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Abstract—In many multivariate time series, the correlation
structure is non-stationary, i.e. it changes over time. Analysis of
such non-stationarities is of particular interest in neuroimaging,
in which it leads to investigation of the dynamics of connectivity.
A fundamental approach for such analysis is to estimate con-
nectivities separately in short time windows, and use existing
machine learning methods, such as principal component analysis
(PCA), to summarize or visualize the changes in connectivity.
Here, we use the PCA approach by Leonardi et al as the starting
point and present two new methods. Our goal is to simplify
interpretation of the results by finding components in the original
data space instead of the connectivity space. First, we show how to
further analyse the principal components of connectivity matrices
by a tailor-made two-rank matrix approximation, in which the
eigenvectors of the conventional low-rank approximation are
transformed. Second, we show how to incorporate the two-rank
constraint in the estimation of PCA itself to improve the results.
We further provide an interpretation of the method in terms
of estimation of a probabilistic generative model related to blind
source separation methods and ICA. Preliminary experiments on
magnetoencephalographic data reveal possibly meaningful non-
stationarity patterns in power-to-power coherence of rhythmic
sources (i.e. correlation of amplitudes).

I. INTRODUCTION

Analysing non-stationarities of covariances, correlations, or
other kinds of statistical connectivities is a topic of great
interest both in machine learning and neuroimaging [1], [2],
[4]. In the machine learning literature, emphasis has been
placed on accurately estimating connectivities in a nonsta-
tionary environment [3]. In many applications, however, it
is important that we can summarize or visualize the non-
stationarity of the system in an intuitively appealing way. A
simple way of summarizing non-stationary behaviour would be
to compute some kind of connectivity statistics for different
time segments, and then perform PCA in the space of those
connectivity statistics [2]. The connectivity statistics could
consist of covariance matrices or correlation matrices, for
example.

However, computing principal components of connectivity
matrices does not in itself lead to a very easily interpretable
results, since the principal components are of the same form as
the connectivity matrices. Connectivity matrices can be very
complex and high-dimensional objects, and their visualization
and analysis is a complex topic in itself.

Here, we develop a method for analysing the nonstationarity
of connectivities based on components that are linear in
the original data space. That is, we attempt to find pairs

of components of the original data which have maximally
nonstationary behaviour, i.e. their connectivities are changing
as strongly as possible. Such pairs are easy to interpret and to
visualize in most cases.

II. BACKGROUND AND MOTIVATION

Denote by Cτ , τ = 1, ..., k a number of connectivity
(correlation/covariance) matrices obtained from time segments
of a multivariate time series x(t). A fundamental approach for
analysing such matrices is to perform PCA on the vectorized
forms of the matrices, i.e. considering the vectorized form of
Cτ an observation at time point t, and performing PCA in the
usual way. Thus, we obtain a number of principal component
matrices which have the same form as Cτ . Let us denote by
K such a principal component.

A major problem is how to further analyse or visualize the
obtained K. A low-rank approximation of K could be used to
analyse its structure. A conventional approach is to use a one-
rank approximation of K by the dominant eigenvector. Using a
single eigenvector is mainly able to represent groups of closely
connected variables (“cliques”), such that the correlations
between those variable change together. Likewise, a two-
rank approximation mainly represents two groups which have
connections inside each group. Such an analysis is useful in
many cases, but we don’t consider it here for several reasons:
1) The principles of such low-rank approximations are already
well-known, being accomplished simply by the eigen-value
decomposition of K.
2) What would be very interesting in brain imaging, is to find
two groups of variables, such that the connectivity between
the two groups is changing strongly, as opposed to changes of
connectivity inside a group or groups of variables.
3) We have found empirically that the K in real data often can-
not be meaningfully represented by a conventional low-rank
approximation. K often has an eigenspectrum characterized by
a plus-minus structure, i.e. one large positive eigenvalue, and
one large negative one. The intuitive and practical meaning of
such an eigenstructure needs to be understood.

