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Abstract. Estimating the degree of similarity between images is a chal-
lenging task as the similarity always depends on the context. Because of
this context dependency, it seems quite impossible to create a universal
metric for the task. The number of low-level features on which the judge-
ment of similarity is based may be rather low, however. One approach
to quantifying the similarity of images is to estimate the (joint) com-
plexity of images based on these features. We present a novel method
to estimate the complexity of images, based on ICA. We further use
this to model joint complexity of images, which gives distances that
can be used in content-based retrieval. We compare this new method
to two other methods, namely estimating mutual information of images
using marginal Kullback-Leibler divergence and approximating the Kol-
mogorov complexity of images using Normalized Compression Distance.
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1 Introduction

Measuring image similarity is not a simple task. Similarity is always defined at
two levels: The semantics and the syntax of an image. Two images containing
cars may be judged similar based on the fact that there are cars in both of the
images but on the other hand they may be judged dissimilar based on the make
of the car. This is an example of the semantic level. Similarly two versions of
the same image may be judged similar or dissimilar based on — for example —
different colorspaces, which is an example of the syntactic level.

The semantics of an image are dependent on the context. When one decides
whether the images containing cars are similar, it is the context that defines
whether similarity is dependent on the bare fact that there are cars in the image
or whether the make of the cars is also important. The less context-dependently
one defines similarity, the simpler the interpretation of semantics is and the more
general the similarity measure is.
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There certainly exist features which give a lot of information on the similarity
of images. The problem is that sometimes one simply does not know what the
discriminating features are and sometimes there are no clear dominating features.
In general, manually selecting one or a few simple low level features works only
for specific tasks, whereas using a large number of low level features raises the
complexity of estimation process to impractical level.

The complexity of images is a universal property which is related to similar-
ity. Intuitively it may be easy to decide between two images which one is more
complex, but one can also imagine situation when semantically completely dif-
ferent images may appear equally complex. This is not a desirable result, hence
complexity alone may not be very good measure of similarity or distance between
images. If one is mostly interested in pair-wise distances, one can try remedy
this by looking at the joint complexity of images versus the complexity of images
separately [7]. The difference between complexity of a single image and the joint
complexity of two images is more descriptive than arbitrary complexity values
of arbitrary images alone. Of course — depending on the method used — these
values have to be normalized appropriately.

Whether the difference between joint complexity and complexity of single
image is good enough measure of similarity depends on the task in hand. As
in all data-analysis, results depend a lot on the preprocessing and especially
feature extraction. For example, measuring general image similarity may not
require any specific feature extraction (pixel level intensity and color are the
lowest level features and directly available) but if one wants to perform more
specific tasks, the importance of features used grows. For specific tasks, there
may be well established working methods and complexity-based measures of
similarity may not be very attractive. On the other hand, the attractiveness of
using complexity-based similarities is based on its universality, and the fact that
in principle one can do this completely model-free—although the results will
depend on the complexity measure chosen.

Two options for estimating the complexity of images are Shannon’s classical
information theory and algorithmic information theory. Although fundamentally
different in some basic concepts, the two theories are connected [3]. Classical
information theory have been utilized extensively in data analysis for cluster-
ing, feature selection, blind signal separation, etc. These methods maximize or
minimize certain information theoretic measures. Kolmogorov complexity based
similarity measures have been studied and used for different data [7,2]. In those
papers the authors develop and use data compression based techniques to ap-
proximate the Kolmogorov complexity. They call the distance measure normal-
ized compression distance [7).

Complexity-based methods have been applied to image analysis. In [1] these
methods are applied to earth observation imagery and in [8] approximation of
Kolmogorov complexity is applied to image classification. Both of the above
papers use normalized compression distance as the measure of difference, hence
they belong to the methods based on algorithmic information theory.
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In this paper we present a new method based on a model that approximates
the complexity of the data. The model that we use is independent component
analysis (ICA) [5]. We first build the ICA model and then estimate the image
complexity from the properties of the model. Our method can be justified from
the information-theoretic framework, and it incorporates the sparsity of data in
the complexity measure. Sparsity is a prominent statistical property of images
which may not be well-captured by other methods.

