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Abstract

Many algorithms have been proposed for blind separation of statistically independent sources. Most of the algo-
rithms are based on one of the following properties: nongaussianity of the sources, their different autocorrelations,
or their smoothly changing nonstationary variances. Each of the methods is able to separate sources if the respective
assumptions are met. Here we propose a simple unifying model that is able to separate independent sources if any one
of these three conditions is met. The model is a simple autoregressive model whose estimation can be performed by
maximum likelihood estimation. We also propose a simple yet accurate approximation of the likelihood that gives a
simple algorithm.
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1 Introduction

Blind source separation (BSS) is typically performed in a setting where the observed signals are instantaneous noise-
free linear superpositions of underlying hidden source signals. Let us denote the n source signals by s1(t), . . . ,sn(t),
and the observed signals by x1(t), . . . ,xm(t), where t is the time index. Let ai j denote the coefficients in the linear
mixing between the source s j(t) and the observed signal xi(t). Further, let us collect the source signals in a vector
s(t) = (s1(t), . . . ,sn(t))T , and similarly we construct the observed signal vector x(t). Now the mixing can be expressed
as the equation

x(t) = As(t) (1)

where the matrix A = [ai j] collects the mixing coefficients. No particular assumptions on the mixing coefficients are
made. However, some weak structural assumptions are often made: for example, it is typically assumed that the mixing
matrix is square, that is, the number of source signals equals the number of observed signals (n = m), which we will
assume here as well. For technical simplicity, we shall also assume that all the signals have zero mean, but this is no
restriction since is simply means that the signals have been centred [18]. The problem of blind source separation is now
to estimate both the source signals s j(t) and the mixing matrix A, based on observations of the xi(t) alone [19, 18].

In most methods, including the present one, the source signals are assumed statistically independent. Then, the
model can be estimated if the source signals fulfill some additional assumptions, three of which are commonly used.
First, if all the components (except perhaps one) have nongaussian distributions, the ensuing model is called independent
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component analysis (ICA) [7], and many techniques are available for estimation of the model [18]. Second, if the
components have nonstationary, smoothly changing variances [20, 24, 12], the model can be estimated as well. Third,
one can use temporal second-order correlations [25, 21, 3, 23] — an important difference from the two preceding
principles is that in this case we also need to assume that the signals have different autocorrelation functions; mere
existence of autocorrelations is not sufficient.

In this paper, we propose a simple model that unifies these three properties (nongaussianity, different autocorrela-
tions, variance nonstationarity). Estimation of this model thus enables separation of sources that have any one of these
properties. Moreover, the model uses all these properties simultaneously, which is likely to increase the performance of
the separation method if the data has more than one of the properties. A theoretical treatment of the situation was given
in [5]; our emphasis here is on developing a simple, concrete model and a practical algorithm.

First, we will review the properties used in previous methods in source separation, and their formulations in a
maximum likelihood framework (Section 2). Then, we propose a new unifying model, formulate its likelihood, and
propose an algorithm for source separation by maximum likelihood estimation (Section 3). Simulation results show
that the model separates sources in cases where existing methods are not able to do so (Section 4), and finally we
discuss related work and conclude the paper (Section 5).

2 Previous models

2.1 Nongaussianity

If the sources are assumed to be nongaussian and the time structure is ignored, we obtain the classic ICA model [7, 19]
whose maximum likelihood estimation has been extensively investigated, see e.g. [18]. Denote by W = A−1 the inverse
of the mixing matrix. Denote the i-th row of W by wT

i . Assume that we have T observations x(1), . . . ,x(T ) of the mixed
data. Then the logarithm of the likelihood is given by

logL(W) =
T

∑
t=1

n

∑
i=1

log pi(wT
i x(t))+T log |detW| (2)

where pi is the probability density function (pdf) of the i-th source (independent component).
To simplify notation, we can divide the log-likelihood by T , and denote the average over the sample index t by an

expectation operator Ê, to obtain

1
T

logL(W) =
n

∑
i=1

Ê
{

log pi(wT
i x(t))

}

+ log |detW| (3)

Another principle that gives an essentially equivalent objective function is minimization of mutual information
[7, 18]. Nongaussianity is also often used in the form of cumulant-based methods such as maximization of kurtosis
[8, 18]; using cumulants can be motivated as an approximation of the differential entropy used in mutual information
[7, 18]. An intuitive interpretation of such estimation procedures as projection pursuit, i.e. finding the most nongaussian
projections of the data, is also possible [18].

