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Abstract

A novel approach for the problem of estimating the data model of
independent component analysis (or blind source separation) in the
presence of gaussian noise is introduced. We define the gaussian mo-
ments of a random variable as the expectations of the gaussian func-
tion (and some related functions) with different scale parameters, and
show how the gaussian moments of a random variable can be estimated
from noisy observations. This enables us to use gaussian moments as
one-unit contrast functions that have no asymptotic bias even in the
presence of noise, and that are robust against outliers. To implement
the maximization of the contrast functions based on gaussian moments,

a modification of the fixed-point (FastICA) algorithm is introduced.

EDICS number: SPL.SP.3.2 (higher-order statistical analysis)



1 Introduction

Indendent component analysis [1, 6] is a statistical model where the observed
data is expressed as a linear transformation of latent variables (independent
components’) that are nongaussian and mutually independent. We may

express the model as
x=As+n (1)

where x = (21, z2, ..., ;) is the vector of observed random variables, s =
(81,82, ..., Sp) is the vector of the independent components, and A is an
unknown constant matrix, called the mixing matrix. The vector n is noise,
and is most often omitted. For simplicity, we make in this paper some
assumptions that are not strictly necessary: 1) the dimension of s equals
the dimension of x, i.e. m = m, 2) the noise n is gaussian and 3) the noise
covariance matrix X is known.

A popular approach for estimating the noise-free ICA model is the one-
unit (or deflation) method [2, 3, 4, 5]. Denote the noise-free data by y = As.
The basic idea in the one-unit approach is to take some measure of nongaus-
sianity and then find projections, say wy, in which this is locally maximized
for whitened (sphered) data. Projections in such directions give consistent
estimates of the independent components, if the measure of nongaussianity
is well chosen. This approach could be used for noisy ICA as well, if only we
had measures of nongaussianity which are immune to gaussian noise, or at
least, whose values for the original data can be easily estimated from noisy
observations. If the measure of nongaussianity is kurtosis [2] (the fourth-
order cumulant), this is quite easy, but leads to nonrobust algorithms. The

purpose of this letter is to show how to construct corresponding algorithms



for noisy ICA using other one-unit contrast functions than kurtosis. This is
based on the concept of gaussian moments. Thus we introduce a new class

of algorithms for noisy ICA that are consistent and robust against outliers.

2 Quasi-whitening

To begin with, it must noted that the effect of noise must be taken into
account in the preliminary whitening of the data. This is quite simple if the
noise covariance matrix is known, as we assume. Denoting by C = E{xx"}
the covariance matrix of the observed noisy data, the ordinary whitening
should be replaced by the operation x = (C — X)~'/?x. In the following,
we call this operation ’quasi-whitening’. The quasi-whitened data x follows
a noisy ICA model as well, with an orthogonal mixing matrix [1, 2], and the

following noise covariance matrix:

S = E{nn’} = (C- )" /2xn(C -x)~1/2, (2)

3 (Gaussian moments

It has been argued e.g. in [3, 5] that kurtosis may be a rather poor measure of
nongaussianity (contrast function) in many applications. This is because it
gives estimators that are very sensitive to outliers, and may have large mean-
square errors. Therefore, in |3, 5| an approach was developed in which the
higher-order statistics of the projection w''y are taken into account through

general contrast functions of the form

Ja(w'y) = |[E{G(w"y)} - E{G()}| (3)
where the function G is a sufficiently regular nonquadratic function, and v

is a standardized gaussian variable.



The main point of this paper is to show that for certain choices of G, it
is simple to estimate the values of Jg consistently from noisy observations,
generalizing this approach for noisy ICA. The basic idea is to choose G to be
the density function of a zero-mean gaussian random variable, or a related
function.

Denote by

1 =z 1 T

-) = exp(—7) (4)

c 2mc 2¢?

the gaussian density function of variance ¢2, and by wgk) (z) the k-th (k > 0)
derivative of ¢.(z). Denote further by wgfk) the k-th integral function of
(), obtained by gogfk) () = [y gogfkﬂ)(ﬁ)d{, where we define <p£°) (z) =
we(x). (The lower integration limit 0 is here quite arbitrary, but has to be

fixed.) Then we have the following theorem (proven in Appendix A):

Theorem 1 Let z be any nongaussian random variable, and denote by n
an independent gaussian noise variable of variance o®. Define the gaussian

unction @ as in . Then for any constant ¢ > o2 we have
bk ® Y

E{pc(2)} = E{pa(z +n)} (3)

with d = V¢ — a?. Moreover, (5) still holds when ¢ is replaced by @(k) for

any integer index k.

