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A number of neural learning rules have been recently proposed for Inde-
pendent Component Analysis (ICA). The rules are usually derived from
information-theoretic criteria such as maximum entropy or minimum mu-
tual information. In this paper, we show that in fact, ICA can be per-
formed by very simple Hebbian or anti-Hebbian learning rules, which may
have only weak relations to such information-theoretical quantities. Rather
suprisingly, practically any non-linear function can be used in the learn-
ing rule, provided only that the sign of the Hebbian/anti-Hebbian term is
chosen correctly. In addition to the Hebbian-like mechanism, the weight
vector is here constrained to have unit norm, and the data is preprocessed
by prewhitening, or sphering. These results imply that one can choose the
non-linearity so as to optimize desired statistical or numerical criteria.
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1 Introduction
1.1 Independent Component Analysis

Independent Component Analysis (ICA) [7,17] is a recently developed sig-
nal processing technique whose goal is to express a set of random variables
as linear combinations of statistically independent component variables. The
main applications of ICA are in blind source separation [17], feature extraction
[2,18], and, in a slightly modified form, in blind deconvolution [9]. In the basic
form of ICA [7], we observe m scalar random variables x1, s, ..., Z,,, which are
assumed to be linear combinations of n unknown independent components, or
ICs, denoted by s, so, ..., s,,. The ICs are, by definition, mutually statistically
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independent, and zero-mean. Let us arrange the observed variables z; into a
vector X = (z1, ¥, ..., T,,)" and the IC variables s; into a vector s, respectively;
then the linear relationship is given by

X = As (1)

Here, A is an unknown m X n matrix of full rank, called the mixing matrix.
The basic problem of ICA is then to estimate the realizations of the original
ICs s; using only observations of the mixtures x;. This is roughly equivalent to
estimating the mixing matrix A. Two fundamental restrictions of the model
are that, firstly, we can only estimate non-Gaussian ICs (except if just one of
the ICs is Gaussian), and secondly, we must have at least as many observed
linear mixtures as ICs, i.e., m > n. Note that the assumption of zero mean of
the ICs is in fact no restriction, as this can always be accomplished by sub-
tracting the mean from the random vector x. A basic, but rather insignificant
indeterminacy in the model is that the ICs and the columns of A can only be
estimated up to a multiplicative constant, because any constant multiplying
an IC in eq. (1) could be cancelled by dividing the corresponding column of
the mixing matrix A by the same constant. For mathematical convenience,
one usually defines that the ICs s; have unit variance. This makes the (non-
Gaussian) ICs unique, up to a multiplicative sign [7]. Note that this definition
of ICA implies no ordering of the ICs.

The classical application of the ICA model is blind source separation [17], in
which the observed values of x correspond to a realization of an m-dimensional
discrete-time signal x(¢), ¢ = 1,2,.... Then the components s;(t) are called
source signals, which are usually original, uncorrupted signals or noise sources.

Another application of ICA is feature extraction |2,18]. Then the columns of
A represent features, and s; signals the presence and the coefficient of the ¢-th
feature in an observed data vector x.

In blind deconvolution, a convolved version z(t) of a scalar i.i.d. signal s(?)
is observed, again without knowing the signal s(¢) or the convolution kernel
[9,27|. The problem is then to find a separating filter f so that s(t) = f(t)*z(t).
The equalizer f(t) is assumed to be a FIR filter of sufficient length, so that
the truncation effects can be ignored. Due to the assumption that the values
of the original signal s(t) are independent for different ¢, this problem can be
solved using essentially the same formalism as used in ICA [7,28,29]. Indeed
this problem can also be represented (though only approximately) by eq. (1);
then the realizations of x and s are vectors containing n = m subsequent
observations of the signals z(¢) and s(t¢), beginning at different points of time.
In other words, a sequence of observations x(t) is such that x(¢) = (x(t +n —
1), z(t+n—2),...,z(t))T fort = 1,2, ... . The square matrix A is determined by
the convolving filter. Though this formulation is only approximative, the exact



formulation using linear filters would lead to essentially the same algorithms
and convergence proofs. Also blind separation of several convolved signals can
be represented combining these two approaches.