2.2 Nonstationary variances

The second statistical property that can be used for source separation is nonstationarity of the variance [20, 24, 12]: The
variance of each independent source signal is assumed to change smoothly as a function of time.
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Let us denote the probability density function of the signal si(t) at time point t by pi(s, t). This depends on t because
of the nonstationarity. Since we are only allowing nonstationarity of the variance, the pdf has the form

pi(si, t) =
1

σi(t)
pi

(

si

σi(t)

)

(4)

where pi(s) is the underlying pdf in the hypothetical case where the nonstationarity is not present. Thus, the log-likehood
of the model is given by

1
T

logL(W) =
n

∑
i=1

Ê

{

log pi

(

wT
i x(t)

σi(t)

)

− logσi(t)

}

+ log |detW| (5)

Here, it is assumed that the “nuisance” parameters σi(t) are estimated separately, for a given W, thus the σi are functions
of W. In fact, this is basically rather simple since for a given W, we can take time windows centered around each time
point t, and estimate the local variance for each estimate of the source signal inside that window. This is possible
because of the crucial assumption that the variance changes smoothly.

The situation could be considerably simplified by assuming that the underlying densities pi are gaussian [24].
However, this is a bit restrictive because then the marginal density over the whole data set has necessarily positive
kurtosis, see e.g. [15]. In contrast, if the underlying density has a negative kurtosis, the overall density does not need to
have positive kurtosis.

2.3 Different second-order autocorrelations

The third statistical property is the second-order autocorrelations of the signals, which have to be different (distinct)
from each other [25, 21, 3]. We shall here formulate a very simple model of such signals to illustrate this principle
and to prepare for the unifying model in the next section. A simple way of formulating a proper statistical model with
autocorrelations of the sources is to express each source signal using a gaussian first-order autoregressive model:

si(t) = αisi(t−1)+ni(t) (6)

where ni(t) is a gaussian i.i.d. innovation process of zero mean. The variance of ni can be computed to equal E{[wT
i x(t)−

αiwT
i x(t− 1)]2}, which yields a simple moment estimator of the variance of the innovation when the sample average

is used instead of the expectation. Since ni is gaussian, the likelihood can then be calculated by plugging this variance
estimate in a gaussian likelihood, which gives after some manipulations:

1
T

logL(W,α1, . . . ,αn) =−
n

∑
i=1

1
2

log Ê{[wT
i x(t)−αiwT

i x(t−1)]2}+ log|detW|−n log
√

2π− n
2

(7)

Now, assume that the observed data is whitened and that W is constrained to be orthogonal. Assume further that the
estimation of the autoregressive coefficients is decoupled from the estimation of the wi. In other words, the αi are
estimated for fixed wi by maximization of the likelihood with respect to the αi, which gives:

α̂i = Ê{(wT
i x(t))(wT

i x(t−1))T}= wT
i C−1wi (8)

where C−1 = Ê{x(t)x(t−1)T} is an autocovariance matrix. Then the log-likelihood can be expressed as a function of
W alone. After tedious algebraic manipulations we have

1
T

logL(W) =−
n

∑
i=1

1
2

log[1− (wT
i C−1wi)

2]−n log
√

2π− n
2

(9)
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This formulation of likelihood shows that these methods are not able to separate source signals that have equal auto-
covariances. The autocovariance of the sum aisi +a js j of two independent signals is given by a2

i cov(si(t),si(t−1))+
a2

jcov(s j(t),s j(t−1)), and the same formula applies for the variance of the sum. If si and s j have equal autocovariances,
any mixing of si and s j with an orthogonal mixing matrix will give two signals which have the same variances and the
same autocovariances as the original signals. Thus, the likelihoods will be equal for any values of W, and maximum
likelihood estimation is not able to distinguish the two cases. The same applies even if we consider many time lags [3].