The goal of section III below is to explain the meaning of
such an plus-minus eigenstructure. We will see that it is in fact
closely connected to point 2 above, i.e. modelling changing
connectivity between two groups of variables. On the other
hand, it is clear that we should try to improve the method
by incorporating such low-rank constraints in the optimization
problem itself; this will be done in Section IV below.
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III. GROUP INTERACTIONS AS ORTHOGONAL TWO-RANK
APPROXIMATION

A. Definition as optimization problems

Assume we are given a matrix K which has the same
dimensions as a connectivity matrix, as a result of PCA of the
connectivity matrices or some similar method. In this section,
we consider how to develop a low-rank approximation of K
which is particularly suitable for neuroimaging.

Denote by w and v two vectors in the data space which
define brain areas or something similar. As an important
departure from conventional analysis, let us also assume that
w and v are orthogonal. This is because we want to analyse
connectivities between two different groups of variables (brain
areas). In conventional one-rank approximation, we would
take the outer product of w with itself, and we would be
analysing connectivity inside a group of variables (those
corresponding to non-zero entries in w); a conventional two-
rank approximation wwT +vvT simply analyzes connections
inside two groups separately from each other.

Thus, we use the outer product of w and v to model a
pattern of connectivity between two regions. Due to symmetry
of the connectivity matrices, we further use a symmetrized
version. This leads to an optimization problem in which we
attempt to find w and v by minimizing

min
wTv=0

‖K− (vwT +wvT )‖2 (1)

where the norm is the Frobenius norm. This is a rather
unconventional low-rank approximation since it uses the outer
products of two orthogonal vectors. We call it the orthogonal
two-rank approximation.

Some interpretations of the outer products in terms of brain
imaging are shown in Fig. 1. In the most basic case (a), we can
think of w and v as zero-one indicator functions of two brain
regions or other groups of variables. Then, the idea is that it is
the connectivity between those two areas that changes. On the
other hand, if one of the vectors, say v, has negative values as
well, what we are modelling is switching of connectivity, or
increase in one connectivity pattern coupled with reduction in
another connectivity pattern, see (b). This could mean that in
some parts of the data, there is connectivity between the area
defined by w and the area defined by the positive values of v,
while in other parts of the data, the connectivity is between the
areas defined by w and the negative parts of v. (However, the
exact interpretation depends on the baseline of connectivities,
e.g. whether the connectivities are all non-negative.)

The optimization problem in (1) is clearly closely related
to the following simple problem, reminiscent of PCA:

max
‖w‖=‖v‖=1,wTv=0

wTKv (2)

In the following we shall study these two simple optimiza-
tion problems, and their connection.

B. Theory of orthogonal two-rank approximation

To solve the optimization problem in (2), we have the fol-
lowing theorem. (Proofs are omitted due to space constraints.)

a) Simple change of connectivity strength (w,v non-negative)

b) Switching of connectivity (w non-negative, v not)

Fig. 1. Illustration of different connectivity pattern changes modelled by the
orthogonal two-rank framework. Left: illustration of connectivities in terms
of brain areas: each oval is one brain, boxes are brain areas, and red lines
are connectivities. Right: the matrix produced as outer product of w, v. The
vectors w and v are given as the line plots at the left and lower edges.

Theorem 1: Assume that K is symmetric, and the largest
and smallest eigenvalues of K are distinct. (Here, largest and
smallest means according to ordinary sorting, not using abso-
lute values.) Then, the solution of the optimization problem
(2) is given by

w =
1√
2
(emax + emin), v =

1√
2
(emax − emin) (3)

where emax and emin are the eigenvectors corresponding to the
smallest and largest eigenvalues of K. Denoting by λmax and
λmin the largest and smallest eigenvalues of K, the value of
the objective at optimum is equal to 1

2 (λmax − λmin).
So, the solution of the optimization problem (2) is com-

putationally simple, but quite surprising and unconventional.
Next we consider the connection between the simple PCA-like
objective in (2) and the orthogonal two-rank approximation.

