg¢ $lach a hierarchical structure is present in the brain
[2, 3], this kind of model has been applied successfully tpla@r a variety of observations [4]. The filtering
stage, characterized by receptive fields which are loadjiaeented and bandpass can be modelled by Gabor-like
filters. In the pooling stage, the squares of the linear fdtgputs are summed among filters of similar orientation,
frequency, and location.

An important question is the functional utility of the obged receptive field shapes. Here, the currently
dominant approach is based on linking the receptive fielttsire to the statistical structure of ecologically valid
stimuli, i.e. natural images. Successful approaches decBparse coding and Independent Component Analysis
(ICA) of natural images [5, 6, 7].

The pooling of these responses in the second stage prodeaesds with invariance to spatial phase and
exact location. Attempts have been made to model this witlependent Subspace Analysis (ISA) [8]. ISA
is an extension to ICA that groups the features into multatisional subspaces, inside which dependencies are
allowed, and minimizes dependencies between the normso@qtions onto subspaces. This produces outputs
very similar to those of complex cells, where features withilsir location and orientation but different phase are
pooled. However, some authors [9, 10] have objected thatribt valid to extract complex cell properties from
static images by this approach, reasoning that there issidigation for a forced pooling of the ICA features to
complex cells.

This paper discusses how ISA can be extended to learn theapgubspace size and pooling nonlinearity
from the data by directly comparing the likelihoods of imagedels. The extended ISA model is a two layer
model which does not simply square and sum fixed groups siogleutputs, but which estimates the optimal
nonlinearity and subspace size. This makes it possiblestdtie hypothesis that pooling is favorable.

First, we introduce a novel likelihood function which is bdson a Lp-spherical probability distribution and
covers both ICA and ISA (subspace) type of models. Then weeptehe results from our simulations that show
that a relatively large subspace size is optimal, depenadimghat kind of nonlinearity accompanies the pooling.
We emphasize the importance of contrast gain control, fotipg to be the favorable model.
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2 Methods

2.1 Independent Subspace Analysis

A fundamental model for natural images is given by ICA [6].Al@ies to find filters that are as independent as
possible. Image patchégx,y) are modeled as a superposition of featugs,y) as in
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where the activities or independent componeptare assumed independent and non-Gaussian. The jndes
over theq different features. This is a system of linear equationsWican be inverted if the number of features is
equal to the dimensionality of the data. We can then competétdependent components,
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where the filter§\k correspond to the inverse of the features, ahdenotes an inner product. The filters are found
by modelling the activities by a supergaussian probaliiysity function (PDF), e.g. a Laplace distribution. Since
theqindividual components are assumed independent theirdieinsity factorizes,
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Then we maximize the log-likelihood given this probabilitjhis can easily be done with gradient methods, but
faster alternatives are available [11]. This method has leeeployed to explain simple cell properties in terms of
statistical optimality [5, 6].

ISA is a multidimensional equivalent to ICA where not thepuis of linear filters themselves are assumed
independent, but the images are projected onto subspadéiseanorms of these projections are assumed indepen-
dent [8]. In practice the individual filter outputs are sqeardivided into groups (subspaces), the members of a
subspace are summed and finally the square root of the sukeis & in

= 2

whereu now denotes the "output” of one subspace with the inidexning over then constituent filters in thgt"
subspace whose indices are in theSetn analogy to ICA using the Laplace distribution we can dingefine the
log-probability as the negative of the norm of the projecommed over thenindividual subspaces. Finally, the
parameteb is adjusted to make the variance of thequal to one, and to normalize the probability distribution:
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For estimating the model, we maximize the likelihood of tietribution over the data with respect to the features
and the parameters of the nonlinearity. This maximizes tkependence of the subspace norms. The obvious
interpretation of subspaces is that they correspond to tnuells. The pooling reproduces complex cell proper-
ties like phase invariance [8]. However, other authors taitisized that using a fixed subspace size and forced
pooling is too ad hoc to explain the properties of complejscélo address this issue, we describe how the results
can be obtained without forcing the pooling but estimatimg@ptimal subspace size from the statistical structure
of natural images.