As a preprocessing step we assume here that the dimension of the data x is
reduced, e.g., by PCA, so that it equals the number of ICs. In other words,
we assume m = n. We also assume that the data is prewhitened (or sphered),
i.e., the x; are decorrelated and their variances are equalized by a linear trans-
formation [7]. After this preprocessing, model (1) still holds, and the matrix
A becomes orthogonal.

1.2 Hebbian and Anti-Hebbian Learning Rules

Several neural algorithms for estimating the ICA model have been proposed
recently, e.g., in [1,3,6,15,16,20,23]. Usually these algorithms use Hebbian or
anti-Hebbian learning. Hebbian learning has proved to be a powerful paradigm
for neural learning [22]. In the following, we call both Hebbian and anti-
Hebbian learning rules 'Hebbian-like’. We use this general expression because
the difference between Hebbian and anti-Hebbian learning is sometimes quite
vague. Typically, one uses the expression 'Hebbian’ when the learning func-
tion is increasing and ’anti-Hebbian’ when the learning function is decreasing.
In the general case, however, the learning function need not be increasing or
decreasing, and thus a more general concept is needed.

Hebbian-like learning thus means that the weight vector w of a neuron, whose
input is denoted by x, adapts according to a rule that is roughly of the form

Aw o< £xf(wix) + ... (2)

where f is a certain scalar function, called the learning function. Thus the
change in w is proportional both to the input x and a nonlinear function of
w’x. Some kind of normalization and feedback terms must also be added.
Several different learning functions f have been proposed in the context of
ICA, e.g., the cubic function, the tanh function, or more complicated poly-
nomials. Some of these, e.g., the cubic function, have been motivated by an
exact convergence analysis. Others have only been motivated using some ap-
proximations whose validity may not be evident.

In this paper, we show that as long as the exact (local) convergence is con-
cerned, the choice of the learning function f in (2) is not critical. In fact,
practically any non-linear learning function may be used to perform ICA.
More precisely, any function f divides the space of probability distributions
into two half-spaces. Independent components whose distribution is in one



of the half-spaces can be estimated using a Hebbian-like learning rule as in
(2) with a positive sign before the learning term, and with f as the learning
function. ICs whose distribution is in the other half-space can be estimated
using the same learning rule, this time with a negative sign before the learning
term. (The boundary between the two half-spaces contains distributions such
that the corresponding ICs cannot be estimated using f. This boundary is,
however, of vanishing volume.) In addition to the Hebbian-like mechanism,
two assumptions are necessary here. First, the data must be preprocessed by
whitening. Second, the Hebbian-like learning rule must be constrained so that
the norm of the weight vector has constant norm.

Though in principle any function can be used in the Hebbian-like learning
rule, practical considerations lead us to prefer certain learning functions to
others. In particular, one can choose the non-linearity so that the estimator
has desirable statistical properties like small variance and robustness against
outliers. Also computational aspects may be taken into account.

This paper is organized as follows: in section 2, a general motivation for our
work is described. Our learning rules are described in section 3. Section 4
contains a discussion, and simulation results are presented in section 5. Finally,
some conclusions are drawn in section 6.

2 Cumulants vs. Arbitrary Non-linearities

Generally, for source separation and ICA, higher than second-order statistics
have to be used. Such higher-order statistics can be incorporated into the
computations either explicitly using higher-order cumulants, or implicitly, by
using suitable nonlinearities. Indeed, one might distinguish between two ap-
proaches to ICA which we call the "top-down" approach and the "bottom-up"
approach.

