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Abstract

We present new results about the simultaneous linear inverse problems
using independent component analysis (ICA), which can be used to separate
the data into statistically independent components. The idea of using ICA
in solving such inverse problems, especially in EEG/MEG context, has been
a known topic for at least more than a decade, but the known results have
been justified heuristically, and their relationships are not understood prop-
erly. Here we show how to obtain a Bayesian posterior for a spatial source
distribution, by using an ICA demixing matrix as an input. The posterior
enables us to rederive and reinterpret the previously known methods, and
also provides completely new methods.

Keywords: Independent component analysis, electroencephalography,
magnetoencephalography, Bayesian methods, inverse problem, source local-
ization.

1 Introduction

Our study concerns simultaneous inverse problems that can be formulated
in the form

X = fZ + E , (1)

which, in sufficiently low frequency range (less than 1 kHz), includes the
electro- and magnetoencephalography (EEG/MEG) inverse problems [1] [2].
Here f ∈ Rnmax×kmax is a known forward matrix. The number of measure-
ment channels is nmax, and the number of points in the spatial source space is
kmax. We assume nmax � kmax. The measurement data is X ∈ Rnmax×tmax ,
where tmax is the number of time points. These type of inverse problems are
often called simultaneous inverse problems to emphasize that tmax > 1. The
source matrix is Z ∈ Rkmax×tmax , and an additive noise is E ∈ Rnmax×tmax .
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We shall assume that we know the distribution of the noise to be Gaus-
sian, each column E(t) ∈ Rnmax×1 being independent with a zero mean and
a known covariance Σ. We follow a convention that capital letters denote
random variables, and lower case letters denote constant parameters and
observed variable values. As a consequence, some vectors are denoted by
capital letters, and some matrices by lower case letters, which might seem
confusing, but this convention makes the Bayesian approach as clear as pos-
sible. 1 When a is a matrix, we denote its rows as ai∗, and its columns as
a∗i. An exception to this is that if the second index is the time parameter,
we denote a(t) in place of a∗t.

Here we investigate how to use Independent Component Analysis (ICA)
to solve these kind of inverse problems. Usually ICA concerns problems of
the form

X = aZ̃, (2)

where Z̃ ∈ Rmmax×tmax contains statistically independent signals on its rows,
and a ∈ Rnmax×mmax is called the mixing matrix. Here mmax is the assumed
number of independent sources. An ICA algorithm takes the observed x as
input, and gives as output a demixing matrix w ∈ Rmmax×nmax such that
the rows of wx are estimates of the rows of z [3] [4]. Our original inverse
problem, defined in Equation (1), is not precisely of this form, but is clearly
related.

The idea of using ICA as a tool to solve inverse problems of the form
(1) has already received wide attention in the EEG/MEG context [5] [4].
One strategy has been to first decompose the measurement data x into a
sum of components x = x1 + . . . + xmmax + ε, and then use some well-
known inverse operator to the components separately [10] [11] [12]. The
components are usually obtained by a formula xm = (w+)∗mwm∗x, or by
some related method. Alternatively the vector (w+)∗m could be used instead
of xm. Here w+ is a pseudoinverse of the w. Some authors have proposed to
use the pseudoinverse w+ with a philosophy that may not have been obvious
in the light of well-known inversion strategies [13]. Also, alternative ways of
applying ICA on EEG and MEG, which are not included in the described
framework, have been recently introduced [7] [8].

There exists several ways to approach this inverse problem in a Bayesian
spirit. One possibility is to attempt to solve an ICA problem with some
prior information about the mixing matrix [14] [15] [16] [17]. In this paper
we show how to use ordinary ICA as a tool for producing a Bayesian inverse
solution. This approach allows us to enhance our understanding of the
previously known inverse methods, and the Bayesian posterior also provides
a new objective function for the inverse problem.

1The noise covariance Σ is an exception as a capital letter without being a random variable,
since small sigma would be too confusing in its place.
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2 Model and posterior for spatial distri-

bution

2.1 Definition of the model

We start by introducing a probabilistic model for the source matrix Z. We
assume that the source Z in (1) can be written as a product

Z = SC, (3)

where S ∈ Rkmax×mmax and C ∈ Rmmax×tmax are independent random ma-
trices, with mmax as the assumed number of the independent sources. We
assume mmax ≤ nmax. Now the X defined in Equation (1) becomes

X = fSC + E . (4)

The notation is motivated by the words “spatial” for S and “chronos” for
C. A column of Z, denoted by Z(t), can be written as

Z(t) =

mmax∑
m=1

S∗mCm(t) ∈ Rkmax×1. (5)

Now the columns S∗m ∈ Rkmax×1 describe the spatial distributions of indi-
vidual sources, and the rows Cm ∈ R1×tmax describe the time courses. The
spatial part S will obey some prior p(S = s), which can be specified later.
Below we will consider several possible spatial priors. The temporal part C
will obey a prior such that its rows are statistically independent, and they
also possess some property, such as non-Gaussianity, that can be exploited
for the purpose of blind source separation, which here means estimation of
the ICA model. We do not need to specify what that property is, since
below we simply assume that such a blind source separation is possible and
has been done.

The assumption (3) makes sense, since in many inverse problems the
original sources have in a some sense fixed spatial patterns despite the time
dependence. Also we usually assume Z to be very sparse with respect to the
spatial parameter k, but only moderately sparse, or otherwise non-Gaussian,
with respect to the time parameter t. Hence we assume Z to be a sum of
terms S∗mCm, where S∗m are very sparse, and Cm only moderately sparse
or otherwise non-Gaussian.

We also assume that C is white, for the purpose of reducing the ambi-
guities in S and C. The product SC will still be invariant under a trans-
formation that permutates the columns of S and rows of C similarly, and
also under the change of signs of the columns and rows. These invariances
do not imply serious difficulties.
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Our approach begins with the assumption that we have already obtained
a demixing matrix w ∈ Rmmax×nmax by applying some ICA or blind source
separation algorithm on the data to estimate the model (2), and that we
have also guessed correctly the number of independent sources mmax. We
can then assume that C = wx holds, and consider the Bayesian posterior
for S. The idea behind this assumption is that if the noise is small so
that x ≈ fsc, as implied by (4), the demixing matrix w will behave as a
left inverse of the fs, and wx ≈ c will hold. By using the definition of a
conditional probability, the formula X = fSC+E , and the assumption that
S, C and E are independent, we obtain

p(S = s | X = x, C = wx) =
p(S = s, fSC + E = x, C = wx)

p(X = x, C = wx)

=
p(S = s)p(C = wx)

p(X = x,C = wx)
p
(
E = (id− fsw)x

) (6)

Here id is an nmax×nmax identity matrix. By using the assumed distribution
for noise, and by ignoring all terms not depending on s, we obtain the
logarithmic posterior for S.

log p(S = s | x,w)

= log p(S = s) − 1

2

tmax∑
t=1

x(t)T (id− fsw)TΣ−1(id− fsw)x(t) + const.

