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Abstract. Mean shift clustering finds the modes of the data probability
density by identifying the zero points of the density gradient. Since it
does not require to fix the number of clusters in advance, the mean shift
has been a popular clustering algorithm in various application fields. A
typical implementation of the mean shift is to first estimate the density
by kernel density estimation and then compute its gradient. However,
since a good density estimation does not necessarily imply an accurate
estimation of the density gradient, such an indirect two-step approach
is not reliable. In this paper, we propose a method to directly estimate
the gradient of the log-density without going through density estimation.
The proposed method gives the global solution analytically and thus is
computationally efficient. We then develop a mean-shift-like fixed-point
algorithm to find the modes of the density for clustering. As in the mean
shift, one does not need to set the number of clusters in advance. We
experimentally show that the proposed clustering method significantly
outperforms the mean shift especially for high-dimensional data.

Keywords: Log-Density Gradient Estimation, Mean Shift, Clustering,
High-Dimensional Data

1 Introduction

Seeking the modes of a probability density has led to a powerful clustering al-
gorithm called the mean shift [6, 8, 11]. In the mean shift algorithm, all input
samples are initially regarded as candidates of the modes of the density and they
are iteratively updated and merged. Finally, clustering is performed by associat-
ing the input samples with the obtained modes. An advantage of the mean shift
is that the number of clusters does not need to be specified in advance. Thanks
to this extremely useful property, the mean shift has been successfully employed
in various applications such as image segmentation [8, 24, 26] and object track-
ing [7, 9].

In mode seeking, a central technical challenge is accurate estimation of the
gradient of a density. The mean shift takes a two-step approach: kernel density
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estimation (KDE) is first used to approximate the density and then its gradient
is computed. However, such a two-step approach performs poorly because a good
estimator of the density does not necessarily mean a good estimator of the den-
sity gradient. In particular, KDE tends to produce a smooth density estimate and
therefore the modes in a multi-modal density could be collapsed. Furthermore,
KDE itself tends to perform poorly in high-dimensional problems [8].

To overcome this problem, we propose a method called the least-squares log-
density gradient (LSLDG), which directly estimates the gradient of a log-density
by least-squares without going through density estimation. The proposed method
can be regarded as a non-parametric extension of score matching [14, 21], which
has originally been developed for least-squares parametric density estimation
with intractable partition functions. We then derive a fixed-point algorithm to
find the modes of the density, which is our proposed clustering algorithm called
LSLDG clustering.

All tuning parameters included in LSLDG such as the Gaussian kernel width
and the regularization parameter can be objectively optimized by cross-validation
in terms of the squared error. Furthermore, since LSLDG clustering inherits the
same algorithmic structure as the original mean shift, it does not require the
number of clusters to be fixed in advance. Thus, LSLDG clustering does not
involve any tuning parameters to be manually determined, which is a signif-
icant advantage over standard clustering algorithms such as spectral cluster-
ing [19], because clustering is an unsupervised learning problem and appropri-
ately controlling tuning parameters is generally very hard. A recent study based
on information-maximization clustering [22] provided an information-theoretic
mean to determine tuning parameters objectively, but it still requires the user
to fix the number of clusters in advance.

The remainder of this paper is structured as follows. We derive a method to
directly estimate the gradient of a log-density in Section 2, and then use it for
finding clusters in the data in Section 3. Various possibilities for extension are
discussed in Section 4. The usefulness of the proposed method is experimentally
investigated in Section 5. Finally this paper is concluded in Section 6.

2 Direct Estimation of the Gradient of a Log-density

In this section, we propose a method to estimate the log-density gradient.

2.1 Problem Formulation

Let us consider a probability distribution on Rd with density p∗(x), which is
unknown but n i.i.d. samples X = {xi}ni=1 are available:

X = {xi}ni=1
i.i.d∼ p∗(x).
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Our goal is to estimate the gradient of the logarithm of the density p∗(x) with
respect to x from X :

g∗(x) = (g∗1(x), . . . , g
∗
d(x))

⊤ = ∇ log p∗(x) =
∇p∗(x)
p∗(x)

.