Theorem 2: Consider the problem of approximating a sym-
metric matrix by a symmetrized outer product of two orthog-
onal vectors in (1).

1) The optimal w and v can be found, up to scaling
constants, by solving the optimization problem (2) as
in the Theorem 1.

2) The value of the objective at optimum is equal to ‖K‖2−
1
2 (λmax − λmin)

2

3) The objective is 0 iff K has rank two and λmin = −λmax.
The important implication of the theory presented above is

that in our optimization problem, we do not use the eigen-
vectors themselves. This is in stark contrast to conventional
low-rank approximations, which are based on using the outer



products of the eigenvectors with themselves. Further note that
in Theorem 2, we cannot approximate every two-rank matrix
exactly because we don’t have separate scaling coefficients for
the two eigenvectors. In a conventional two-rank approxima-
tion, we have the two eigenvalues as such scaling coefficients,
and we would be able to exactly approximate any two-rank
matrix. Here, we obtain an exact approximation only if the two
eigen-values have opposite signs but equal absolute values.
Thus, our approximation is exact only for matrices with the
special plus-minus structure mentioned in Section II.

IV. CONSTRAINED PCA OBJECTIVE

The analysis above gave new insight into the matrix PCA
results. Next, we propose to directly integrate the orthogonal
two-rank assumption into a PCA objective function.

In one time segment, the connectivity between the two areas
can be defined as vTCτw which, in the case of covariance
matrices, is actually the covariance of vTx and wTx in the
time segment. We want to maximize the variance of this, to
find components which explain as much of the nonstationary
connectivity structure as possible. We have to constrain w and
v in some way, so let us set their norms to be equal to unity.
Thus, we obtain the (preliminary form of the) optimization
problem

max
‖w‖=‖v‖=1,wTv=0

k∑
τ=1

(wTCτv)
2 − (

∑
τ

wTCτv)
2 (4)

Furthermore, let us assume that the mean connectivities have
been subtracted to obtain

C̃τ = Cτ −
1

k

k∑
i=1

Ci (5)

so that
∑
τ C̃τ = 0. Thus, the obtain the final optimization

problem as

max
‖w‖=‖v‖=1,wTv=0

k∑
τ=1

(wT C̃τv)
2 (6)

It is useful to consider the basic case of two connectivity
matrices, i.e. k = 2. Then the subtraction of means means
that C̃1 = −C̃2, and we simply have K = C̃1 up to a scaling
constant. In fact, the constrained PCA is then simply based
on analysing the difference of the original connectivities since
K = 1

2 (C1 − C2), and we obtain directly the optimization
problem in (2). However, with k ≥ 3, we need to develop a
new algorithm.

It is reasonable to start the optimization at a point given
by the orthogonal two-rank approximation of matrix PCA,
which means that maximization of this objective can be con-
sidered a finetuning of matrix PCA results. We have developed
a dedicated alternating variables algorithm for solving this
optimization problem, in which both alternating steps are in
closed-form and no gradient steps are needed, but a description
is omitted due to lack of space.

The objective in (6) above considers a single pair of
components of connectivities. Further pairs can be obtained by

well-known deflationary methods, i.e. optimizing the objective
under the constraint that the new vectors are orthogonal to
those already estimated.

V. PROBABILISTIC GENERATIVE MODEL

To get further insight into our methods, we have developed
a generative probabilistic model such that the methods above
can be considered to estimate parameters in it. Due to space
constraints, we don’t go into details but just mention the basic
idea here.