In the top-down, or cumulant approach, one typically starts from the inde-
pendence requirement. Mutual information is usually chosen as the measure
for the degree of independence [7]. Because direct estimation of mutual infor-
mation is very difficult, one then derives an approximative contrast function,
often based on cumulant expansions of the densities, that can be computed
more easily in practice. Finally, the problem is solved with an appropriate
numerical method. The main drawback of this approach is that the contrast
functions contain higher-order moments whose estimators usually have large
variances and are not tolerant to noise and numerical errors. Moreover, the
algorithms may be computationally complicated.

There is an extensive literature on cumulant-based contrast functions for ICA



both in neural network -like solutions (see e.g. [1,6]) and in signal processing
(see e.g. [4,5,7,8]), and it is not the purpose of our paper to give a review of this
mainstream of ICA research. Instead, we concentrate here on the ’bottom-up’
approach in which the higher order statistics are implicitly embedded into the
cost functions and algorithms by arbitrary nonlinear functions.

In our bottom-up approach, we start from an arbitrary cost function, called
the contrast function, or from its related gradient algorithm. We then go on
to prove that the extrema of the contrast function coincide with independent
components. It is also possible to start from the algorithm directly like in [23]
and show that independent components are asymptotically stable points of
convergence for the algorithm.

The bottom-up approach has some important advantages. Firstly, computa-
tional stmplicity is an inherent advantage of this approach, because in this
way the estimation of cumulant tensors etc. is avoided. A second advantage
of the bottom-up approach is that we are less restricted in the choice of the
contrast function. The nonlinear functions do not have to be polynomials at
all, but can be more freely adapted to other characteristics of the problem,
especially demands on statistically well-behaving estimators. Such algorithms
may also be more suitable to a neural network computational environment
and might have some biological relevance or plausibility as neural learning
rules. A drawback of our approach may be that it only works under a re-
stricted model. In the basic case studied here, this is the linear mixing model,
although generalizations are possible.

3 A General Hebbian-like Learning Rule

3.1 General One-unit Contrast Functions

Contrast functions |7] provide a useful framework to describe ICA estimation.
Usually they are based on a measure of the independence of the solutions.
Denoting by w and x the weight vector and the input of a neuron, and slightly
modifying the terminology in [7], one might also describe a contrast function
as a measure of how far the distribution of the output w’x of a neuron is from
a gaussian distribution. The basic idea is then to find weight vectors (under a
suitable constraint) that maximize the 'non-gaussianity’ of the output. With
such weight vectors, the output is equal to one of the independent components

19]-

We mention in passing that 'non-gaussianity’ is also a widely used criterion in
projection pursuit [10,11], and thus the criteria and learning rules in this paper



also apply to the projection pursuit problem; however, in projection pursuit
there is no underlying mixing model and thus no independent components.

One of the most widely used contrast functions for ICA is the modulus of
kurtosis, or the fourth-order cumulant [8,15]. We think, however, that there
are good reasons to extend the class of contrast functions from cumulants to
non-polynomial moments, as we argued in section 2. Many different measures
of non-gaussianity can then be used for ICA estimation. A large family of such
contrast functions was proposed by one of the authors in [12].

To construct a general contrast function, let us begin by choosing a sufficiently
smooth even function, denoted by F. To obtain a contrast function based
on F, it is natural to consider the difference of the expectation E{F(w”’x)}
from what it would be if the output w!x were gaussian. As we are here
only interested in the higher-order structure of the data, the variance of the
output can be constrained to be 1. (Because the data is prewhitened, this
can be simply accomplished by the constraint ||w| = 1.) Thus we obtain the
following contrast function

Jp(w) = |E{F(w'x)} — E{F(v)}| (3)
where ||[w|| =1 and v is a standardized Gaussian random variable.