A naive approach to estimate g∗(x) is to first obtain a density estimate p̂(x)
and then compute its log-gradient ∇ log p̂(x). However, this two-step approach
does not work well because a good density estimate p̂(x) does not necessar-
ily provide an accurate estimate of its log-gradient ∇ log p̂(x). For example, in
Figures 1(a) and (b), density estimation is performed very well by KDE, but
its log-density gradient produces oscillated errors. These errors become more
prominent especially in higher-dimensional data (Figure 1(c)).

Below, we describe a method to directly estimate the log-density gradient
∇ log p∗(x) without going through density estimation. Our proposed method is
based on the mathematics of score matching [14]; the difference is that our goal
is to approximate the gradient of the log-density instead of model parameter
estimation.

2.2 Least-Squares Log-Density Gradient

Our basic idea is to directly fit a model g(x) = (g1(x), . . . , gd(x))
⊤ to the true

log-density gradient g∗(x) under the squared loss:

Jj(gj) =

∫ (
gj(x)− g∗j (x)

)2

p∗(x)dx−
∫
g∗j (x)

2p∗(x)dx

=

∫
gj(x)

2p∗(x)dx− 2

∫
gj(x)g

∗
j (x)p

∗(x)dx

=

∫
gj(x)

2p∗(x)dx− 2

∫
gj(x)∂jp

∗(x)dx

=

∫
gj(x)

2p∗(x)dx+ 2

∫
∂jgj(x)p

∗(x)dx,

where ∂j denotes the partial derivative with respect to the j-th variable of x and
the last equality follows from integration by parts under some conditions [14].
Then the empirical approximation of Jj is given as

Ĵj(gj) =
1

n

n∑
i=1

gj(xi)
2 +

2

n

n∑
i=1

∂jgj(xi). (1)

As the model gj(x), we use the following linear-in-parameter model, which is
related to using an exponential family for density modeling:

gj(x) =

n∑
i=1

θi,jψi,j(x) = θ
⊤
j ψj(x),
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where θj denotes the parameter vector and ψi,j(x) is a basis function. The
derivative of this model is given by

∂jgj(x) =

n∑
i=1

θi,j∂jψi,j(x) = θ
⊤
j φj(x),

where φj(x) = (∂jψ1,j(x), . . . , ∂jψn,j(x)).
Adding an ℓ2-regularizer to (1), we can compactly express the optimization

problem as

θ̂j = argmin
θj

[
θ⊤j G

(j)θj + 2θ⊤j hj + λθ⊤j θj

]
, (2)

where λ ≥ 0 is the regularization parameter, and G(j) and hj are defined by

G(j) =
1

n

n∑
i=1

ψj(xi)ψj(xi)
⊤, hj =

1

n

n∑
i=1

φj(xi).

As in score matching for an exponential family [15], the optimization problem
(2) can be solved analytically as

θ̂j = −(G(j) + λI)−1hj ,

where I denotes the identity matrix. Finally, we obtain the estimator ĝj as

ĝj(x) =
n∑

i=1

θ̂i,jψi,j(x) = θ̂
⊤
j ψj(x).

We call this method the least-squares log-density gradient (LSLDG).

2.3 Model Selection by Cross-Validation

The performance of LSLDG depends on the choice of the regularization parame-
ter λ and parameters included in the basis function ψj . They can be objectively
chosen via cross-validation as follows:

1. Divide the samples X = {xi}ni=1 into N disjoint subsets {Xi}Ni=1.
2. For i = 1, . . . , N

(a) Compute the LSLDG estimator ĝ
(i)
j from X\Xi (i.e., all samples except

Xi).
(b) Compute its hold-out error for Xi:

CV(i) =
1

|Xi|
∑
x∈Xi

d∑
j=1

[
ĝ
(i)
j (x)2 + 2∂j ĝ

(i)
j (x)

]
,

where |Xi| denotes the cardinality of Xi.
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3. Compute the average hold-out error as

CV =
1

N

N∑
i=1

CV(i). (3)

4. Choose the model that minimizes (3) with respect to λ and parameters in
ψj , and compute the final LSLDG estimator ĝj with the chosen model using
all samples X .