2.2 Extensions to Independent Subspace Analysis
We propose a generalized form of ISA where the data is modsiediog-PDF of the form
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Given the observed imagés..l; we obtain the log-likelihood of the model
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for orthonormal\k. We sum ovell observationsj runs over the different subspaces which all have dimenstgna
n, and the index runs over the filters inside one subspace. This correspanagistribution whose isocontours
have the form ofi-dimensional spheres under thgnorm, i.e. we are using drp-spherical distribution [12]. The
subspace siza can be varied including both extremes of one filter per suts@ad all filters in one subspace,
so both the ICA and general ISA case are included. Furtherutie of thelL, norm lifts the contraint of the
squaring nonlinearity (we had a spherical subgaussianaghitty density with fixedd = 2 anda=1/2 in our
previous implementations of ISA) but it is still possiblert@mnipulate the expression algebraically. In particular
the normalization constad can be calculated in closed form, as shown in appendix Au® gi
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The filtersW(x,y) are then optimized for maximum likelihood over the data watlyradient algorithm. The
gradient step for the likelihood with respect to one filtgi(x, y) in the j'" subspace is straightforward to compute,
yielding
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wherey is the gradient step size. This sets the frame for computiset ®f independent feature subspaces from
image data. For initial experiments, a brute force searchugzd to determine the optimal parametgra; and
b;. In later experiments, we fixedi= 2, so the variance parametgrcould be computed analytically.
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Therefore, onlya remained to be determined by a brute force parameter seencisiderably speeding up the
estimation procedure.

2.3 ldentifiability of the model

To show that the estimation of the model by maximization kélihood is valid, we created artificial data with
a known subspace size and then analyzed it usptSA. The data was created as follows, using 8-dimensional
subspaces as an example: First, we take 10000 samples fr@Br@dirhensional Gaussian distribution. Since we
have 1288 = 16 subspaces, we also take 10000 samples from a 16-dimahsiaform distribution. Now we
introduce dependencies into the subspaces. This is doneliplying the group of 8 Gaussians generated for the
subspace by the random variable from the uniform distrdsutiThe product of the Gaussian and uniform gives
a supergaussian distribution, and due to the common samptethe uniform distribution, the variables in the
subspace have dependencies. This gave us the compgnéfiesthen created a random 12828 mixing matrix
and multiplied the vector of thg by that matrix, thus obtaining simulated data.

2.4 Preprocessing and Contrast Gain Control

The higher order statistical structure in natural imagegeiy complex and cannot be fully captured by a simple
two-layer model. Therefore considerable preprocessingiglly applied to simplify the statistical structure of
the images and make the assumption of independence hoéd. bElis is of particular importance with the new
model presented here, since it is not forced to model the @magterms of independent sources, but is also given
the option to model arbitrary dependencies when all feattal in one single subspace. We have adopted the
following procedure for preprocessing, following [13]r§, the frequency spectrum of the images, which usually
falls off with the second power, is normalized (i.e. the datahitened), but cut off at high frequencies to remove
sampling artifacts. In the second step, the contrast ofrtteges is normalized. This is done by computing the
activity in the neighborhood of the pixel under considematiwhich is given by the weighted sum of squares of
pixel values, and dividing by this activity. Since the choif the neighborhood is an important factor for the
success of the model, we have used Gaussian neighborhoeatyiofy size, specified by? which we varied from

12 to 32 pixels, so we could analyze the effect of the neighbad size. See figure 1 for a visualization of these
processing stages. Whitening and Contrast Gain ControlQ)a&an be considered as a simple model of visual
processing in the retina and lateral geniculate nucleus.iffiportance is evident from previous work like [14] and
backed up physiologically[15].
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Figure 1: Example of preprocessing on a natural image: Wefliisen the frequency spectrum, which puts more
emphasis on the high frequency components of the image. Weesompute a contrast map, and normalize the
image by dividing each pixel by its associated contrasteNloat in order to avoid over-amplification of noise, we
cut out image regions with too little contrast. After draggirandom patches from the images, these are whitened
again to remove residual first-order correlations that ab®duced by the normalization. The image shown here
is for illustrative purposes only and does not belong to thgimal data set.