The rest of this paper is organized as follows: In Section 2 we present our
method and discuss it in the context of other complexity measures, namely mea-
suring complexity by marginal Kullback-Leibler divergence and approximating
Kolmogorov complexity. In Section 3 we present experiments using natural im-
ages and in Section 4 we present our conclusions.

2 Estimating image complexity

Given a general complexity measure C(z) for an image x one can try to estimate
similarities between images. A naive assumption would be that the difference
|C(zg) — C(z1)] tells the similarity between images xo and z;. Unfortunately
such a general complexity measure does not exist. The closest thing that exists
is the Kolmogorov complexity or algorithmic entropy K (z) of the image (or any
string) x. Kolmogorov complexity is not computable, however.

Even if the complexity measure C(z) existed or Kolmogorov complexity were
computable, their value as measures of similarity would be questionable. Intu-
itively, the similarity between images does not always equal to the difference
in complexity. This is because the context plays an important role even at the
syntactic level, although not as much as in the semantic level.

An obvious way of introducing the context in the picture is to estimate the
joint complexity of images. This is still at a very low level but estimating the
complexity in the context of other image versus the complexity of single image is
more informative than arbitrary complexity values alone. Hence we are interested
in the distance that is defined as

D(o, 21) = C(zolz1) — min{C(zo), C(21)}, (1)

assuming that the joint complexity is symmetric, i.e. C(zg|z1) = C(z1]z0). Also
one wants to ensure that the distance is normalized appropriately.

As it was noted above the ideal complexity measure does not exist and Kol-
mogorov complexity is not computable. One can approximate the ideal com-
plexity measure in different manners, however. Shannon’s information theory
introduced the concept of entropy, which is easily estimated from data. Entropy
can be seen also as a statistical measure of complexity. Even though Kolmogorov
complexity is not computable it can be approximated using compression based
methods. Complexity can also be estimated from a model that approximates the
log-pdf of data as we do in this paper.
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2.1 Relative entropy as distance measure

Given a discrete probability distribution P Shannon’s entropy H(z) is defined
as

H(z)=—)_ P(x)log P(x). (2)

Entropy is a natural measure of complexity, since it estimates the degree of un-
certainty with random variables. Intuitively it is appealing: The more uncertain
we are about an outcome of an event, the more complex the phenomenon (data,
image, etc.) is.

Given another distribution @, the Kullback-Leibler divergence is defined as
P(x)
Q(z)
KL-divergence is also called relative entropy and it can be interpreted as the
amount of extra bits that is needed to code samples from P using code from
Q. If the distributions are the same, the need for extra information is zero and
the divergence is zero as well. KL-divergence is nonnegative but not symmetric
and as such it can not be used directly as a measure of distance or dissimilarity
between distributions. The symmetry is easy to obtain, however, just by calcu-
lating and summing the KL-divergence from @ to P and from P to @, hence
the symmetric! version is simply

KL(P||Q) = P(x)log 3)

KLS(P,Q) = KL(P||Q) + KL(Q|P). (4)

This is not a true metric but it can be used directly as measure of distance or
dissimilarity between distributions.

Using the symmetric version of KL-divergence (Eq. 4) as the pair-wise dis-
tance between two images is straight forward. It is not quite the ideal distance
measure in Eq. 1, but it captures the idea of estimating the complexity in the
context of another image.

2.2 Algorithmic complexity

Kolmogorov complexity K (x) of string z is the length of shortest program p using
given description language L on a universal Turing machine U that produces the
string .

K(z) = min{lp| : U(p) = 2}, ()

where |p| denotes the length of the program p. Kolmogorov complexity is not
computable.

Conditional Kolmogorov complexity K (zg|z1) of string xg given string x is
the length of shortest program that produces output xy from input x;

K(zolz1) = Hgn{\p| :U(plz1) = xo}. (6)

! Actually this is the original formulation that Kullback and Leibler give [6].
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Normalized information distance [7] is based on the Kolmogorov complexity
and is defined as

max{ K (xo|z1), K(z1]xo)} .