Some articles have also proposed combinations of nongaussianity and second-order autocorrelations [13, 22]. Our
previous approach in [13] is close to the present one, but did not include nonstationary variances.

3 Unifying model

3.1 Definition of the model

Here we propose a signal model that incorporates the three properties commonly used for signal separation: nongaus-
sianity, distinct autocorrelations, and a smoothly changing nonstationary variance. We model each source signal by an
autoregressive model

si(t) = ∑
τ>0

ατ
i si(t− τ)+ni(t) (10)

where the zero-mean innovation term ni(t) can be nongaussian, and its variance can be nonstationary.
If ni(t) is nongaussian, the source signal si(t) is nongaussian as well. If the autoregressive coefficients ατ

i are not
zero, the source signals have autocorrelations. Finally, if the variance of the innovation is nonstationary, the variance of
the source signal is nonstationary. Thus, we are able to model all these three properties.

As is typically assumed in blind source separation, each observed signal is a linear combination of these source
signals as in Eq. (1). For simplicity, it is assumed as above that the number of source signals equals the number of
observed signals, let us denote it by n. Moreover, we must fix the scales of the source signal. As always in BSS, the
scale of the signal is arbitrary, so we define the variance of each si to be equal to 1. The signals have necessarily zero
mean because the innovations have zero mean.

3.2 Likelihood of the model

Assume first that we know the innovation signals ni(t). Then we could estimate the local standard deviation of the
innovation σi(t) by local averages. Denoting the estimator by σ̂i(t), we can use:

σ̂i(t) =
√

∑
γ

h(γ)n2
i (t− γ) (11)

where h = (. . . ,h(−2),h(−1),h(0),h(1),h(2), . . .) is some low-pass filter such that the sum of its weights (which are
assumed nonnegative) is equal to 1. Note that the σ̂i(t), when estimated for an estimate of si(t) given by wT

i x, are
functions of wi, h, and the coefficients ατ

i . To emphasize this, we write σ̂i(t,wi,h,ατ
i ).

We now compute the likelihood with respect to the innovation processes. We do not consider the prior distribution
of the σi(t). This can be justified on the grounds of simplicity; the likelihood with respect to the ni seems to be quite
enough for succesful separation (according to the simulations below).

To be able to compute the innovations, we need estimates of the autoregressive coefficients, α̂τ
i . Note that these

estimates, just like σi(t), depend on wi because wi defines the estimate of the source signal from which the estimates
are obtained. To emphasize this we write α̂τ

i (wi) in the following. The actual method for estimating the autoregressive
coefficients is not our main interest here.
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Following Section 2.2, the pdf of each innovation can be expressed as

pi(ni, t) =
1

σi(t)
pi

(

ni

σi(t)

)

(12)

Like in Eq. (5), we then express the log-likelihood by considering these marginal distributions. Replacing ni(t) by its
estimate wT

i (x(t)−∑τ>0 α̂τ
i (wi)x(t− τ)) and σi(t) by its estimate in (11), we obtain

1
T

logL(W) =
n

∑
i=1

Ê

{

Gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)

− logσ̂i(t,wi,h,ατ
i )

}

+ log |detW| (13)

where Ê denotes the expectation over t (sample average). The function Gi is the logarithm of the probability density
function of the “underlying” innovation process, i.e. the pdf of ni(t) in the hypothetical case where it is stationary and
its variance is equal to one.

3.3 Estimation algorithm

Now we develop an estimation algorithm based on maximization of the likelihood in Eq. (13).
First, it must be noted that the ensuing algorithm easily becomes unstable. More precisely, the estimates of Gi

must be very accurate to prevent W from going to zero or infinity. Therefore, we use a classic trick of stabilizing BSS
algorithms: we prewhiten the data and constrain W to be orthogonal [18]. After this stabilization, the log-likelihood is
simplified to:

1
T

logL(W) =
n

∑
i=1

Ê

{

Gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)

− log σ̂i(t,wi,h,ατ
i )

}

(14)

As derived in the Appendix, the gradient of (14) can be approximated as follows:

∇wi

1
T

logL(W)≈

Ê

{

1
σ̂i(t,wi,h,ατ

i )

(

x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ)