We compared this to a different method of contrast gain aynivhere image patches are sampled first, then
whitened and divided by their norms. This method is companatly easier to perform but has the drawback that
the contrast neighborhood size is tied to the image pateh siz

Finally, we randomly sampled patches of various sizex12 ,16x 16 and 24x 24 pixels) from the images,
and whitened these patches. Whitening correspond to ddation, i.e. it removes all linear dependencies from
the data. Simultaneously we used PCA to reduce the dimeaidipof the data, which corresponds to low-pass
filtering. For 12x 12 pixels we retained 120, for 2616 pixels 240 and for 24 24 pixels 480 dimensions.
Removing the highest frequency components makes sure sanaptifacts do not affect the results. The exact
number of dimensions was chosen so it can be factorized iljt@a number of different possible subspace sizes.
All image patches were randomly selected from natural imagken from P.O. Hoyersnageicapackage [16].

2.5 Simplifications of the model
2.5.1 |Initializing the algorithm

Our original estimation procedure used a gradient algorith simultaneously update the features and the parame-
ters of the nonlinearity. However, the algorithm convergelbcal minima indicated by multiple Gabor features in
some of the receptive fields. This problem could not be aled using a stochastic gradient method, i.e. simulated
annealing, so the full gradient estimation had to be abaadion

Therefore we decided to use an iterative method which piextan two stages. In the first stage, classical ISA
(i.e. clampingd = 2 anda = 1/2) is used to compute a set of feature vectdras a starting point. In the second
stage, we estimated the nonlinearity paramedessandb with a brute force method, while keeping the features
fixed. To show that this is sufficient for learning both theioyal features as well as the optimal nonlinearity
parameters, we evaluated the effects of alternating trgioif the two layers. This did not change the results
quantitatively or qualitatively in a significant way, so weutd procede with the simpler problem of two separate
optimizations. To further test the validity of this apprbage performed experiments with 120-dimensional data
from 16 x 16 image patches, and a subspace size of 4. Here the loiiuikelof the original method had a mean
of -1.36 with a low variance, compared to of -1.34 (see redolt more details) with the improved method.

The need for this brute force procedure arose because gtatkecent is not a suitable algorithm for deter-
mining the correct values of the parametay® andd. The error surface for the optimization has a very narrow
maximum where the error changes by several orders of matgmitithin a small volume of parameter space, and



the log-likelihood is far from being concave. Gradient altfons are not suitable for this sort of optimization
problem, so we had to resort to an iterative search of paersptce, which does not suffer from these problems,
but is considerably slower.

2.5.2 ICAinside subspaces

Our estimations starting with classical ISA introduces pineblem that the estimation af may not be reliable
because the ISA estimation with fixed= 2 does not take into account the direction of the featureoredhside

the subspaces, but only determines them up to an orthogamaform. Thus, estimating after ordinary ISA
estimation of the subspace may bias the value towards 2 I&\aatk this problem, we decided to integrate another
stage of ICA which was done inside the subspaces, to roaitbspaces into the most supergaussian components,
so we could remove the imprint of the-ISA and get a better estimate of the norm paramet&¥e did this using

the FastICA algorithm with a tanh-nonlinearity.

To verify that this method would produce the same resultsfa astimation, we also estimated features with
Lp-ISA and values ofi ranging from 1 to 3. We did this with image patches ofx122 pixels. After this we
estimated the optimal parameteraby brute force again, to test if the features estimated wdiffey would lead
to a different optimum in the later parameter estimatione €btimation of th& p-ISA model with a fixed value of
d did not produce any stability problems.

3 Results

3.1 Identifiability of the model

When testing thé p-ISA Algorithm with artificial data, we could confirm that tieghest likelihood was reached
for the subspace size that was embedded in the data. Thisghatthe algorithm is correctly identifying any
subspace structure hidden in the data. As expected, whealgbéthm was run with plain Gaussian data the
likelihood was completely flat.