NID(xo,21) = max{ K (zg), K(z1)}

(7)

As Kolmogorov complexity is not computable, NID neither is computable. It can

be approximated, however, using the normalized compression distance (NCD)

[7]. NCD approximates NID by using a real world compressor C and it is defined

as

0(9507551) — min{C(w0)7C(:1c1)} (8)
max{C(zg),C(z1)} '

NCD(:L‘(),I,Cl) =

To use the NCD for measuring pair-wise distances between images one just
compresses images separately and concatenated and observes the difference be-
tween the compression results.

2.3 Using ICA as an approximation for entropy

A practical approximation of entropy can be attained by fixing some model which
approximates the log-pdf. We propose here to use this approach, in connection
with the model of independent component analysis (ICA), or equivalently sparse
coding [4]. These models are widely used in statistical image modelling. In ICA,
the pdf is approximated as

log p(x; W) = ZG(WZ»TX) + log | det W| (9)

where n is the dimension of the space, the w; are linear features, collected to-
gether in the matrix W. The function G is a non-quadratic function which mea-
sures the sparsity of the features; typically G(u) = —|u| or G(u) = —log cosh(u)
are used. The latter can be considered as a smooth approximation of the former,
which improves the convergence of the algorithm. A number of algorithms have
been developed for estimation of the ICA model, in particular the matrix of
features W' [5].

After the model has been estimated, we can then approximate the complexity
of x as

—E{log p(x; W)} =E{—ZG(WZ-TX) — log [det W1} (10)

where the expectation is taken, in practice, over the sample.

An intuitive interpretation of the ensuing complexity measure is also possible.
First, note that in ICA, the variance of the w!x is fixed to one. The first term
on the right-hand-side in (10) can thus be considered as a measure of sparsity. In
other words, it measures the non-Gaussian aspect of the components, completely
neglecting the variance-covariance structure of the data. In fact, this term is
minimized by sparse components. What is interesting is that the second term
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does measure the covariance structure. In fact, we have in ICA the well-known
identity
2|det W| = | det WWT| = | det C(x)|™* (11)

where C'(x) is the covariance matrix of the data. This formula shows that the
second term in (10) is a simple function of the data covariance matrix. In fact,
log | det W] is maximum if the data covariance has a minimum determinant. A
minimum determinant for a covariance matrix is obtained if the variances are
small in general, or, what is more interesting for our purposes, if some of the
projections of the data have a very small variances. Since in ICA, we constrain
the variances of the components to be equal to one, only the latter case is
possible. Thus, our entropy measure becomes small if the data is concentrated
in a subspace of a limited dimension.

Thus, this measure of entropy (complexity) is small if the components are
very sparse, or if the data is concentrated in a subspace of limited dimension,
both of which are in line with our intuition of structure of multivariate data.

Practicalities Remembering the ideal complexity distance in Eq. 1 we present
some remarks about the use of ICA model.

— Assuming that we want to estimate the distance between two images, we
estimate the ICA model from both images separately and combined.

— The complexity value that we get using Eq. 10 is normalized in similar
manner as the NCD in Eq. 8.

— In practice the ICA model for images is estimated from data that contains
a large number of randomly sampled image patches.

3 Experiments

We wanted to evaluate how our method relates to other complexity based meth-
ods. For that we performed experiments using a subset of images in the Univer-
sity of Washington content-based image retrieval database?.

We estimated the pair-wise distances between the subset of images using ICA,
marginal KL-divergence and NCD. All the images were in RGB colorspace. The
experiments were conducted as follows:

— The ICA models were estimated from data that contained 10,000 16 x 16
randomly sampled patches for each image. The data was normalized to be
of zero-mean and of unit variance as is customary.

— Marginal KL-divergences were estimated from RGB intensity histograms.

— NCDs were estimated from RGB image matrices using zlib®, which uses the
DEFLATE algorithm for compression.

2 http://www.cs.washington.edu/research /imagedatabase/groundtruth/
3 http://www.zlib.net/
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All the experiments were implemented in Python*. KL-divergence and NCD
experiments were done for comparison. At this point we are not interested in
image classification or clustering: We want to inspect the results visually and
using some quantitative measure.