(7)

The logarithmic likelihood for s can be obtained from Equation (7) by omit-
ting the prior term log p(S = s) and the constants, and we denote the log-
arithmic likehood as `(s|w, x,Σ). The logarithmic likelihood can be written
in several different ways, for example:

`(s|w, x,Σ) = −1

2
Tr
(
xxT (id− fsw)TΣ−1(id− fsw)

)
= −1

2

nmax∑
n,n′=1

(
(id− fsw)xxT

)
n′n

(
Σ−1(id− fsw)

)
n′n

(8)

We shall compare this likelihood with a simpler objective function Lold,
which we define as

Lold(s|w+) = −1

2

mmax∑
m=1

‖fs∗m − (w+)∗m‖2. (9)

Here w+ is a pseudoinverse of w. The Moore-Penrose pseudoinverse would
be a natural choice, but below we will consider alternatives too. The idea
of this simpler objective function is similar to the ideas already studied by
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many authors [10] [11] [12]. We shall not attempt to reproduce precisely the
same methods as explained by these earlier authors, but instead we compare
our new objective function to Lold, which summarises these earlier methods
compactly.

2.2 Theoretical analysis

There are several remarks which can be made about the properties of ` and
Lold. We begin with the simplest ones.

Basic motivation for Lold In Equation (2) we recalled the ordinary
ICA model X = aZ̃. Usually the mixing and demixing matrices a and w
are related in such way that they are some pseudoinverses of each other.
For example, we could define an estimate of the mixing matrix by a formula
â = w+.

In our model X = fSC+E a matrix fs takes the role of a, so we should
expect fs ≈ w+. This is probably the simplest way to justify Lold.

If mmax < nmax holds, w will not be a square matrix, and it will have
several different pseudoinverses. This introduces the problem of choosing
the most optimal one.

If the noise is very small, the Moore-Penrose pseudoinverse will be the
most natural choice. This can be justified by noticing that ICA algorithms
usually produce such w that w Im(a)⊥ = {0} holds. Here Im(a)⊥ is the
orthogonal complement of the image of a. This follows from the PCA di-
mension reduction, and implies that w is actually the Moore-Penrose pseu-
doinverse of a. Then w = a+ implies w+ = a.

It turns out that the Moore-Penrose pseudoinverse is not necessarily the
best estimate for the mixing matrix when non-trivial noise is present. We
will discuss this in more detail in Section 4.5.

Relation in the limit of small noise Another simple remark is that
if the noise is extremely small, an approximation x ≈ w+wx will hold when
w+ is defined as the Moore-Penrose pseudoinverse. This is because w+w is
roughly the orthogonal projection matrix to the mmax-dimensional subspace
where the relevant input data resides (while ww+ is themmax×mmax identity
matrix). This implies the following approximation.

(id− fsw)x ≈ (w+ − fs)wx (10)

Thus we see that if Lold is close to zero, ` must be close to zero too. This
implication cannot be justified so easily if the noise is not small.
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Maximization of Lold Since we assume nmax < kmax, for simplicity we
can also assume that the rows of f are linearly independent. This implies
that Lold reaches its maximal value, which is zero, at the estimate ŝ = f+w+.
In this formula f+ can be any right inverse of f , while w+ must be the same
pseudoinverse which is present in (9).

In applications such as MEG/EEG source localization and other inverse
problems the rows of f can be strongly linearly correlated, and the pseu-
doinverse f+ will need to be regularized to be useful. For simplicity, in our
theoretical analysis we assume that the precise pseudoinverses would work.
In some special cases the rows could be precisely linearly dependent too,
but we omit this case from our analysis.

Continuing with the assumption of linear independence, the set in which
Lold is maximized is

f+w+ + ker(f)mmax . (11)

Here ker(f)mmax means the set of kmax×mmax matrices whose columns are in
ker(f) ⊂ Rkmax×1. This can be proven easily by writing a point of maximum
in a form s∗m = f+(w+)∗m + ∆s∗m. It follows that

Lold(s|w+) = −1

2

mmax∑
m=1

‖f∆s∗m‖2, (12)

and we see that the ∆s∗m must be contained in the kernel of f .

Limited effect of assumed noise covariance Some information
about the likelihood can be obtained by examining its gradient, which is

∇s`(s|w, x,Σ) = fTΣ−1(id− fsw)xxTwT . (13)

A surprising remark can be made at this point. If we assume that the
rows of f are linearly independent, and that Σ is finite and non-singular, the
input parameter Σ actually has no effect on the maxima of `. This follows
from the fact that fTΣ−1 has no non-trivial kernel, and∇s` = 0 is equivalent
with a relation (id− fsw)xxTwT = 0. Notice that the parameter x will still
have an effect on the maxima, and on the other hand a relation 1

tmax
xxT ≈

fssT fT + Σ∗ will hold, where the Σ∗ is the true noise covariance. Thus, the
true noise covariance will have an effect on the maxima, regardless of the
model parameter Σ. Also, if some of the eigenvalues of model parameter Σ
are close to zero, numerical effects on the estimated maxima can occur.

Maximization of likelihood Next we generalize the estimate ŝ =
f+w+.

Theorem 1. Assume that the rows of f and wx are linearly independent
(and that Σ is finite and non-singular). The estimate ŝ0 defined by a formula

ŝ0 = f+xxTwT (wxxTwT )−1 (14)
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maximizes the likelihood `(s|w, x,Σ). Here f+ can be any right inverse of
f . The set in which ` is maximized is

ŝ0 + ker(f)mmax . (15)

Proof is given later in Section 3.
Notice that if w+wx ≈ x holds, we can substitute w+w between f+ and

x in Equation (14), and the formula simplifies back to ŝ0 ≈ f+w+. We see
that (14) generalizes the estimate f+w+ by taking into account the noise
in a non-trivial way. In fact, we have even a stronger result concerning the
estimate f+w+:

Theorem 2. Assume that the rows of f and w are linearly independent.
Also assume that the sample covariances are precisely the theoretical values,
so that ccT = tmaxid, εεT = tmaxΣ, and cεT = 0. If the covariance of noise
is proportional to the identity, so that Σ = σ2id with some real σ2 > 0, the
likelihood will reach its maximal value at ŝ = f+w+. Here f+ can be any
right inverse of f , while w+ must be the Moore-Penrose pseudoinverse of
w.

Above we noted that if the noise is very small, the estimate ŝ = f+w+

will maximize the likelihood. Now Theorem 2 states that actually the noise
does not need to be very small, but instead it is sufficient that the noise
covariance is proportional to the identity.

The assumption that the sample covariances are precisely the theoretical
values is slightly hypothetical, but it is a reasonable approximation that if
tmax is sufficiently large, and if the sample assumption holds approximately
to a sufficent degree, the estimate ŝ = f+w+ will be approximately a point
of maximum. Empirical simulations support this hypothesis.