The results from these test runs are shown in figure 2.
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Figure 2: Test of identifiability of the model: The subspaepehdencies we introduced into the Gaussian random
data are correctly identified by tHg,-ISA model. The dotted line is Gaussian data, dashed lineehdsedded
subspaces of size 8 and the solid line of 32. Error bars itelst@ndard error on the mean.

3.2 Pooling nonlinearity

The first result we present concerns the nature of the nanidityehat is associated with the pooling. Our model
predicts that it is a squaring operatiath=£ 2), as can be seen from the maximum likelihood estimationgn3F
To rule out that this value af is merely an artifact due to our estimation of the featuretS#yusing a squaring
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Figure 3: The superimposed plots show how the likelihoodegarith norm parametet for Ly-ISA estimations
with five different norms, as indicated in the legend, cqoesling to the five connected curves. The overall
maximum occurs whed = 2 for both the ISA estimation and the brute force likelihooaximization algorithm.

This shows that subspaces are for all practical purposesisph The experiment was performed ox 8 image
patches. Each line is the mean of five random trials.

operation, we computed the features using five differentambfd in the initial ISA estimation, as explained in
section 2.5. The overall maximum was obtained wtievas equal to two in the algorithm estimating the features,
in which case the parameter optimization method also fohed/alued = 2. Therefore we decided to fik= 2

in the following experiments, which considerably simplifitne brute-force parameter search, as the valué for
can also be calculated in closed form in this special caspladrical subspaces. The proof for this can be found in
Appendix B.

3.3 Finite optimal subspace size

The most notable aspect of our work is that we can directlymanea the likelihood of ICA and ISA models. We
found that for a range of subspace dimensionalities ISA peed a higher likelihood and is therefore a better
model of the data. The optimal subspace size is stronglyrokp# on the size of the image windows and wether
CGC is performed, but it is not influenced by the details of@&C procedure. We tested this on images patches
ranging in size from & 8 pixels to 24x 24 pixels. This finding provides evidence that some of theeddpncies of
natural images, that cannot be removed by a linear transftambe captured by subspaces or complex cells. This
gives complex cell receptive fields a statistical justifizain terms of efficient coding. In figures 4 and 5 we show
how the likelihood changes with subspace size, and that &muax is reached for a subspace size that depends on
the size of the image window. As the individual estimatiom®br each subspace leads to a larger number of free
parameters for smaller subspace size, which would nayuialbr small subspaces, we investigated if the results
reproduced if we clamped the number of parameters by figing/e found that for a limited range of values this
was indeed the case. fig 4 b) was computed wighbitrarily fixed to 0.2, a value which was typically encoemsd

for the optimal subspace size. While the overall likelihg@ddmmets, the maximum is still at 32, which proves
that the maximum was not an artifact due to the variable nurnbparameters. An intuitive explanation for the
approximately inversely proportional relation betweseand the subspace size we observed stems from the the
relatively larger probability volume far away from the andor higher dimensions. This is compensated by small
values ofa moving probability volume towards the origin. For this reasa was estimated for each subspace
unless otherwise noted.

3.4 Influence of Contrast Gain Control

Our experiments with different kinds of CGC on images pagcbevarious size indicate that preprocessing to
reduce dependencies has a significant influence on the perfme of the ISA model. If no CGC is performed, the

dependencies especially in small image patches are s@gtrahthe highest likelihood is given to the case where
all linear filters are pooled into one big subspace as shovigume 5 for 8x 8 pixel windows. Only by performing
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Figure 4. Dependency of the likelihood of natural image datasubspace dimensionality. A more pronounced
optimum appears whemis optimized, but it is persistent for fixemas well. Error bars indicate standard error on
the mean from 10 trials with different random seeds. Imadehes were of size 24 24 for this experiment, and
CGC was performed on individual image patches.

contrast gain control, subspaces of finite size are formethéosmall image patches. With bigger image windows,
e.g. 16x 16 even without CGC a significant maximum is found for a finitespace size. In both cases, however,
a more significant maximum is obtained if divisive CGC is penied.