3 Clustering via Mode Seeking

In this section, we derive a clustering algorithm based on LSLDG. Our basic
idea follows the same line as the mean shift algorithm [6, 8, 11], i.e., to assign
each data sample to a nearby mode of the density.

3.1 Gradient-Based Approaches

A naive implementation of this idea is to use gradient ascent for each data sample
to let it converge to one of the modes of the density in the vicinity:

xi ←− xi + εĝ(xi),

where ε > 0 is the step size.
Since

g(x) = ∇ log p(x) =
∇p(x)
p(x)

∝ ∇p(x),

the gradient of the log-density log p(x) keeps the same direction as the gradient
of the original density p(x). However, due to p(x) in the denominator, the log-
gradient vector gets longer when p(x) < 1 and shorter when p(x) > 1. This is
practically suitable adjustment because p(x) < 1 (p(x) > 1) often means that
the current point x is far from (close to) a mode. Indeed, the faster convergence
of gradient ascent with the log-density was asserted in the same way [11].

To further increase the speed of convergence, using a quasi-Newton method
is also promising:

xi ←− xi + εQ̂ĝ(xi),

where Q̂ is an estimate of the inverse Hessian matrix.

3.2 Fixed-Point Approach

In the gradient-based approaches, choosing the step size parameter ε is a crucial
problem. To avoid this problem, we develop a fixed-point method, in analogy to
the original mean-shift method.
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To easily derive a fixed-point equation, we focus on the basis function of the
following form:

ψi,j(x) =
1

σ2
[ci − x]jϕi(x),

where σ2 is a constant, ci is a d-dimensional constant vector, ϕi(x) is a “mother”
basis function, and [·]j denotes the j-th element of a vector. A typical choice of
the mother basis function ϕi(x) is the Gaussian function:

ϕi(x) = exp

(
−∥x− ci∥

2

2σ2

)
, (4)

where the Gaussian center ci may be fixed at sample xi. In experiments, we only
use 100 Gaussian centers chosen randomly from X . This reduction of Gaussian
centers significantly decreases the computational costs without sacrificing the
performance, as shown in Section 5.2.

For this model, the LSLDG solution can be expressed as

ĝj(x) =

n∑
i=1

θ̂i,jψi,j(x) =
1

σ2

n∑
i=1

θ̂i,j [ci − x]jϕi(x)

=
1

σ2

n∑
i=1

θ̂i,jϕi(x)[ci]j −
[x]j
σ2

n∑
i=1

θ̂i,jϕi(x).

If
∑n

i=1 θ̂i,jϕi(x) ̸= 0, setting ĝj(x) to zero yields

[x]j =

∑n
i=1 θ̂i,jϕi(x)[ci]j∑n

i=1 θ̂i,jϕi(x)
. (5)

We propose to use this equation as a fixed-point update formula by iteratively
substituting the right-hand side to the left-hand side. In the vector-matrix form,
the update formula is compactly expressed as

xi ←− Bϕ(xi)./(Θ̂
⊤
ϕ(xi)),

where Bj,i = θ̂i,j [ci]j , Θ̂i,j = θ̂i,j , ϕ(x) = (ϕ1(x), . . . , ϕn(x))
⊤, and “./” denotes

the element-wise division.
This update formula is similar to the one used in the original mean shift

algorithm [8, Eq.(20)], which corresponds to θ̂i,j = 1/n:

x←−
∑n

i=1 ϕi(x)ci∑n
i=1 ϕi(x)

,

where ϕi is typically chosen as the Gaussian function (4). Thus, the proposed
method can be regarded as a weighted variant of the mean shift algorithm, where
the weights θ̂i,j are learned by LSLDG. A similar weighted mean shift method
has already been studied in [6], but the weights were determined heuristically.
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The mean shift update was proven to be equivalent to gradient ascent with
an adaptive step size [6]. LSLDG-based clustering also inherits this property.