)

gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)}

(15)

and gi(.) is the derivative of Gi(.) and σ̂i(t,wi,h,ατ
i ) is defined as

σ̂i(t,wi,h,ατ
i ) =

√

∑
γ

h(γ)[wT
i (x(t− γ)−∑

τ>0

α̂τ
i (wi)x(t− γ− τ))]2 =

√

∑
γ

h(γ)n̂i(t− γ)2 (16)

This approximation of the gradient is quite well justified, because it is asymptotically exact in the case where the data
is actually generated according the autoregressive model, the Gi are equal to the log-likelihoods of the underlying
stationary (normalized) innovation proceeses, the local standard deviations and the innovations are estimated exactly,
and the innovations have a symmetric distribution.

To improve the convergence, it is quite useful to perform a projection of the gradient on the tangent surface of the
set of orthogonal matrices [9]. This means replacing the gradient ∇W with respect to by:

∇ort
W = ∇W−W∇T

WW (17)
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We also need to compute the nonlinear functions gi used in the algorithm. These are the derivatives of the log-
densities Gi. In ICA, it is well-known that the exact form of the non-quadratic function used to probe higher-order
statistics is not very important [6, 18]. We may therefore optimistically assume that the exact form of the function
G is not very important here either, as long as it is qualitatively similar enough. Thus, function gi can be chosen as
in ordinary ICA, but according to the probability distribution of the estimate of the innovation process normalized to
unit variance. If the innovation is supergaussian, g(u) = −sign(u) is suitable. This could also be approximated by a
smoother function g(u) =− tanh(u) [2, 18]. For subgaussian innovations, one could use g(u) =−u+ tanh(u) [10], or
g(u) = −u3, for example. For almost gaussian innovations, g(u) =−u could be used, but it is probably not necessary
to consider this as a special case; the same function as for supergaussian innovations seems to work in simulations. (We
have here omitted some multiplicative constants which are considered immaterial in ICA estimation.)

Finally, the autoregressive coefficients have to be estimated. The statistically optimal way to accomplish this would
be to maximize the likelihood, but a computationally simpler method can be found by using classical least-squares
methods. In fact, a large number of methods have been developed for estimating the coefficients in this case. In the case
of an first-order autoregressive model, the very simple formula used in Equation (8) could be used.

Thus, the estimation consists of the following steps:

0. Remove the mean from the data and whiten it. Denote the preprocessed data by x(t). Choose a (random) initial
value for the matrix W.

1. Compute estimates of the source signals as ŝi(t) = wT
i x(t).

2. Compute estimates for the autoregressive coefficients α̂τ
i , for example, by a classical least-squares method.

3. Compute estimates of the innovations as n̂i(t) = ŝi(t)−∑τ>0 α̂τ
i ŝi(t−τ). Compute estimates of the local standard

deviations σ̂i(t) according to Eq. (16).

4. Choose a nonlinearity gi for each source based on the distributions of the normalized innovations n̂i(t)/σ̂i(t). For
example, if the kurtosis of n̂i is positive, take gi(u) =−sign(u), otherwise take gi(u) =−u+ tanh(u).

5. (a) Compute the gradient with respect to W as given (separately for each row) in Eq. (15).

(b) Compute the projected gradient by (17).

(c) Do a gradient step
W←W+µ∇ort

W (18)

where µ is a small step size constant.

(d) Orthogonalize W by
W← (WWT )−1/2W (19)

The five steps 1–5 are repeated until W has converged. This is the version with symmetric orthogonalization, but a
deflationary version (one-by-one estimation) can be readily used as well [18, 13].

4 Simulations

To validate the algorithm, we performed blind source separation experiments with artificial data.
In each trial, we created six source signals. First, we created four signals using a first-order autoregressive model

with constant variances of the innovations (i.e. constant σi(t)), with 5000 time points. Of these four, signals #1 and #2
were created with supergaussian innovations, and the signals #3 and #4 with gaussian innovations. All these innovations
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Figure 1: Convergence of our unified BSS algorithm for artificially generated data. Vertical axis: error, horizontal axis:
iteration count. The error index shown is the squared distance of the separating matrix times the whitened mixing matrix
from the nearest (signed) permutation matrix. The median was taken over 100 runs with different random matrices and
initial conditions. To see if there were cases were the algorithm did not converge, we computed the number of cases
where the error was was larger than 0.01 after 1000 iterations. There were 3, which means the estimation was succesful
in 97% of the iterations.