Assume we have two time segments and in both, the data
follows a linear mixing model, with standardized, possibly
Gaussian components si

x = As (7)

where the number of si is equal to the number of the xi, and
A is square. Assume the matrix A is the same for the whole
data. Assume that in the first segment, the si are independent.
To model changes in connectivity, assume that in the second
segment, we have the perfect correlation s1 = s2 but otherwise
the components are independent. Then we have

C1 = AAT , C2 = AAT + a1a
T
2 + a2a

T
1 (8)

K = C2 −C1 = a1a
T
2 + a2a

T
1 (9)

so, by Theorem 2, optimization of (2) will find w = a1
and v = a2. This shows that the methods considered in this
paper can be seen to analyse changes in correlation structure
of components in ICA-like models. Although we assumed
above that the components are conditionally Gaussian in each
segment, the global distribution of the components is non-
Gaussian due to being a Gaussian scale mixture.

VI. EXPERIMENTS ON MAGNETOENCEPHALOGRAPHIC
DATA

To validate the methods on real data, we used magnetoen-
cephalographic (MEG) data from [6]. The data comprised a
single 12 minute session recorded on a Elekta Neuromag 306-
channel neuromagnetometer. The subject received alternating
stimulation of visual, auditory, and tactile modalities, inter-
spersed with rest periods.

We first Morlet-filtered the data with a center-frequency
of 10 Hz to extract alpha-range activity. We next performed
ICA on the Morlet-filtered gradiometers to separate sources
of rhythmic activity. Finally, we computed the amplitudes
(envelopes) of the independent components, and used these
as input to the method proposed here.

Correlation coefficient matrices were computed in non-
overlapping time windows of a length of 5 seconds. The two
variants of the method, 1) Matrix-space PCA followed by two-
rank approximation (Section III), and 2) Constrained PCA
(Section IV) were applied on the data.

We show the first component pair (w,v) for the two
methods in Fig. 2, and the second component pair in Fig. 3.
The components are visualized on the measurement helmet
by adding together the spatial patterns (squares of columns of
mixing matrix) of those underlying independent components



1st component pair for MEG amplitudes

Matrix PCA + orth two-rank approx

w

v

Constrained PCA

w

v

Fig. 2. Results on MEG amplitudes: the first principal component pair
obtained by the two methods. Top panel: Matrix principal component analysed
by orthogonal two-rank approximation. Bottom panel: Constrained PCA
results. In each panel, the upper and lower parts give the two components
in the pair obtained.

that contribute to each connectivity component. Thus we
obtain a rough plot of the spatial extents of the components.
Note that w and v could be interchanged, and we have here
manually switched them in some plots to make the results of
the two methods as similar as possible, purely for the ease of
visualization.

In general, the results using constrained PCA look cleaner
and more plausible. The first component pair (Fig. 2, lower
panel), shows that the strongest non-stationarity is in the
connectivity between an occipito-parietal area and the left
temporal area. The second component pair (Fig. 3, lower
panel) shows that another strongly nonstationary connectiv-
ity is between inferior occipital areas and slightly superior
occipito-parietal areas.

VII. DISCUSSION

We proposed a method, Dynamic Connectivity Factoriza-
tion, for analysing the dynamics of connectivity patterns in
terms of components which are linear in the original data.
The goal is to analyse the nonstationarities in a way which
is intuitively comprehensible and easy to visualize. To this
end, we find two linear, orthogonal components of the data
such that the connectivity between them is maximally non-
stationary. The orthogonality constraint sets the method apart
from related methods, such as common spatial patterns (CSP),
or blind source separation using non-stationarity [5].

2nd component pair for MEG amplitudes

Matrix PCA + orth two-rank approx

w

v

Constrained PCA

w

v

Fig. 3. Results on MEG amplitudes: the second principal component pair
obtained by the two methods. (See Fig. 2 for legend.)

We presented two variants of the method, one based on
further analysing the PCA of connectivity matrices [2] by
a dedicated, orthogonal two-rank approximation, and another
based on formulating a constrained PCA objective function
and optimizing it by a tailor-made algorithm. The latter seemed
to produce better results on MEG, although it has to be noted
that the experiments were quite preliminary and the validation
of the results purely visual. Although we only presented MEG
results here, we hope the method will be applicable to fMRI
and other brain imaging modalities.
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