In the light of what we now know, the condition Σ = σ2id (with the
true noise covariance, not only the input parameter) implies the maxima
of ` and Lold to be the same (assuming we are using the Moore-Penrose
pseudoinverse as w+). In other words, it makes sense to bother with the
likelihood only when non-trivial noise is present.

The concavity of an objective function is an important property if we are
interested in its maximization. To this end, we have the following result:

Theorem 3. The log-likelihood s 7→ `(s|w, x,Σ) is concave, meaning
that for all s̃, s ∈ Rkmax×mmax and 0 ≤ α ≤ 1 inequality

`(αs̃+ (1− α)s|w, x,Σ) ≥ α`(s̃|w, x,Σ) + (1− α)`(s|w, x,Σ) (16)

holds.
Since a sum of two concave functions is also a concave one, we see that

the logarithmic posterior of s will always be concave when the logarithmic
prior is chosen concave first. In fact also the Lold(s|w+) is concave, but this
is not a novel result.
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3 Proofs of theorems

3.1 Proof of Theorem 1

Theorem 1 can be proven very mechanically by examining the gradient given
in Equation (13) once it has been first proven that the log-likelihood is max-
imized globally where the gradient is zero. The second partial derivatives of
the log-likehood have the following formula:

∂2`

∂sk′m′∂skm
= −(fTΣ−1f)kk′(wxx

TwT )m′m (17)

We see that the second partial derivatives are constants with respect to the
s, and the log-likelihood must be some quadratic form. Let us identify s,
which is a kmax ×mmax matrix, with a kmaxmmax × 1 vertical vector, and
denote the kmaxmmax× kmaxmmax Hessian matrix as ∇2`. Now with a brief
calculation we get

sT (∇2`)s =

kmax∑
k,k′=1

mmax∑
m,m′=1

sk′m′
∂2`

∂sk′m′∂skm
skm

= −Tr
(
(fswx)TΣ−1fswx

)
≤ 0.

(18)

We see that the eigenvalues of the Hessian matrix must be either negative
or zero, and the log-likelihood is a paraboloid opening downwards (at least
non-properly).

We can now proceed by examining the zeros of the gradient.

∇s`(s|w, x,Σ) = 0 ⇐⇒ fTΣ−1(id− fsw)xxTwT = 0

⇐⇒ (id− fsw)xxTwT = 0

⇐⇒ xxTwT = fswxxTwT

⇐⇒ xxTwT (wxxTwT )−1 = fs

⇐= f+xxTwT (wxxTwT )−1 = s

(19)

Here we used the fact that fTΣ−1 has no non-trivial kernel, and the fact
that wxxTwT is invertible, which follow from the assumptions. Matrices like
wx(wx)T are always diagonalizable with real eigenvalues by symmetry, and
can never have negative eigenvalues. The assumption that the rows of wx
are linearly independent implies that wx(wx)T cannot have zero eigenvalues
either, so the matrix must be invertible.

If s̃ is some maximum distinct from ŝ0, we can proceed from the formulas
in (19) as follows.

xxTwT (wxxTwT )−1 = fs̃ =⇒ ŝ0 = f+fs̃ (20)
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Here we multiplied the both sides from left by f+, and used the definition
of ŝ0. On the other hand, the definition of ŝ0 implies f+fŝ0 = ŝ0. So we get

f+fŝ0 = f+fs̃ =⇒ f(ŝ0 − s̃) = 0. (21)

Here we used the fact that f+ has no non-trivial kernel, and obtained the
desired result s̃ ∈ ŝ0 + ker(f)mmax .

3.2 Proof of Theorem 2

We begin with the lower formula of Equation (8), and substitute

xxT = tmax(fssT fT + Σ), (22)

which follows from the assumption that sample covariances are precisely the
theoretical values. We obtain

`(s|w, x,Σ) = − tmax

2

( nmax∑
n,n′=1

(
(id− fsw)fssT fT

)
n′n

(
Σ−1(id− fsw)

)
n′n︸ ︷︷ ︸

1st term

+

nmax∑
n,n′=1

(
(id− fsw)Σ

)
n′n

(
Σ−1(id− fsw)

)
n′n︸ ︷︷ ︸

2nd term

)
.

(23)

Next, we shall prove that both of these two terms separately reach minimal
values at s = f+w+. It turns out that for the 1st term, the assumption
about Σ will not be needed. Firstly, it is a simple exercise to check that
the 1st term is zero when s = f+w+. One only needs to use ww+ = id and
ff+ = id a few times after substitution. On the other hand, the 1st term
can be manipulated into the form

Tr
(
sT fT (id− fsw)TΣ−1(id− fsw)fs

)
. (24)

Since Σ−1 is symmetric with non-negative eigenvalues, the 1st term can
never reach negative values. So we can deduce that the 1st term reaches its
minimal value at s = f+w+.

When proving that the 2nd term reaches minimal value at s = f+w+,
we must first use the assumption Σ = σ2id. The 2nd term then becomes

nmax∑
n,n′=1

(id− fsw)2
n′n. (25)
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At this point it is a good idea to examine a function

J(g) =

nmax∑
n,n′=1

(id− g)2
n′n, (26)

where id and g are nmax × nmax matrices. Suppose we want to minimize
J(g) with a constraint dim(Im(g)) = mmax. The result will turn out to be
that if g is an orthogonal projection to some mmax-dimensional subspace,
the J(g) obtains its minimal value, which turns out to be nmax − mmax.
First, the easy part is to check that if g is an orthogonal projection to some
mmax-dimensional subspace, then J(g) = nmax−mmax. This can be proven
by using the fact that in this case g must be symmetric, and it can be
diagonalized with an orthogonal transformation. In the definition of J(g)
we might as well replace the g with its diagonalized form. On the other
hand g’s eigenvalues must include mmax “1”:s and nmax −mmax “0”:s.

The more difficult part of the proof is to show that even when nothing
else but dim(Im(g)) = mmax is assumed, still J(g) cannot reach values
smaller than nmax − mmax. In this case, assume that g = uλvT is the
singular value decomposition of g. In the standard form, all matrices u, λ, v
would be nmax × nmax. However, λ must have nmax − mmax “0”:s on its
diagonal, by the assumption dim(Im(g)) = mmax. Therefore, we can omit
the redundant rows and columns of these matrices, and replace them with
nmax ×mmax matrices u and v, and mmax ×mmax diagonal matrix λ. The
identities uTu = id and vT v = id still hold. After some work, a following
formula can be obtained:

J(g) =

nmax∑
n,n′=1

(
δnn′ −

mmax∑
m=1

unmλmm(vT )mn′
)2

= · · ·

· · · = nmax +

mmax∑
m=1

(
λ2
mm − 2

(
(vT )m∗u∗m

)
λmm

) (27)

Since there are no constraints between λ and (u, v), an equation ∂
∂λmm

J = 0
must hold at the point of minimum. When computing the partial derivative,
(vT )m∗u∗m can be considered as a real constant. We find that

λmm = (vT )m∗u∗m (28)

must hold at the point of minimum, which in turn implies

J(g) = nmax −
mmax∑
m=1

λ2
mm. (29)

Finally, the Cauchy-Schwarz inequality |λmm| ≤ ‖v∗m‖‖u∗m‖ = 1 confirms
that J(g) cannot obtain values smaller than nmax −mmax.