To analyze how the dependencies between filters are affegt&€GC, we plotted the correlations of squares
(energy dependencies) of the filter outputs as shown in fiGur&ince linear correlations are removed by the
whitening, energy correlations are the dominant term. ftlsa seen that the histogram moves towards the origin
when CGC is performed, i.e. the overall amount of corretais reduced considerably. We found that the exact
method of CGC does not have a significant effect on the resdltsvever, a tradeoff considering the strength of
the normalization, which is controlled by the contrast iigrhood size, has to be made: Too strong CGC causes
negative energy correlations, instead of just moving thewatds zero.

4 Discussion

4.1 Related work

Our results show that the pooling in ISA can be justified imtgof statistical modelling of natural images, and
that Complex Cell responses can be modelled in terms of #iiststal properties of static natural images. Here
we compare our results to similar experiments, and thenlipigtthe key features that are unique to our model.

Firstly we would like to draw attention to the recent work bgrKlin and Lewicki [17], which also describes a
two-layer model of natural images. The main difference & th their model the second layer is a general linear
transform, whereas we constrain the second layer to poaeitsnfor computing a norm. The cost for the more
general second layer is that the model is not normalizabdeterefore requires the use of approximations for
the optimization. Another important difference is thattféwat the first layer of the Karklin and Lewicki model is
identical to ICA, and the authors claim that the presencéefsecond layer does not affect the optimal features
in the first layer. On a more technical level, the key idea efwlork is to model common variances within groups
of variables. The authors take the variance to be the higtdar deature underlying the data. It seems fair to link
this to the squaring operation in our model, because "eriengiactivation” cannot clearly be distinguished from
variance.

The results are quite different from ours in that the auttiimd global structure in the images in the form of
spatially extended and diverse higher order units. Theyaate to distinguish areas of low and high contrast,
and they can classify image patches into visually diffeggoups based on variance patterns. This is strikingly
different from our results showing higher order featuresadiing local invariances. The reason for this difference
is likely to be only partly due to the different technical straints of the two models, but is probably related to our
preprocessing with CGC. Conceivably it removes the gloealethdencies modelled by Karklin and Lewicki and
leaves local structure which replicate the properties ah@lex Cells. Therefore our model tries to learn a sparse
pooling of only a few local features, which are themselvetinoged to allow for this sparse pooling.
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Figure 5: Dependency of optimal subspace size on the sizeadfitage window and the CGC neighborhood. The
top row shows the likelihood functions computed from 246einsional data (18 16 image patches), bottom row
is for 60-dimensional data (8 8 image patches). The graphs on the left hand side show thkimgdikelihood
without CGC, the graphs on the right with CGC. CGC was perfdwith Gaussian neighborhoods of size as
indicated in the legend, where the uppermost plot corregptmthe uppermost legend item etc. Error bars indicate
standard error on the mean from 6 trials with different ramdeeeds. Please note that only the position of the
maximum of the individual curves can be compared, but nodteeall likelihood value. In order to compare these,
it would be necessary to compute the likelihood of dnigiinal datain a model where the data is transformed by
CGC and linear transforminto independent subspaces. Heignere the influence of the CGC procedure entirely,
so there is a significant offset between the lines.
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Figure 6: Effect of CGC on energy correlations: Before perfimg CGC, the average energy correlations of
filter outputs are 0.2, as plotted above the correspondiagtgr With CGC performed over a neighborhood of
16 x 16 pixels, the correlations are reduced and shifted towzeds. The average now is 0.07 and there are some
slight negative correlations. In the last plot, CGC on imdiixal image patches (1212) is shown to be almost
identical to the former method. Because of the smaller r@gdihood, more negative correlations appear. These
plots corresponds to 12 12 image patches.