3.2 Basic One-unit Learning Rule

Because the second term in (3) is constant, maximizing the contrast func-
tion Jr can be simply accomplished by finding all the maxima and minima
of E{F(w’x)}, under the constraint ||w| = 1. This can be implemented
as stochastic gradient descent or ascent, and leads to the following general
Hebbian-like learning rule:

Aw o oxf(w’x), normalize w (4)

where 0 = +1 is a sign determining whether we are maximizing or minimizing
E{F(wTx)}, f is the derivative of F, and the normalization can be done
simply by dividing w by its norm.

A convergence analysis of (4) can be made by analyzing the nature of the
critical points w = +a;, where a; is the i-th column of the mixing matrix A.
It turns out that if a certain expression involving the s; and F' is positive for
some 7, then w converges, for ¢ = +1, to one of the corresponding columns
+a; of the matrix A. Thus we obtain one of the ICs as the output w’x =
+a] x = +s;. (Recall that A is orthogonal due to prewhitening). On the other



hand, if that same expression is negative for some 7, then the same kind of
convergence is obtained by using the opposite sign in the learning rule, i.e. by
setting 0 = —1.

The exact conditions for convergence are stated in the following theorem (see
also Theorem 1 in [25]):

Theorem 1 Assume that the input data follows the model (1), where x is
prewhitened (sphered), and that F is a sufficiently smooth even function. Then
the local mazima (resp. minima) of E{F(w”x)} under the constraint |[w|| = 1
include those columns a; of the mizing matriz A such that the corresponding
independent components s; satisfy

E{sif(si) = f'(s:)} > 0 (resp. <0) (5)

where f(.) is the derivative of F(.). The same is true for the points —a; .
The proof is given in the Appendix.

Note that if w = +a;, then w/x = =£s;. Using this result, the independent
components can be found as the proper extrema. From the Theorem it follows
that in the learning rule (4), all the columns a; of A such that the correspond-
ing IC s; fulfills

o = sign(E{sif(s:) — f'(s:)}) (6)

are stable stationary points for w. This is also true for —a;. Thus, by choosing
o appropriately, one can estimate practically any independent component,
using learning rule (4). The practical choice of o is treated below. We assume
here that the learning rate used in the implementation of (4) is annealed to
zero [15] so that the stochastic gradient method really converges to one of the
extrema of the objective function [21].

The theorem stated above considers local extrema, hence local convergence
of the gradient algorithms only. It seems plausible that the convergence is
global if the learning function is ’simple’ enough, e.g. monotonous or almost
monotonous, or at least the basins of attraction of the desired stationary
points (columns of the mixing matrix A) can be shaped by using a suitable
nonlinear function F(.). Numerical simulations confirming these conjectures
were reported in [12].



3.8 Unwversal One-Unit Learning Rule

The problem of choosing the right ¢ in (4) can be solved in two ways. First,
we often have some a priori information on the distributions of the ICs. For
example, speech signals are usually highly super-Gaussian. One might thus
evaluate roughly E{s;f(s;) — f'(s;)} for some super-Gaussian ICs and then
choose o according to (6). For example, if f is the tanh function, then 0 = —1
works for typical super-Gaussian ICs. Second, using the same principle as in
[8,15], one might make an on-line estimation of E{wTxf(wTx) — f'(wTx)},
and use the sign of this estimate as the o in the learning rule. This means that
an on-line estimate of that quantity, say c¢(t), is updated according to

Ac o [whxf(wlx) — f'(wlx)] —c (7)

and then o is replaced by sign(c(¢)) in the rule (4). Thus one obtains a uni-
versal learning rule that finds an IC of any distribution, provided only that