For the quantitative evaluation we turned the distances into rankings. This
was done relative to every image in the data set. Rankings capture quite nicely
the essential differences between the methods. For the rankings we calculated
the Spearman rank correlation in order to understand the differences. Figure 1
shows for each image the rank correlation between all the methods we tried.

Spearman rank correlation for rankings with different similarity measures
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Fig. 1. The Spearman rank correlation between the different methods is showed when
the test images are ranked relative to every other image shown. Within each experiment
and ranking, the significance level o = 0.05 is attained by an absolute value 0.26 or
higher of correlation.

First, we observe that the correlations between rankings differ significantly
depending on the image the ranking is relative to. This is actually somewhat sur-
prising. Second, we notice that for most statistically significant correlations our
method agrees more with both the KL-divergence- and the NCD-based meth-
ods, whereas the KL-divergence and NCD rankings are less correlated. This
may suggest that our method captures more general features than the other
two. Whether this works in real world applications is not sure though. Lastly we
also observe surprisingly many negative correlations and the average correlation
is rather low. This is different though if we only observe the absolute values of
the correlation, which is justifiable, since correlation — negative or positive — is
interesting, whereas non-correlated data does not tell us much.

Images 2 and 3 show two-dimensional Sammon mappings estimated from
the pair-wise distances between images using ICA, KL-divergence and NCD
respectively. Image 4 show example rankings for one reference image using all
the methods. Visually inspecting it is clear that all the methods produce different
results. It is harder to judge one better than the other, however.

4 http://www.python.org
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Fig. 2. Two-dimensional Sammon mapping calculated from the pair-wise distances
between images, when the distances were estimated using ICA as an approximation
for entropy. Even though the Sammon mapping is used to preserve the distances in
the two dimensional visualization as well as possible, the individual rankings are not
directly comparable to the mapping.

It seems that the ICA method (Fig. 2, Fig. 4 left) is affected mostly by the
texture of the images. It is able to nicely group different kinds of trees according
to their appearance. The method do not seem to be very specific with regards
to the grass appearing in the images.

For the marginal KL-divergence visual experiment (Fig. 3 left, Fig. 4 middle)
the first impression is that it seem to be mostly affected by the different intensity
in the lighting in the images. That is actually quite natural since the distances
were estimated from RGB-intensity histograms. Nevertheless it also produces
reasonable results.

The results for NCD visual experiment (Fig. 3 right, Fig. 4 right) are quite
intuitive also but it is quite hard to find a common factor on which the grouping
is based. NCD seems to be mostly affected by the complexity of rather low level
features.

Finally one have to note that at their current state none of the methods
presented can compete with more specialized application specific image similarity
measures. The similarity that the methods measure is rather generic low level
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Fig. 3. Two-dimensional Sammon mapping calculated from the pair-wise distances
between images, when the distances were estimated using the KL-divergence (left)
and compression-based approximation for Kolmogorov complexity, NCD (right). Even
though the Sammon mapping is used to preserve the distances in the two dimensional
visualization as well as possible, the individual rankings are not directly comparable
to the mapping.

similarity. On the other hand that is exactly what one expects from complexity
based similarity measures.

4 Conclusions

We have presented a novel method to estimate image complexity in order to
derive a pair-wise similarity measure for natural images. Our method is based
on using ICA model to estimate the entropy of images separately and combined.
The similarity is derived from the normalized difference between the single im-
age complexity and the pair-wise complexity. This method is comparable but
not similar to other complexity based measures such as normalized compression
distance and other information theoretic entropy based methods.

Based on quantitative analysis our method seem to be somewhere in between
NCD and KL-divergence based distance measures. Visually all the methods tried,
produce reasonable results, the ICA method being more responsive to textures.

For future work one has to consider applications of the method for clustering
and classification, if not for other reasons than to get more decisive quantitative
results than those obtained from the present analysis.
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Fig. 4. An example of rankings produced by the three methods. The four rows below
the reference image show two most similar and two least similar images to the reference
image. The columns are from left to right ICA, KL-divergence and NCD.
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