Also closely related to our work is the "Product of Studemtadels” of Osindero et al. [18]. The model
described in this publication is an alternative to ICA-lthsgproaches, and uses Contrastive Divergence [19]
to optimize a hierarchical "product of experts” type distriion. By clamping the second layer to the identity
matrix, this model produces Simple Cell-like responsesl, subsequent learning of the second layer gives rise
to connections between cells in a similar fashion to toppigi@ICA. By grouping the units with the strongest
connections, the authors are able to produce Complex Reltdceptive fields with phase-invariance, while spatial
frequency and orientation tuning remain unchanged. Inraghto our model, no limitation on the number of
simple cells feeding one complex cell is enforced. This mizhconsidered as an advantage since it is likely to
reflect the properties of biological neural networks, whikh contrast to the advantage of a principled estimation
that our model offers.

Finally, [20] shows how modelling the energy dependencéw/ben neighboring Gabor-wavelets can be used
for state-of-the-art denoising of images.

4.2 Likelihood and Sparseness

Our experiments showed that the likelihood increases asgoes from ICA to the subspace model, and then
decreases again as very large subspaces are reached. Fetpeuiments with 24x 24 pixels in particular,
subspaces with a size of 16 to 32 have a significantly largeliiood than the simple ICA model. This shows that
the generalized ISA model provides a better statisticatdigtion for natural images than ICA, and hence provides
an adequate model of observed complex cell propertiesrdttly justifies pooling simple cell outputs from the
statistics of static images, and shows that the dynamianafé sequences are not required as claimed by other
authors[9, 10].

It is important to note that as the size of the subspaces gbws number decreases. This means that with
large subspaces, only a few highly complex features wenmatgd. In principle this could have been avoided by
working with a fixed number of subspaces, but this would rezjan overcomplete set of linear filters, which is
difficult to estimate with ICA models. In any case it is natumaexpect that experiments of this kind would lead
to pooling over an even large number of filters. In plot 7 it tenseen that the features at a subspace size of 16
are much less clean and localized than results that are kfrownlSA with 2 or 4 features per subspace. This is
presumably because there are only 16 complex features whiahto represent the whole image. It is interesting
to note that the maximum likelihood still occurs at this etharge subspace size, again indicating that strong
residual dependencies make image data difficult to appratemvith ICA models.

It should be noted that the goal of the estimation is not toimepe sparseness but this is merely a vehicle
for maximizing likelihood. The sparseness cannot be coegbaneaningfully between different subspace sizes
because the number of cells is different. As the number d§ delcreases with increasing subspace size, it is
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Figure 7: A random selection of features at maximum liketidevith a subspace size of 16. One row corresponds
to one subspace. Note that there is a relatively small nurnbéatures, so they are less selective than ICA
features.

natural that a larger percentage of these cells need to batct, but the total number of active cells may still be
less than with the linear features. Thus the sparsenessiwiauk to be weighted in some way, which would make
comparisons difficult. Therefore likelihood is the onlymipled method of comparing ICA and ISA models.

4.3 Pooling nonlinearity

Our results indicate that the parameatés always close to 2, which means that the subspaces aretisplaerical

in the Euclidean sense. This is in accordance with the fuin physiological experiments, which agree that
nonlinearities are best modelled by squaring and not e.¢plkigig the absolute value[15]. Other recent theoretical
work such as [21] also supports the case for a squaring remanty. The authors in [21] describe a somewhat
simpler model were a pooling of two subunits is forced. Sitteey allow for an individual estimation of the
optimal nonlinearity for each complex cell, they are ableshow that in addition to the predominant squaring,
some units compute thie,-norm, corresponding to selecting the maximum input. Thénnd#ference to our
model is that the authors use the principle of temporal i@ on movie sequences to obtain the results that
we achieve from efficient coding on static images. Since thainly obtain an exponent of two this result further
supports the notion that this is not merely an artifact of panticular method, but indeed an underlying feature of
the data.