E{sif(si) — f'(si)} # 0.
3.4 A Network of Several Neurons

In blind source separation and feature extraction, it is usually desired to es-
timate several, perhaps all, independent components. (Note that this is not
necessary in blind deconvolution, in which just one IC is enough. In projection
pursuit, this may also be unnecessary). To find n ICs, one can use a network
of n neurons, each of which learns according to eq. (4), and where o may be
adapted for each neuron as explained in the preceding subsection. Of course,
some kind of feedback is then necessary to prevent the weight vectors from
converging to the same points. Because the columns of A are orthogonal,
classical orthogonalizing feedbacks as in SGA [24], Sanger’s algorithm [26],
or the bigradient rule [20]| can be used. A more detailed discussion of such
feedbacks can be found in, e.g., [15,20]. For example, the symmetric bigradi-
ent feedback, which also contains the normalization, would yield the following
universal learning rule for the weight matrix W = (wy, ..., w,,) whose columns
are the weight vectors w; of the neurons:

W(t+1) = W(t) + u(t)x(t) f(x(t)" W (t))diag(sign(c;(t)))
+aW (t)(I- W () TW(t)) (8)

where « is a constant (for example, o = .5), u(t) is the ordinary learning
rate, and the function f is applied separately on every component of the
row vector x(¢£)" W (¢). In this most general version of the learning rule, the



Table 1. Summary of the algorithm (symmetric bigradient version)

(i) Observe m-dimensional data vectors x that are generated according to
model (1). The components of s must be statistically independent, and
non-Gaussian. The matrix A must be of full column rank, and thus have
less columns than rows.

(ii) Make the observed data x zero-mean by subtracting its mean.

(iii) Sphere (whiten) the data. For details on whitening, see, for example,
|7,20|. If necessary, reduce simultaneously the dimension of the data.

(iv) Initialize W(0) as a m X p random matrix whose columns are orthogonal
and of unit norm. The number of columns p may be freely chosen as long
as it is not larger than m. Initialize c(0) as a zero vector of p components.

(v) Update W as in eq. (8). Update every component of ¢; of ¢ as in eq. (7)
(where in the place of w, the i-th column of W is used). Examples of the
choice of the learning rates are given in Section 5.

(vi) If not converged, go back to step (v).

(vii) The estimates of the s; are given by wls,i = 1,...,p, where the w; are
the columns of W. These estimates are not ordered, and are only defined
up to a multiplicative constant.

¢, = l..n are estimated separately for each neuron according to (7). Of
course, the learning function f could also be different for each neuron. This
is, however, not necessary, since the adaptation of the sign in the learning
rule is enough to enable the estimation of practically any IC, as implied by
Theorem 1.

A summary of the method proposed in this paper is given in Table 1.

4 Discussion

4.1  Which learning function to choose?

The theorem of the preceding section shows that we have an infinite number
of different Hebbian-like learning rules to choose from. This freedom is the
very strength of our approach to ICA. Instead of being limited to a single
non-linearity, our framework gives the user the opportunity to choose the
non-linearity so as to optimize some criteria. These criteria may be either
task-dependent, or follow some general optimality criteria.

Using standard optimality criteria of statistical estimators, an analysis on the
choice of the non-linearity in (4) was performed in [14,13]. Here we summarize
some of the main points:



— Asymptotic variance depends on the contrast function F' used and the dis-
tributions of the ICs. Most real-world signals seem to be super-Gaussian,
and for super-Gaussian ICs the asymptotic variance, i.e., the mean-square
error is minimized by a contrast function that does not grow very fast. Such
a function may be approximated by, e.g., the log cosh function, which cor-
responds to using its derivative, the tanh function in the learning rules, as
was already suggested in, e.g., [3,19,20,23].

— Robustness against outliers is a very desirable property for any estimation
procedure. Also robustness can be achieved by choosing a function F'(.)
that does not grow too fast, e.g., the log cosh function. The use of kurto-
sis, in contrast, leads to a fourth order polynomial, which means that the
estimation is highly non-robust.

— Moreover, computational efficiency of learning rules like (4) depends on the
function f(.) and can be increased by a suitable choice.

4.2 Batch-mode implementation

The convergence of neural on-line learning rules is sometimes problematic.
Considerably faster convergence can be obtained by using a fized-point algo-
rithm, which is a more batch-like version of the learning rule in (4). A general
fixed-point algorithm for an arbitrary non-linearity was introduced in [12,13].