10



Now we are ready to deal with Equation (25). The product fsw is an
nmax×nmax matrix which always fulfills the relation dim(Im(fsw)) ≤ mmax,
since fs is nmax ×mmax and w is mmax × nmax. The assumption s = f+w+

implies fsw = w+w, and w+w actually is an orthogonal projection to an
mmax-dimensional subspace, so the quantity in Equation (25) must obtain
the minimal value at s = f+w+.

3.3 Proof of Theorem 3

A function, whose graph is a paraboloid opening downwards (properly or
non-properly) is always concave. The log-likelihood is defined in such way,
that it is not manifestly a quadratic form with respect to the s, since the
matrix s is between matrices f and w in a way which has no obvious intuitive
meaning. However, it can be proven that the log-likelihood is indeed a
quadratic form with respect to the s, and also that the graph is a paraboloid
opening downwards (non-properly). In fact, this was done in the proof of
Theorem 1.

So the easiest way to prove Theorem 3 is to make the remark that in the
proof of Theorem 1 we already proved the log-likelihood to be a quadratic
form with a Hessian matrix that has no positive eigenvalues.

It is also possible to prove Theorem 3 more mechanically, without using
the proof of Theorem 1, by using the inequality

|aTΣ−1b| ≤
√
aTΣ−1a

√
bTΣ−1b, (30)

which holds with arbitrary vectors a, b ∈ Rnmax . This is simply the Cauchy-
Schwarz inequality with an inner product defined by Σ−1. We omit the
details of this proof, since this way is not very attractive after the previous
one.

4 Spatial estimate methods

Next, we consider practical methods ensuing from the model and theory of
the preceding sections.

4.1 Sparse prior with gradient ascent

One of the most obvious ways to maximize the logarithmic posterior is the
gradient ascent, where we allow the quantity s to evolve by steps

s(i+ 1) = s(i) + µ∇s log p
(
s(i)|x,w

)
. (31)

The origin s(0) = 0 is one good starting point. In order to use the gradient
ascent, the prior p(S = s) must be specified. A well-known approach is to
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use a prior defined as

log p(S = s) = −λ‖s‖1,εreg = −λ
mmax∑
m=1

kmax∑
k=1

√
s2
km + ε2

reg (32)

[18]. This is roughly the same as log p(S = s) = −λ‖s‖1, which is a popular
sparsity favouring prior, but we have arranged it differentiable at the origin
with a regularizing parameter εreg > 0. The partial derivatives of the prior
are

∂

∂skm
log p(S = s) = − λskm√

s2
km + ε2

reg

. (33)

The purpose of the parameter λ is to allow us to adjust the strength of the
prior.

The gradient of the logarithmic likelihood was given in Equation (13).
The objective function Lold defined in (9) can also be maximized by a gra-
dient ascent, since its gradient is given by a simple formula

∇sLold(s|w+) = fT (w+ − fs). (34)

So both of the objective functions

`(s|w, x,Σ)− λ‖s‖1,εreg and Lold(s|w+)− λ‖s‖1,εreg (35)

can be simply maximized by a gradient ascent.

4.2 Prior with an infinitesimal coefficient

One problem with the gradient ascent maximization of the posterior is that
there is no obvious way to decide a value for the prior coefficient λ. One
mathematically consistent estimate can be defined by defining λ as some
positive infinitesimal. This is equivalent to demanding that ` or Lold is
maximized first, and we then mimimize ‖s‖1,εreg while maintaining the con-
straint that ` or Lold is kept at the maximal value.

It would be a mistake to search for this estimate by the ordinary gradient
ascent with some very small λ, since such approach would turn out to be
very slow. The reason for this is that the maximal rate of convergence of
an ordinary gradient ascent is bounded by the ratio of the largest and the
smallest eigenvalues of the Hessian matrix at the point of maximum. We
know that some of the eigenvalues of the Hessian matrices of ` and Lold are
precisely zero. The Hessian matrices at the maxima of the functions in (35)
will not have zero eigenvalues when λ > 0, but in the limit λ → 0 some
eigenvalues will approach zero.

On the other hand, we have proven earlier that the sets where ` and
Lold are maximized are of the form ŝ0 + ker(f)mmax , and we have also found
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analytical formulas for ŝ0. The formula ŝ0 = f+w+ provides a maximum for
Lold, and this formula was generalized in Equation (14) to give a maximum
for `. Thus, if we denote as Pker(f) the orthogonal projection to the kernel
of f , we can set up a following iterative method: First set s(0) = ŝ0, and
then use the recursive formula

s(i+ 1) = s(i)− µPker(f)∇s‖s(i)‖1,εreg . (36)

The pseudoinverses and projection matrices may have to be regularized
before numerical use. We propose using some integer parameter nreg such
that 1 ≤ nreg ≤ nmax, and defining f+

nreg
by the formula f+

nreg
= vΛ−1

nreg
uT ,

where f = uΛvT is the singular value decomposition, and Λ−1
nreg

has been

defined by setting (Λ−1
nreg

)nn = 1
Λnn

for the nreg largest singular values, and

(Λ−1
nreg

)nn = 0 for other diagonal entries. We can define vnreg as a kmax×nreg

matrix, where the columns are those columns of v which correspond to the
nreg largest singular values. Then the projection matrix Pker(f) is naturally

regularized by a formula Pnreg = id− vnregv
T
nreg

.
We do not recommend regularizing the pseudoinverse by some formula

such as (Λ−1
δ )nn = Λnn/(Λ

2
nn + δ2), because there would be no obvious way

to regularize the projection Pker(f) in a compatible manner.

4.3 The method of translating point sources

One possible alternative to the gradient ascent is to make the prior as-
sumption that all sources are strictly point sources. The matrix s can
then be parametrized by 2mmax numbers k1, . . . , kmmax , a1, . . . , ammax , so
that skm = amδk,km . Here km ∈ {1, 2, . . . , kmax} are the locations of the
point sources, and am ∈ R are the amplitudes. Parametrizing s like this
is equivalent to a prior p(S = s) being such that it requires s to be of
this parametrized form. We can then carry out a local search procedure,
where the algorithm simply checks if the likelihood can be increased by
making small changes to the parameters, and by flipping the signs of the
amplitudes am. This method requires that we know which points in the set
{1, 2, . . . , kmax} are considered neighbour points, and lacks some generality,
but we have found this approach to work very well in simulations where the
real source distributions actually were point sources.