The parameteat however, which s related to the sparseness of the distoibbaried over a considerable range,
so it was important to determine its optimal value indivitiypfor each subspace size. There was a strong trend of
decreasin@ with increasing subspace size.The fact that we &irdbse to 0.5 for small subspaces confirms that
the standard ISA model which fixesto 0.5 - and has been used with subspace size of two or foun-gead
agreement with our new model. Only for larger subspaces wealities, as those we found to have maximum
likelihood, we finda to be considerably smaller.

4.4 Contrast Gain Control

Our experiments showed that the way CGC is performed on tteldss a strong impact on the performance of
the model. It is widely accepted that one important functibthe visual pathway up to V1 is normalization and
gain control[14]. This is not only required in real world peption, where luminance changes over six orders of
magnitude and more occur frequently, but it is also crucialir model to make the underlying assumption of ICA
more realistic, i.e. that there exist independent sourdastware mixed linearly. However it is not clear whether
there is a 'correct’ way to perform CGC, and what this would bshould be noted that unlike whitening, CGC is
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a nonlinear process in which information is lost, so the gi@m a simpler statistical structure has to be weighted
against a loss in image contents.

5 Conclusion

We have demonstrated that our proposed methogd8A is sufficient to learn complex cell responses from stati
natural images.

After it was established that simple cell receptive fields ba obtained by imposing statistical constraints on
image data [5, 6], it was natural to investigate if complelk pmperties could also be obtained from the statistical
properties of static images. Basic ISA indicated that fdrpeoling of simple cells gives complex cells [8], but
the question remained if the pooling could also be estimfxtad the statistics of static images. With the present
results we have put forward strong evidence that this is #secby directly comparing the likelihood of ICA
(simple cell) and ISA (complex cell) models, and finding thalbspaces do in fact provide a description of natural
images with a higher likelihood than single independentufiess do. This is not only of theoretical interest, as we
also found evidence about the nature of the nonlinearityithased for the pooling: We have shown that from a
statistical point of view squaring and not e.g. absoluteeakctification fits image data better. For the future we
propose to exploit the idea of learned pooling further byiag@nother stage of pooling to the model, in order to
predict what the next stages of processing, for example imvght be [22].
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A The multivariate Lp-norm spherical distribution
A.1 Likelihood function

We consider the following probability density function in adimensional (sub)space:

n dya
p(s) =  exp(— 2L SE 1)

We want to determine the constan{previously referred to aZj) as a function of, b, andd so that this is a
proper probability density (integrates to one). Closelated results were already derived in Lemma 2.3. of [12],
and Eq.(3)-(4) of [23]. Here we provide a simpler proof basedjeometrical considerations.

We define thal-sphere of radiusy, denoted by (ro) as a generalization of an ordinary sphere as

) - {seR" 3 s <) 12)

i.e. the set where thé-norm is smaller than a given quantity. We will need to knoe tolume of thed-sphere.
The following lemma is proven below.

Lemma 1 The volume of $is given by
V(S(r) = "2 (1/d)"d"r (n/d+1)"* (13)

In order forp to be a proper probability density, we need to have

c= /exp(—%'j'd)a)ds (14)

As the probability density only depends on th@orm, we make a transformation that is somewhat similanéo t
n-dimensional spherical coordinates. We define

SO a5)
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We can evaluate the integral by using the differentiaV afs follows:

/exp( M)dSZ/ex —rbi:)dv (16)

wheredV is the differential element 0¥, i.e. the infinitesimal change in volume induced by We have by
definition of differentials and by the Lemma

v = ?j—\r/dr =1""1n2"r (1/d)"d " (n/d + 1) *dr (17)
so we need to have
ad
c_/e p—— dV (18)
- / exq—g)r“*an“r(l/de*“r(n/d+1)*1dr (19)

Now we make the following transformation ¢p
rad 1/d 1/ (ad)

for which the differential element can be computed as

dr _ b9 1/a01

dg ad (21)
which gives
c=n2"r(1/d)"d"r(n/d+1)~* / exp(—q)q" Y/ @dpn- 1>/db q /@d)-1qq (22)
—n2'r n nbn/d o n/(ad)—1
=n2"T(1/d)"d~ r(n/d+1)"! [ exp)(—q)q dq (23)
B 2”b”/dnr(n/(ad)) (1/d)" (24)
B ad™t1r(n/d+1)