5 Simulation results

We applied the general Hebbian-like learning rule in (4) using two different
learning functions, fi(y) = tanh(2y) and f2(y) = y exp(—y?/2). These learning
functions were chosen according to the recommendations in [14]. The simula-
tions consisted of blind source separation of four time signals that were linearly
mixed to give raise to four mixture signals.

First we applied the learning rules introduced above on signals that have
visually simple forms. This facilitates checking the results and provides an
illustration of blind source separation for those not familiar with the technique.
Both super- and sub-Gaussian signals were used. Only the mixed signals,
depicted in Fig. 2, were observed, and used to estimate the original ’source’
signals depicted in Fig. 1. (For clarity, only the first 100 values are plotted for
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each signal.) The mixing matrix was randomly chosen:

[ _0.278 —0.818 0.062 —0.392 |
—92.707 —0.420 —0.621 —0.845
0.034 0.261 —0.475 —0.365

| —0.331 0.627 —0.107 0.742 |

To begin with, the data was prewhitened. The results of prewhitening are
shown in Fig. 3. Then our learning rule was applied on the whitened data,
using a network of 4 neurons. The signs o; were estimated on-line and the
feedback mechanism used was the bigradient feedback as in Eq. (8); in other
words, the method was exactly the one in Table 1. To speed up convergence,
we used batches of 30 input values at each update of the weight vectors and
the c;. The learning rate was set at .1 for the first 500 iterations, and was
then reduced to .01 to ameliorate the accuracy of the results (see below). The
learning rate used in (7) was fixed at .1. Altogether, 1000 iterations were used.

The estimated source signals for the two learning functions are shown in Figs. 4
and 5. The corresponding estimates of A, which are obtained by applying the
inverse of the whitening transform on W, were

[ 0.388 0.050 —0.820 0.281 |
| 0.783 —0.646 —0.411 2.707

0.353 —0.464 0.275 —0.034
| —0.751 —0.110 0.628 0.326 |

>

I
=
=

when the non-linearity was tanh, or f;, and

[ 0.395 0.057 —0.816 0.284 |
| 0.788 —0.642 —0.401 2.709
0.351 —0.466 0.274 —0.035
—0.755 —0.115 0.623 0.325 |

when the non-linearity was the derivative of the Gaussian, or f,. Clearly, both
of these two non-linear learning functions enabled the estimation of the original
ICs, as indicated by our theorem. (Note that it is impossible to distinguish
between s;(t) and —s;(t), and that the order of the independent components
is not defined. This means that the columns in A are only defined up to a
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Fig. 1. Original source signals, or ICs, used in the simulations. Both super-Gaussian
and sub-Gaussian signals were used.

Fig. 2. Linear mixtures of source signals. Only these signals were observed.

permutation, and a multiplicative sign.) Moreover, the simulations confirm
that simultaneous estimation of the multiplicative signs o; enables separation
of ICs of very different distributions using a single learning function.

To study the convergence properties of the algorithms in more detail we per-
formed a second set of simulations. This time we used signals that were tem-
porally white noise, to highlight the fact that no temporal structure is needed
(or used) in the basic ICA model. Four independent components of different
distributions (uniform, binary, Laplace, and cube of a Gaussian variable) were
used. This time, the learning samples were used one at a time. The learning
rate was set as .01 for the first 2000 iterations, after which it was diminished to
.002 to study the effect of the learning rate. The total number of data points
used was 3000. The simulations were made for 10 different initial values of W,
and the results were averaged over trials. Two different non-linearities (the
same ones as above) were used. We defined a simple error measure based on
the matrix WT A where A is the mixing matrix. This matrix should converge
to a permutation matrix (up to multiplicative signs). Thus the sum of the
squares of the elements of this matrix was computed, excluding the 4 largest
elements.