had constant unit variance. The signals #1 and #3 had identical autoregressive coefficients (0.33), and therefore identical
autocovariances; the signals #2 and #4 had identical coefficients (0.75) as well. Finally, we created signals the #5 and #6
so that they had smoothly changing variances as follows: we created two gaussian signals with the same autoregressive
method as above (except that the coefficient was 0.9), and then completely randomizing the signs of the signals by
multiplying the signals by two binary i.i.d. signals that took the values ±1 with equal probabilities [12]. These six
signals were then mixed as in ICA, using random mixing matrices.

Ordinary ICA methods based on nongaussianity would be able to separate only signals #1 and #2. Methods based
on second-order correlations would not be able to separate any of the signals, since there was no signal with a unique
autocorrelation. Methods based on nonstationary variances would be able to separate only signals #5 and #6. Methods
combining nongaussianity with autocorrelations [13, 22] would be able to separate the first four signals only. Thus, to
our knowledge, all existing source separation algorithm would fail with this data.

We ran our algorithm on 100 data sets generated as described above. The step size µ was taken equal to 0.1, and the
nonlinearity was fixed a priori as g(u) =−sign(u). The length of the filter h was 6, and its coefficients were all equal
(1/6). Symmetric orthogonalization was used.

Figure 1 shows the convergence of our algorithm. The algorithm correctly estimated the independent components,
in around 200 iterations. Note that a single generic nonlinearity that corresponds to supergaussian innovations was able
to separate both gaussian and supergaussian signals, which indicates that the method is robust with respect to the choice
of nonlinearity in the much same way as ICA.

5 Discussion

A different line of research is considering the case where the source signals are not independent. We refer the reader
to the existing literature [4, 14, 15, 1, 11, 26, 16, 17]. Future research may find a unifying framework where some
dependencies are taken into account in addition to the three properties considered here. A step in that direction was
taken in [17].

We have not proven the exact consistency conditions for our method. This is actually a rather complicated question
because it depends on how precisely we model the pdf’s of the innovations, the linear autoregressive model, and the

7



variance dependencies over time. Assuming that all these are exactly known, we conjecture that our method can separate
sources if at least one of the classic conditions discussed in Section 2 is true for each source. In particular, if there is
more than one source that is gaussian and stationary, the autocorrelation structures of those sources (but only those)
must be different (distinct) as typical with methods based on second-order autocorrelations only.

To conclude, we have proposed a very simple model for signal separation that combines the three basic properties
used in blind separation of independent sources. This is based on an autoregressive model of the sources, where the
innovations are nongaussian and have nonstationary variances. It is possible to formulate the likelihood of the model in
closed form. The gradient of the likelihood can be simplified to yield a relatively simple algorithm. Simulations show
that the algorithm is able to separate sources when other existing methods fail.

Appendix: Approximation of the gradient of the log-likelihood

The gradient of logL in (14) with respect to wi can be obtained straight-forwardly as

∇wi logL(W) = Ê

{

1
σ̂i(t,wi,h,ατ

i )

(

x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ)

)

gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)}

+ Ê

{

1
σ̂i(t,wi,h,ατ

i )

(

∑
τ>0

(∇wi α̂
τ
i (wi))wT

i x(t− τ)

)

gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)}

− Ê

{

1
σ̂i(t,wi,h,ατ

i )
∇wi σ̂i(t,wi,h,ατ

i )

+
1

σ̂i(t,wi,h,ατ
i )

2 ∇wi σ̂i(t,wi,h,ατ
i )w

T
i (x(t)−∑

τ>0
α̂τ

i (wi)x(t− τ))gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))

)}

(20)

We shall now claim that the second and third terms are negligible with respect to the first one, near the convergence
points. To accomplish this simplification, we assume that all the nuisance parameters in the model are estimated exactly,
and only the main parameter of interest, W is not known. That is, the autoregressive coefficients ατ

i , the local variances
σ2

i , and the log-densities Gi are known exactly. Also we need to assume, the data is generated according to the model
and that the innovations are estimated exactly as well.