A.1.1 Proofof Lemma 1l

First note that we only need to prove the lemmarfet 1. Due to the homogeneity of the definition of the set,
choosing am # 1 simply expands the set by a factorrah every dimension, and thus multiplies the volume By

The proof forr = 1 proceeds by induction with respectrio For simplicity of notation, we denote the set by
S, although it does still depend @h For anyd, S is simply the line segmerit-1,1] for anyd. Thus,

V(§)=2 (25)

For an arbitraryn, note that the cross-section &f for a fixeds,, defined by
n—1
Su(s) = {(s1,....5) €R™Y leld <1-s} (26)
1=

is simply ann — 1-dimensionatl-sphere of radius = (1—s3)¥/9. Thus, the volume of the crosssection equals
(1—shy(r-D/dy (s, 1). We can compute the volume & simply by lettings, take all the values ifi-1,1] and
summing the volumes of these crosssections together. T&s g

1 1
V(S) = [ (@) "/ (S a)ds =V (Sr1) [ (1) D, @7
To evaluate this integral, we make the change of variablgs to
ds, 1 _
_ _ l/d % _ 1 1/d-1
y=5 < =y oy~ (28)
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which gives
2 ri
V(S) =V(S0)F [ (L-y)n Bty @9)

The integral in this equation turns out to be equal to the d&finof the classic beta function, which can be
expressed using the gamma function as

! IR

— a —_—_—— 7

[ a-yryPay= £ (30)
Thus, the recursive formula ff(S,) can be expressed as

2T (" +1r(d)
d r(g +1)

The formula given in the lemma fulfills this recursive eqoatias well as the initial value in (25). Thus the lemma
is proven.

V(S) =V (S-1)5 (31)

B The multivariate spherical distribution

We consider the following probability density function in a-dimensional (sub)space:

pls) = - exl— OIEL i (32)

b2a

We want to determine the constantandb as a function of so that this is a proper probability density (integrates
to one) and thg have unit variance. By symmetry, teehave zero mean.
Let us take the-dimensional polar coordinates by taking

n

r= ;%2 (33)

andu which is an isometric parameterization of the unit sph&yei.e. the set where = 1, see e.g. [24, 25].
It is not necessary here to explicitly construct such a patanzation. The determinant of the Jacobian of the
transformation is given by 2.

Now, we can compute the normalizing constaas follows.

n a o0 r2a B
/exp(—(z'gﬁs'z))ds:/ / exp(—@)r“ ldrdu (34)
_/ exp(—@ - 1dr/ du (35)
The latter integral equals the surface of the unit spSgrevhich inn dimension is equal to
2m/2
F(n/2 o
Next, let us make the transformation of variables
rea 1/(2
t—@@r—bt/“") 37)

for which the volume element can be computed as

dr b _
i Z\tl/(za) 1 (38)
So, we have

n a /2 )
/exq_ (XIE;EZ) )ds= Z(Tn[n/z)/ exp(_t)(btl/(Za))n—lﬁtl/(Za)—ldt (39)

/2 RN
_ 2Tn[n/2 ga/ exp(—t)t" (2 -1gy (40)
B Tl“/zb“l'(z) 41
Coar(n/2) -
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Thus, to makep a proper probability density function, we must have

/20" (51
C= W (42)

Next, we compute the value thiashould take to make the probability density standardizedE{s?} = 1 for
all i. We have by symmetry

() - 2E(3 §) (43)

So, we can use the same transformation of variables to camput

/ E{Zsf}exp( z'béjz }/w%rz — )" 1dr/ du (44)

c
/‘dq/ —exq tuzaywlstyumamt (45)
a +2
nbnr(z—’;l)/ = exp(— ) £(+2)/(22)-14¢ (46)
_ gl ) (47)
nr(3%)

In order for this to be equal to one for a positivewe must have

nr(3%)

(%)

(48)
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