Fig. 6 shows the values of the convergence index for the two non-linearities.
One sees that convergence was achieved at approximately 1500 iterations.
The diminuation of the learning rate diminished greatly the fluctuations in
the estimates. This illustrates the fact that annealing the learning rate makes
the learning more accurate. A larger learning rate in the beginning, on the
other hand, enabled faster learning.
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Fig. 3. Before applying the Hebbian-like learning rules, the data was prewhitened, or
sphered. This figure shows that no real separation was achieved by sphering alone.

Fig. 4. First, we used the Hebbian-like learning rule with the tanh function, or fi.
The two left-most signals were found by anti-Hebbian learning and the other two by
Hebbian learning.

Fig. 5. Next we used the derivative of the Gaussian function (f2) as the non-linearity.
Again, the two left-most signals were found by anti-Hebbian learning and the other
two by Hebbian learning.

1.4

1.2

0.6

L L L L L
o 500 1000 1500 2000 2500 3000

Fig. 6. Convergence of the learning rule with two different non-linearities. Approx-
imately 1500 iterations were sufficient for convergence. More accurate results were
obtained by decreasing the learning rate after 2000 iterations. The results are aver-
aged over 10 trials.

6 Conclusion

It was shown how a large class of Hebbian-like learning rules can be used for
ICA estimation. Indeed, almost any non-linear function can be used in the
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learning rule. The critical part is choosing correctly the multiplicative sign
in the learning rule as a function of the shapes of the learning function and
the distributions of the independent components. It was also shown how the
correct sign can be estimated on-line, which leads to a universal learning rule
that estimates an IC of practically any distribution. Thus one has a large
freedom in the choice of the non-linearity in the Hebbian-like learning rule.
This result is important because practically all other ICA procedures use a
fixed non-linearity or a limited number of them. In our framework it is possible,
however, to choose the non-linearity from a large class of candidates. This
enables using a non-linearity that is particularly suited for a given context. One
can choose it so as to optimize the performance of the learning rule according
to statistical or numerical criteria. Another advantage of our approach is that
the one-unit learning rules enable the separation of individual independent
components.
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Appendix A: Proof of the Theorem

Denote by H(w) the function to be minimized /maximized, E{F(w’x)}. Make the
orthogonal change of coordinates z = ATw. Then we can calculate the gradient
as VH(z) = E{sf(z's)} and the Hessian as V2H(z) = E{ss’ f'(z's)}. Without
loss of generality, it is enough to analyze the stability of the point z = e;, where
er = (1,0,0,0,...), which corresponds to w = a;. (Because F' is even, nothing
changes for w = —a;.) Evaluating the gradient and the Hessian at point z = e, we
get using the independence of the s;,

VH(e1) = e1E{s1f(s1)} (-1)

and

VZH(e1) = diag(E{stf'(s1)}, E{f'(s1)}, E{f'(s1)}, -.)- (-2)

Making a small perturbation € = (€1, €9, ...), we obtain

H(ei+e) = H(e1) + ¢ VH(er) + EGTVQH(el)é +o([lell”) (:3)

H(el)+E{81f(81)}61+—[E{81f (s1)}el + E{f'(s1)} D_ €l +olllel) (4)

i>1

Due to the constraint ||w| =1 we get €1 = \/1 — €3 — €3 — ... — 1. Due to the fact
that «/T—v =1 — /2 + o(y), the term of order € in (.4) is o(||¢||?), i.e., of higher
order, and can be neglected. Using the aforementioned first-order approximation for
€1 we obtain €, = — 3,51 €2/2 + o(|¢]|?), which finally gives

H(e; +¢) = H(e) + [E{f (s1) — s f(s)H D e +o([lel*) (.5)

i>1
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which clearly proves z = e; is an extremum, and of the type implied by the condition
of the theorem.

(A more detailed proof could be easily formulated along the lines of the proof of
Theorem 1 in [25], where a similar problem is considered for robust regression.)
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