We call the statistics of the form E{(pgk) (wTy)} the gaussian moments
of the data. Thus we can estimate the noisy ICA model by maximizing, for
quasi-whitened data x, the following contrast function:

max [E{p{f),) (w'%)} — B{p® ()} (6)

llwll=1



with d(w) = V2 —wTEw. This gives a consistent (i.e. asymptotically
unbiased) method of estimating the noisy ICA model due to the theorem in

[5].

4 Fixed-point algorithm for gaussian moments

To perform the optimization in (6), we can derive a modification of the
(general form of the) fixed-point, or FastICA, algorithm [3, 4]. A detailed
derivation will be presented elsewhere. An important point in the derivation
is that the algorithm can be considerably simplified by adapting the value
of ¢ at every iteration, e.g. so that d(w) = 1 always. At the same time,
this solves the problem of choosing values for the parameter ¢. Such an
adaptation of c¢ is justified by the fact that the function G needs only to be
of a given shape, so that the signs of certain non-polynomial cumulants do
not change [5].

This gives the following fized-point algorithm with bias removal for quasi-

whitened data:
w* = E{&g(wT%)} — (1+ D)wE{g (w'%)} (7)

where w*, the new value of w, is normalized to unit norm after every iter-
ation, and X is given by (2). Surprisingly, (7) is of the same form as the
corresponding algorithm that maximizes the modulus of kurtosis for quasi-
whitened data (obtained by modifying slightly the derivation in [4]). The
function g is here the derivative of GG, and can thus be choosen, for example,

among the following:

g1(u) = tanh(u), go(u) = uexp(—u2/2), g3(u) = ud, (8)



where g1 is an approximation of go(_l), which is the gaussian cdf (these rela-
tions hold up to some irrelevant constants), g, equals (1), and g3 is obtained
by using kurtosis. These functions cover essentially the nonlinearities ordi-
narily used in the fixed-point or FastICA algorithm [3]. It can be seen that
the addition of 3 in (7) is the key to removing bias. Several independent
components can be found using different orthogonalization schemes, exactly

as in the noise-free case [4].

5 Simulations

To test our algorithm in (7), we made the simulations depicted in Fig. 1. The
dimension of the data was 4, the independent components had i.i.d. Laplace
distributions, and noise covariance was .25 I, At each trial, a 4 X 4 mixing
matrix was randomly generated, and normalized so that the total energy of
the signals was equal to 1, corresponding to a signal-to-noise ratio of 4. Only
one independent component was estimated at each trial, and the resulting
error was measured as: error = min; |1 — |[w” a;|/||wT Al||, where a; is the i-
th row of the mixing matrix after quasi-whitening. Sample size N was varied
from 1000 to 64000, and the error was estimated as the median of the errors
of 200 trials. The results are depicted in Fig. 1. One can see clearly that for
the modified estimators, the errors tend to zero, showing lack of bias. This

is not the case for the original estimators, which show considerable bias.

6 Conclusion

We introduced a new approach to estimation of the noisy ICA model, using

the concept of gaussian moments. The useful property of gaussian moments



is that the gaussian moments of underlying random variables can be simply
estimated from noisy observations. Higher-order cumulants have the same
property, but they lead to estimators that are sensitive to outliers. Thus
we derived a fixed-point (FastICA) algorithm [4, 3] for noisy ICA that is
statistically consistent, i.e. without asymptotic bias, and robust against out-
liers (for suitable choice of g, and for robustly whitened data). Moreover,
it inherits from the noise-free fixed-point algorithm the advantages of being

computationally simple and very fast [4, 3].
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A  Proof of Theorem

Denote by p(.) the pdf of z. For k = 0, we have

Blpatz + 1)} = [ wa) [ 0oy~ Op(t)d)dy
= [p0)1f 0oy - ieatp)dslat = Bipel2)} )

which proves the theorem for £ = 0. For other values of k, introduce a hy-
pothetical location parameter §. Taking the k-th derivative (resp. integral)
under the expectation of the both sides of E{p.(z+60)} = E{wi(z+n+8)},
and setting # = 0, we obtain the theorem for & > 0 (resp. k£ < 0).
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Figure 1: Consistency of the estimators for fixed noise level (SNR=4) and
sample size varying from 1000 to 64000. Horizontal axis: logl0 of sample
size. Vertical axis: logl0Q of error measure as given in text. Dotted lines:
estimators without bias correction, for the three nonlinearities in (8). Other
lines: estimators with bias correction (solid: g3, dashed: go, dot-dashed: g1).

Only the estimators with bias correction have errors that tend to zero.
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Figure caption:

Consistency of the estimators for fixed noise level (SNR=4) and sample
size varying from 1000 to 64000. Horizontal axis: logl0 of sample size. Ver-
tical axis: logl0 of error measure as given in text. Dotted lines: estimators
without bias correction, for the three nonlinearities in (8). Other lines: es-
timators with bias correction (solid: g3, dashed: go, dot-dashed: g1). Only

the estimators with bias correction have errors that tend to zero.
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