In some sense the method described here is more primitive than some
previously published methods, which have a similar setting [19]. This prim-
itive approach was sufficient for our purposes, which are explained later in
Section 6.

Both the gradient ascent, with real or infinitesimal λ, and the method of
spatially translating point sources, can be interpreted as methods to maxi-
mize the posterior (7), but with different priors p(S = s).

13



4.4 The gradient of the likelihood at the origin

Next we compare our work to that of Hild and Nagarajan (H&N) [13], and
develop a natural generalization to their method. In a simplified form, the
H&N method is to first define a mapping

k 7→ |(w+)Tm∗f∗k|, (37)

and then to examine where it obtains large values, for example by defining
an estimate k̂m as the point were this mapping is maximized. 2 If the
true source component s∗m is very point like, the k̂m will usually be very
close to the true source position. Here the matrix f has been defined by a
formula f∗k = f∗k

‖f∗k‖2 . We found in simulations that the matrix f usually
works significantly better than the original f . Hild and Nagarajan used this
normalization too.

Equation (34) implies

∇sLold(0|w+) = fTw+. (38)

Thus we see that if we replace f by f , the simplified H&N method is equiv-
alent to simply considering the gradient of the Lold at the origin s = 0,
and examining where it is extremized. This observation paves a way for an
obvious generalization, since we can exploit the information in x and Σ by
considering the gradient of the `(s|w, x,Σ) at the origin s = 0 in a similar
manner. The formula is

∇s`(0|w, x,Σ) = fTΣ−1xxTwT . (39)

The relation of (39) to the H&N method becomes clearer when we prove
that if the noise is very small, an equation

1

tmax
xxTwT ≈ w+ (40)

will hold when w+ is the Moore-Penrose pseudoinverse. In order to under-
stand this, let us assume that an equation x = az̃ holds with some mixing
matrix a, and that 1

tmax
z̃z̃T = id. Then xxT = tmaxaa

T holds too, and if w
is a left inverse of a, we get

1

tmax
wxxT =

1

tmax
w(tmaxaa

T ) = aT . (41)

2In their original paper, Hild and Nagarajan divided the spatial source space into blocks of
three points, like {{1, 2, 3}, {4, 5, 6}, . . .}, and then carried out constrained maximization pro-
cedures in these blocks. These details were relevant for their final algorithm, but not for our
discussion. It should be obvious that all methods which we discuss here, can be modified and
rigged later.
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We explained earlier in Section 2.2 that usually w+ = a holds (at least, if w
has been obtained from a usual ICA algorithm), so we see that 1

tmax
wxxT =

(w+)T holds usually too. We have now proven the approximation (40),
and also the result, that if Σ = σ2id with some very small σ2, the gradients
∇sLold(0|w+) and∇s`(0|w, x,Σ) differ only by some multiplicative constant.

We now propose the mapping

k 7→ |(wxxTΣ−1f)mk| (42)

as a generalization to the old mapping shown in (37). Using the gradient of
the log-likelihood introduces a modification of the Hild-Nagarajan method,
which again uses the information in the noise covariance matrix unlike the
original method.

4.5 Pseudoinverse of the demixing matrix

Many of our formulas involve a nmax × mmax matrix w+, which we call a
pseudoinverse of w. There exists two ways to compute this as a Moore-
Penrose pseudoinverse, and we now emphasize some important technical
details related to this.

A demixing matrix w, whose size is mmax × nmax, can be thought to
have been defined by a formula w = wselectwdemixwreduce. Here wreduce is a
dmax × nmax matrix which has been obtained by PCA, and the coefficient
dmax denotes the dimension of the subspace where the significant amount
of the variance resides. Always mmax ≤ dmax ≤ nmax. The matrix wdemix

is a dmax × dmax square matrix which contains whitening and the actual
demixing. The dmax × nmax matrix wdemixwreduce contains dmax rows of
which mmax are relevant, and actually demix the independent components,
while dmax − mmax are irrelevant, and only demix noise. So finally the
selection matrix wselect is defined as a mmax × dmax matrix with all other
entries zero, but mmax “1”-elements at right places so that the irrelevant
components are omitted.

One way to compute w+ is to simply compute the Moore-Penrose pseu-
doinverse of the w. A second way is to first compute the Moore-Penrose
pseudoinverse (wdemixwreduce)

+, which will be a nmax × dmax matrix, and
arrive at the nmax ×mmax matrix by as a last step omitting the irrelevant
columns.

It turns out that in general the procedures of omitting rows or columns,
and of computing the Moore-Penrose pseudoinverse, do not commute. We
verified in our simulations that the results can turn out to be inferior if the
rows are omitted first, and the Moore-Penrose pseudoinverse computed last.
We now emphasize that if mmax < dmax holds, it will be very important to
compute the Moore-Penrose pseudoinverse first, and omit the columns last.
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This order will also produce the same matrix which is given as an estimate
of the mixing matrix a by the FastICA Matlab function [9] 3.

Many authors interested in the inverses of demixing matrices have usu-
ally considered the case mmax = dmax only, so this issue has been left without
emphasis. [10] [11] [12]

4.6 Summary

We have now proposed four different methods to exploit the posterior (7).
The sparse prior with gradient ascent, the sparse prior with an infinitesimal
coefficient, the method of local translations of point sources, and the gradient
of the likelihood at the origin. We pointed out that the maximization of the
posterior is closely related to the objective fŝ ≈ w+, which has been studied
by many authors in the past, and that the gradient of the likelihood at the
origin is closely related to the method published by Hild and Nagarajan.
We hope we have now introduced some clarity and unification to this topic
by explaining the relationships of the different methods.

5 Simulations

We defined an artificial forward matrix f as explained in the caption of
Figure 1. We set nmax = 100, kmax = 1000, tmax = 10000 and h = 1.
We tested all four methods, which we explained in the theory section, with
simple simulations. The order of the four methods here is not the same as in
Section 4, since it is convenient to begin with the simplest implementation,
which is the gradient of the likelihood at the origin.

In the simulations the statistically independent data c was sampled so
that each component obeys a distribution of the form p(sm(t)) ∼ e−|sm(t)|γ

with some coefficient γ < 2. We used choices γ = 1 and γ = 1.94. The
reason for the choice close to 2 is that we are interested in investigating
the way in which the noise ε disturbs the ICA and the subsequent inverse
solution. Thus in some simulations we deliberately want to choose the c in
such way that it easily gets lost among the Gaussian noise.

In ICA we always used a preliminary PCA, retaining enough principal
components to explain at least 90% of the total variance. The demixing was
performed by the FastICA algorithm [9].