First we apply the following well-known lemma, proven, for example, in [13]:

Lemma 1 For any random variable x with a smooth density px and satisfying E{x}= 0, we have

E{x p′x(x)
px(x)

}=−1 (21)

Applying this lemma for the normalized innovations, we have

Ê

{

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))gi(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ)))

}

→−1, (22)

asymptotically when the sample size goes to infinity.
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The normalized innovation is independent of any transformation of σi(t). By assumption, the local variances are
estimated perfectly, which means that

σ̂i(t,wi,h,ατ
i ) =

√

∑
j
(wT

i a j)2σ2
i (t) (23)

whose gradient with respect to wi is independent of normalized innovations as well. We can thus calculate

Ê{ 1
σ̂i(t,wi,h,ατ

i )
2 ∇wi σ̂i(t,wi,h,ατ

i )w
T
i (x(t)−∑

τ>0

α̂τ
i (wi)x(t− τ))gi(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))}

≈ Ê{ 1
σ̂i(t,wi,h,ατ

i )
∇wi σ̂i(t,wi,h,ατ

i )}

× Ê

{

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ))gi

(

1
σ̂i(t,wi,h,ατ

i )
wT

i (x(t)−∑
τ>0

α̂τ
i (wi)x(t− τ)

)}

−→ Ê{ 1
σ̂i(t,wi,h,ατ

i )
∇wi σ̂i(t,wi,h,ατ

i )}× (−1) (24)

which implies that the third term is approximately zero asymptotically.
Second, the quantity ∑τ>0(∇wi α̂τ

i (wi))wT
i x(t − τ) depends only on the past values of wT

i x(t). Therefore, it is
approximately independent from the estimate of the normalized innovation at time t; the approximation is exact if the
innovations are estimated exactly. Moreover, the term has zero mean. Thus the second term in (20) approximatively
vanishes as well. This gives the approximation in (15).

References

[1] F. R. Bach and M. I. Jordan. Beyond independent components: trees and clusters. Journal of Machine Learning
Research, 4:1205–1233, 2003.

[2] A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution.
Neural Computation, 7:1129–1159, 1995.

[3] A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines. A blind source separation technique based on
second order statistics. IEEE Trans. on Signal Processing, 45(2):434–444, 1997.

[4] J.-F. Cardoso. Multidimensional independent component analysis. In Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP’98), Seattle, WA, 1998.

[5] J.-F. Cardoso. The three easy routes to independent component analysis: contrasts and geometry. In Proc. Int.
Workshop on Independent Component Analysis and Blind Signal Separation (ICA2001), San Diego, California,
2001.

[6] J.-F. Cardoso and B. Hvam Laheld. Equivariant adaptive source separation. IEEE Trans. on Signal Processing,
44(12):3017–3030, 1996.

[7] P. Comon. Independent component analysis—a new concept? Signal Processing, 36:287–314, 1994.

9



[8] N. Delfosse and P. Loubaton. Adaptive blind separation of independent sources: a deflation approach. Signal
Processing, 45:59–83, 1995.

[9] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM
Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

[10] M. Girolami. An alternative perspective on adaptive independent component analysis algorithms. Neural Compu-
tation, 10(8):2103–2114, 1998.

[11] J. Hurri and A. Hyvärinen. Temporal and spatiotemporal coherence in simple-cell responses: A generative model
of natural image sequences. Network: Computation in Neural Systems, 14(3):527–551, 2003.

[12] A. Hyvärinen. Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Trans-
actions on Neural Networks, 12(6):1471–1474, 2001.

[13] A. Hyvärinen. Complexity pursuit: Separating interesting components from time-series. Neural Computation,
13(4):883–898, 2001.

[14] A. Hyvärinen and P. O. Hoyer. Emergence of phase and shift invariant features by decomposition of natural images
into independent feature subspaces. Neural Computation, 12(7):1705–1720, 2000.

[15] A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component analysis. Neural Computation,
13(7):1527–1558, 2001.

[16] A. Hyvärinen and J. Hurri. Blind separation of sources that have spatiotemporal variance dependencies. Signal
Processing, 84(2):247–254, 2004.
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