Everytime a demixing matrix w was estimated, its rows were normalized
so that ‖wm∗‖ = 1 for all m. Also the forward matrix f was multiplied with
a real coefficient so that the mean of the norms ‖f∗k‖ was one. These details
are not important for the discussion, but we mention them since otherwise

3http://research.ics.aalto.fi/ica/fastica/code/FastICA 2.5.zip
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Figure 1: An artistic view of the setting used to define our forward matrix f
in simulations. The spatial source space is a one dimensional line divided into
kmax points, and nmax measurement sensors are located above it. In the figure
the number of localized sources is mmax = 3, each source generating a field whose
magnitude is proportional to the inverse of the distance. The precise formula for
f is fnk = 1/

√
h2 + (xn − xk)2, where xn = −1 + 2(n−1)

nmax−1
and xk = −1 + 2(k−1)

kmax−1
.

This means that the source space can be interpreted as the discretized interval
[−1, 1] × {0}, and the measurement sensors can be considered to be contained in
the set [−1, 1]× {h}, with the height h.

the results could not be reproduced with the parameter values mentioned
below.

5.1 The gradient of the likelihood at the origin

As the first experiment, we compared the Hild & Nagarajan function to the
gradient of the likelihood at the origin. Here we studied only one component,
meaning that we had mmax = 1. We parametrized the noise covariance Σ
with real parameters σ0 and σ1. The covariance is defined as a diagonal
100× 100 matrix, and its diagonal values are defined by√

Σnn = σ0 + (σ1 − σ0)
n− 1

99
. (43)

So if σ0 < σ1, we will have less noise at the measurement channels on the left
(small n), and more noise at the measurement channels on the right (large
n). We fixed the true spatial source as sk1 = δk,250. In our experiment, we
kept σ0 at a fixed value 10−3, while σ1 ran through values 10−3, . . . , 10+1 in
a loop. With each fixed σ1, we generated a 1× 10000 sample matrix c with
γ = 1.94 as explained in the beginning of Section 5, a 100× 10000 Gaussian
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Figure 2: On top row are graphs generated by function GHN,σ1 , and on bottom by
G`,σ1,σreg with the parameter σreg = 10−3. The functions are defined in Equation
(44). Small values of σ1 are on the left, and large values on the right. Each picture
contains 25 graphs with different fixed values of σ1. In the pictures, the vertical
axes denote the values of the functions GHN,σ1 and G`,σ1 , and the horizontal axes
denote the spatial space {1, 2, . . . , kmax}. With sufficiently small σ1 (small noise),
the maxima are at the correct location k ≈ 250. With larger σ1 (greater noise)
both functions fail to produce the maxima at k ≈ 250, but the failures manifest
in different ways.
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Figure 3: On the top-most row are values of the function GHN,σ1 . The values are
the same as those shown on the upper row of Figure 2, but now visualized as a
surface parametrized by the parameters k and σ1. On the rows below are values
of G`,σ1,σreg with parameters σreg = 100, 10−1, 10−2. Smaller σreg tend to produce
stronger bias, while larger σreg leave the results more volatile to the noise.
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noise ε, and computed x = fsc + ε. The Gaussian noise was generated so
that each column ε(t) obeys the parametrized covariance Σ. Then a 1×100
demixing matrix w was estimated by the FastICA algorithm. With each
fixed w we computed the functions

GHN,σ1(k) = α+ β|
(
(w+)T f

)
1k
|,

G`,σ1,σreg(k) = α+ β|
(
wxxT (Σ + σregid)−1f

)
1k
|.

(44)

Here the coefficients α and β were chosen so that conditions

min(GHN,σ1) = 0, max(GHN,σ1) = 1,

min(G`,σ1,σreg) = 0, max(G`,σ1,σreg) = 1
(45)

held. This means that each function had their own α and β. This way the
functions can be plotted simultaneuously and compared nicely. The matrix
f was defined by a formula f∗k = f∗k

‖f∗k‖2 . Both of the functions GHN,σ1 and
G`,σ1,σreg are supposed to tell the location of the point source, which we now
know to be the location k = 250, so we should hope the approximations

k̂HN := arg max
k

GHN,σ1(k) ≈ 250, k̂` := arg max
k

G`,σ1,σreg(k) ≈ 250

(46)
to hold. The function GHN,σ1 is based on the idea by Hild and Nagarajan
[13], and the function G`,σ1,σreg is based on the gradient of the likelihood
at the origin, ∇`(s = 0), which we explained in Section 4.4. The Σ−1

from Equation (39) has now been replaced with a regularized inverse (Σ +
σregid)−1, where σreg > 0 is a positive constant, into which we substituted
values σreg = 10−3, 10−2, 10−1, 1. The results are shown in Figures 2 and 3,
and are discussed in Section 6.

5.2 Sparse prior with gradient ascent

As a second experiment, we investigated the gradient ascent method. We
used the same f as in the previous experiment, and this time set mmax = 3.
The true source s was defined as a 1000×3 matrix by formulas sk1 = δk,250,
sk2 = δk,500 and sk3 = δk,750. So each column s∗m is a Kronecker delta in
its own position.

We defined c as a 3 × 10000 normalized Laplacian sample (γ = 1), and
ε as a 100× 10000 Gaussian sample with a very small covariance. The data
x = fsc+ ε was computed, and a demixing matrix w was estimated by the
FastICA algorithm.

We then carried out gradient ascent maximization of the objective func-
tion Lold(s|w+)− λ‖s‖1,εreg by using parameters λ = 10−1 and εreg = 10−3.
We verified that a gradient step size coefficient µ = 0.0021 caused divergence
while µ = 0.0020 did not, and decided that µ = 0.001 is a reasonable choice.

20



Figure 4: Estimates s(imax) obtained by a gradient ascent. The simulation setting
is explained in Section 5.2 text. The plotted components are s∗1(imax), s∗2(imax)
and s∗3(imax) from left to right. The colors correspond to different iteration num-
bers imax. The estimates appear to converge towards correct delta functions, which
are sk1 = δk,250, sk2 = δk,500 and sk3 = δk,750.

Also, we verified that other values on the interval 0.001, . . . , 0.002 did not
produce significantly faster convergence than the choice µ = 0.001. The
gradient ascent began from the origin s(0) = 0, and estimates obtained by
different iteration numbers imax are shown in Figure 4. We see that the esti-
mates converge towards the correct delta functions, although the amount of
required iterations seems to be large. According to further simulations not
shown here, in this setting maximizing ` instead of Lold produced practically
the same results.

Next, we compared the behaviour of Lold and ` under noise, and used
the coefficient γ = 1.94 while generating c. We parametrized Σ again with
parameters σ0 and σ1 as shown in Equation (43). Parameter σ0 = 10−3

was kept as a constant, and σ1 ran through values 10−3, . . . , 10+1. At each
fixed σ1 we generated x, estimated w, and then solved estimates by gradient
ascent by using an iteration amount imax = 104. We used the same prior
as before (λ = 10−1 and εreg = 10−3), and maximized both Lold and `.
With `, we used a regularized input parameter Σ + σregid with a parameter
σreg = 10−1. Results are shown in Figure 5, and are discussed in Section 6.

5.3 Infinitesimal prior coefficient

By using very small noise we generated the same x that was used to obtain
the results shown in Figure 4, and now tested the method of infinitesimal
prior coefficient λ > 0. We used the same εreg = 10−3 in the prior ‖s‖1,εreg
as before. In the analytic formula for ŝ0 and the projection matrix we used
the regularizing parameter nreg whose definition was explained in Section
4.2. It turned out that surprisingly small nreg work very well.
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Figure 5: Spatial estimates obtained by gradient ascent under noise. The simu-
lation setting is explained in Section 5.2 text. All three components are plotted
on the same axis consisting of 3000 points. The vertical axis (in two dimensional
visualization on left) denotes the noise parameter σ1. With sufficiently small noise
we obtain bumps in roughly the correct spatial locations. The bumbs obtained by
maximizing Lold appear to be more noisy.

Figure 6: Spatial estimates obtained by the formula ŝ = f+
nreg

w+. Different colors
correspond to different values for the regularization parameter nreg, whose defini-
tion was explained in Section 4.2.
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Figure 7: Spatial estimates obtained by maximizing Lold(s|w+) − λ‖s‖1,εreg with
an infinitesimal λ > 0. This means that we have maximized the function −‖s‖1,εreg

with a gradient ascent and with a constraint as explained in Section 4.2. The value
nreg = 4 was used in the initial point s(0) = f+

nreg
w+, and estimates s(imax) are

shown with different iteration numbers imax.

Some estimates obtained by a formula ŝ0 = f+
nreg

w+ are shown in Figure
6. Intuitively these estimates appear to be linear combinations of some
low frequency Fourier components. These estimates can have several local
maxima, but the global maxima are reasonably close to the true source
locations. Sparse estimates obtained by a gradient ascent are shown in
Figure 7, and are discussed in Section 6.

In the gradient ascent we used the step size coefficient µ = 0.001. With
this method choosing a proper step size is more difficult than with the
ordinary gradient ascent, because it seems that surprisingly large values can
be substituted into µ without obvious divergence to infinity. Instead of such
divergence, too large µ usually results in bad oscillations and extremely
slow convergence or divergence. In this setting values µ = 0.1, . . . , 0.05
produced messy estimates with significant high frequence components. The
value µ = 0.01 appeared to work, and we considered the value µ = 0.001
reasonable and safe.

5.4 The method of translating point sources

As the last experiment we carried out simulations with the method of trans-
lating point sources, which was explained in Section 4.3. Here mmax ran
through values 1, 2, 3. Again we parametrized the covariance Σ with param-
eters σ0 and σ1, and with a formula

√
Σnn = σ0 + (σ1 − σ0)n−1

99 . We kept
σ0 = 10−3 at a fixed value, and allowed σ1 to run through 1000 values on the
interval 10−3, . . . , 10+1. With each fixed σ1, source locations k1, . . . , kmmax

were sampled from a distribution with weight on the left by roughly the rela-
tion p(k) ∼ 1√

k
. This was achieved by sampling real numbers k̃1, . . . , k̃mmax
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Figure 8: The horizontal axes describe the parameter σ1 which goes through the
values 10−3, . . . , 10+1 (resolution of 1000 points). The vertical axes denote the
values of the errors EK defined in (47). On left the noise was generated to be
significant with large n, and on right so that the covariance matrix itself was
random, as explained in the Section 5.4 text. The horizontal axes have been
divided into 20 blocks, and in each a mean of the corresponding 50 values has
been plotted. The widths of the bars have been computed by a formula 2√

50
Var.

Black graphs show the results obtained by maximizing Lold, and the colored graphs
show the results obtained by maximizing `. Different colors correspond to different
parameters σreg.
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from the uniform distribution on [0, 1], and setting km = [999 · k̃2
m] + 1 (here

[·] denotes the floor function). The amplitudes a1, . . . , ammax were sampled
from a uniform distribution on the interval [1

2 ,
3
2 ], and the spatial source was

then computed by a formula skm = amδkkm . The data c, with a parameter
γ = 1.94 as explained in the beginning of Section 5, and the Gaussian noise
ε were generated, and the measurement data x = fsc+ ε was computed.

Then the demixing matrix w was estimated by the FastICA algorithm,
and estimates k̂1, . . . , k̂mmax , â1, . . . , âmmax were solved in various ways. One
set of estimates was computed by maximizing Lold(s|w+), where s was
parametrized by skm = âmδkk̂m . Other sets of estimates were computed
by maximizing `(s|w, x,Σ + σregid), where σreg is a real parameter, which
was given various values. Finally quantities

EK =

mmax∑
m=1

|k̂m − km|, (47)

were computed to measure the success of the inverse solution. The compo-
nents were permutated to minimize EK as a last step. We expect EK to be
close to zero, if the inverse solutions are successful. We used 10 different
random initial values for km and am, and chose those which resulted in the
largest ` or Lold after maximization. The prior log p(S = s), which forces
s to consist of point sources, is not concave, and a large amount of random
initial points is one natural solution to the local maxima problem. The
results are shown in Figure 8 on left.

We then repeated the point source translation experiment with a dif-
ferent noise. Again, σ0 = 10−3 was fixed, and σ1 ran through 1000 values
on the interval 10−3, . . . , 10+1, but the covariance was defined as follows.
With each fixed σ1, we sampled a set of coefficients β1, . . . , βnmax , each in-
dependently from the uniform distribution on the interval [0, 1]. Then the
covariance was defined by a formula

√
Σnn = σ0 + (σ1 − σ0)βn. Again the

noise increases with the growing parameter σ1, but the increase occurs in a
more random manner, not weighted for large n particularly. The true loca-
tions of the sources were now sampled from the uniform distribution on the
spatial space {1, 2, . . . , 1000}. This time the nature of the bias, produced
by the Σ−1 term in the likelihood, is not intuitively clear. The results are
shown in Figure 8 on right.

6 Discussion

Our study has been focused on studying the relationship of the functions
Lold and `. In Sections 2.2 and 3 we explained theoretically that if the noise
covariance is proportional to the identity, the maxima of Lold and ` are
the same. The question about how the maxima are related when the noise
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covariance is not proportional to the identity was left open in the theoretical
analysis. Ultimately, we have been unable to give a simple answer to this
question, since the relationship of the maxima of Lold and ` seems to be
complicated in general, and seems to be different with different kinds of
noise. In Section 5 we approached this question in an obvious manner by
constructing artificial situations were the noise covariance was intentionally
not proportional to the identity, and investigated empirically what happens.
Next we discuss these results and the four methods that we used in more
detail.

Translating point sources as an evaluation platform The meth-
od of translating point sources is problematic for several reasons, and we
do not recommend it very strongly. One problem is that it is not very
elegant and its implementation leads to more programming work than the
implementation of the other methods. It can suffer from the problem of
local maxima, which is not fatal, but can be a nuisance. If the real source
distribution contains several spikes for each individual component m, the
method we used should be generalized to support the several point sources,
but this would lead to further problems which we leave for future research.

However, this method has one advantage over the other methods, and
it is that if we know in advance the correct results, it is straigthforward to
estimate the quality of the inverse solution by simply computing the distance
|k̂ − k| of the correct spike location and its estimate. For this reason, the
method of translating point sources turned out to be very practical in our
study. With other methods the results cannot be measured with equal
precision. For example, one obvious way to measure the quality of some
distribution estimate ŝ would be to use some vector (or matrix) norm ‖ŝ−s‖.
Most obvious norms would be very bad since they do not take into account
the physical distances of the point sources in the space {1, 2, . . . , kmax}.

Although we were unable to give a simple answer to the relationship
of Lold and ` in general, we were able to prove, by using the method of
translating point sources, that in some circumstances maximizing ` produces
more accurate results than maximizing Lold. This was proved in Figure 8
where we see that the colored graphs are at some points clearly below the
black graphs, meaning that maximizing ` has produced statistically smaller
errors than maximizing Lold. However, we also see that sometimes the violet
graph is above the black graph. Apparently using too small regularizing
parameter σreg can result in inferior results.

We were unable to obtain equally clear results with the three other meth-
ods, but at this point we propose the following reasoning. We have proven,
by using the method of translating point sources, that sometimes maximiz-
ing ` produces better results than maximizing Lold. Hence, we have some
reason to believe that maximizing ` could produce better results than max-
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imizing Lold with the other methods too.

Connection between Lold and ` The gradient of the likelihood at
the origin and the related Hild-Nagarajan method have the advantage that
the methods are very fast, since they do not use any iterative processes.
The other side of the coin is that the results by these methods are crude
and do not contain the same amount of information as the outputs of the
other methods. For these reasons these two methods could be considered as
the quick and crude checks that preceed the application of more advanced
methods. This way we get some idea what to expect of the inverse solutions.

In Section 4.4 we gave a theoretical proof for the result that the Hild-
Nagarajan function is equivalent with the gradient ∇`(s = 0) at the origin,
when the noise is small. Figures 2 and 3 verify this result, since with small
σ1 the shapes of the graphs by both GHN,σ1 and G`,σ1,σreg are very similar.
It seems that there exists some critical value for σ1, and once σ1 exceeds it,
the w starts to exhibit random behaviour, and consequently GHN,σ1 starts
to produce rather random results too. The method proposed by us attempts
to deal with the noise in a more logical manner. It seems to sense that since
there is significant noise in the direction of large n, consequently the w might
be drawn towards this direction of greater noise, and hence the estimate k̂
might be drawn towards right end of the spatial space too (large k). Then
G`,σ1,σreg introduces a logical counter bias, which pushes the estimate k̂ to
left (small k). It must be admitted though that this counter bias is not
sufficiently precise to maintain the correct result k̂ ≈ 250.

In fact, in our studies, we never encountered a situation where the Hild-
Nagarajan method or the maximization of Lold would catastrophically fail,
while the maximization of the likelihood ` or the examination of its gradient
at the origin would nicely succeed. So it seems that the difference between
Lold and ` is not so dramatic. Considering the data shown in Figure 8, it
seems that under difficult noise using ` can improve the probability that
the estimate has the right shape, and can reduce the expected error in the
location of the distribution maximum. Thus the relationship of Lold and `
should be seen to be of this nature only.

Using sparse priors Comparing Figures 4 and 7 we see that the gra-
dient ascent with the infinitesimal λ can produce estimates that are very
similar to those produced by the ordinary gradient ascent. A close look at
the figures reveals that the infinitesimal λ produced sharper estimates with
a smaller amount of iterations. Also the infinitesimal λ brings the advantage
that we do not need to go through a trouble of finding a suitable value for
a real parameter λ. In light of these remarks the method of infinitesimal λ
appears to be very interesting.

The method of infinitesimal λ introduces a new parameter nreg which
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was not present in the ordinary gradient ascent. This parameter is easier to
deal with than the real λ, since nreg takes integer values, and small values
usually work.

In ordinary gradient ascent we used a parameter value λ = 10−1. This
choice was made because we found empirically that with larger values such
as λ = 1, 10, . . . the prior term would start to dominate the Lold term exces-
sively. Here we could check this easily because we knew what the estimates
were supposed to look like. On the other hand, using smaller values such as
λ = 10−2, 10−3, . . . would have resulted in slower convergence.

In Figure 5 we see how the gradient ascent works with both Lold and `
under noise. It seems that there exists some critical value for σ1, and the
methods work while σ1 is below it. There is no visible difference in the
results obtained by Lold and ` with respect to the question of the critical
σ1, although it is visible in the figure that the estimates obtained by Lold

are slightly more random.

On regularization of the covariance matrix A significant source
of trouble, with methods that involve adjustable input parameters, is that
there may be no obvious way to decide the optimal values for them. Once a
guess has been made for the parameters, the results can turn out nonsensical.
With real inverse problems, where the correct answers are not known in
advance, this issue can become a frustrating concern. To end our discussion
here we propose one possible strategy to deal with the regularization of the
covariance matrices. In simulations we mentioned the regularized covariance
parameter Σ + σregid, where σreg > 0. In fact also the matrix 1

tmax
xxT can

be regularized by replacing it with 1
tmax

xxT + σ′regid, although we did not
use this in our simulations. We have theoretical reasons to believe that with
very large parameters σreg and σ′reg the regularized ` should have the same
maxima as Lold. This remark implies the following three step strategy. As a
first step, obtain inverse solutions by using Lold. So in the first step, we don’t
use the information in the data covariance or the assumed noise covariance.
As a second step, verify that we can recover the same inverse solutions with
the likelihood ` by using very heavy regularization in the covariance matrices
(large values for σreg and σ′reg). Once the second step has been checked, the
final third step is to observe what happens to the inverse solutions when
the values of the regularization parameters are brought downwards. If the
inverse solutions go through some reasonable changes, it could be that they
are being enhanced by the information from the covariance matrices. This
way the covariance information can be exploited with a reasonable safety.
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7 Conclusions

The idea of using ICA as a tool to solve spatial inverse solutions has received
some attention in the past [10] [11] [12] [13], but the topic has not yet been
approached in a systematic and principled manner. In this paper we showed
how to solve a Bayesian posterior for the spatial source distribution, by
using an ICA estimate as an input. This enabled us to derive new inverse
solution algorithms and to better understand algorithms already published
by others. We demonstrated in a controlled artificial setting, that in some
circumstances our new methods produce statistically more accurate inverse
solutions than the existing methods.

The mathematical theory we have presented here is not directly related
to any particular physical application, but historically this direction has
attracted attention in the brain imaging community in particular. The
same approach could also be used in other inverse problems where ICA is
possible.
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