Indeed, if [x]j
∑n

i=1 θ̂i,jϕi(x) is subtracted from and added to the numerator of
Eq.(5) (thus the equation remains the same), we obtain

[x]j = [x]j + εj(x)ĝj(x),

where

εj(x) =
σ2∑n

i=1 θ̂i,jϕi(x)
.

This shows that our fixed-point update rule can be regarded as gradient ascent
with an adaptive step size εj(x).

If ϕi(x) is set to be the Gaussian function (4),
∑n

i=1 θ̂i,jϕi(x) can actually be
regarded as an estimate of the original log-density log p∗(x). More specifically,
we can easily see that the partial derivative of ϕi(x) with respect to the j-th
variable of x is ψi,j(x):

∂jϕi(x) = ψi,j(x).

Then we have

∂j log p
∗(x) = g∗j (x) ≈ ĝj(x) =

n∑
i=1

θ̂i,jψi,j(x)

=

n∑
i=1

θ̂i,j∂jϕi(x) = ∂j

n∑
i=1

θ̂i,jϕi(x).

This implies that
∑n

i=1 θ̂i,jϕi(x) is an estimate of log p∗(x) up to a constant.
Therefore, when log p∗(x) is small (large), the proposed fixed-point algorithm
adaptively increases (decreases) the step size εj(x) to more aggressively (con-
servatively) ascend the gradient. This step-size adaptation would be reasonable
because small (large) log p∗(x) often means that the current solution is far from
(close to) a mode.

4 Extensions

In the previous section, we focused on the simplest setting to clearly convey
the essence of the proposed idea. However, we can easily extend the proposed
method to various directions. In this section, we discuss such possibilities.

4.1 Common Basis Functions

When the basis function is common to all dimensions, i.e., ψj(x) = ψ(x) for j =

1, . . . , d, the matrixG(j) becomes independent of j asG = 1
n

∑n
i=1ψ(xi)ψ(xi)

⊤.
Then, matrix inverse has to be computed only once for all dimensions:

(θ̂1, . . . , θ̂d) = −(G+ λI)−1(h1, . . . ,hd).

This significantly speeds up the computation particularly when the dimension-
ality d is high.
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4.2 Multi-Task Learning

The above common-basis setup allows us to employ the regularized multi-task
method [10], by regarding the estimation problem of g∗j (x) as the j-th task.
The basic idea of regularized multi-task learning is that, if g∗j (x) and g∗j′(x)
are similar to each other, the corresponding parameters θj and θj′ are imposed
to be close to each other. This idea can be implemented in the regularization
framework as

min
θ1,...,θd

 d∑
j=1

(
θ⊤j G

(j)θj + 2θ⊤j hj + λjθ
⊤
j θj

)
+ γ

d∑
j,j′=1

γj,j′∥θj − θj′∥2
 ,

where λj > 0 is the ordinary regularization parameter for the j-th task, 0 ≤
γj,j′ ≤ 1 is the similarity between the j-th task and the j′-th task, and γ >
0 controls the strength of this multi-task regularizer. A notable advantage of
this regularization approach is that the solution can be obtained analytically.
When the task similarity γj,j′ is unknown, task similarity and solutions may
be iteratively learned. More specifically, starting from γj,j′ = 1 for all j, j′ =
1, . . . , d, the solutions θ1, . . . ,θd are computed. Then, task similarity is updated,
e.g., by γj,j′ = exp(−∥θj−θj′∥2) for j, j′ = 1, . . . , d, and the solutions θ1, . . . ,θd
are computed again.

4.3 Sparse Estimation

Instead of the ℓ2-regularizer λ∥θj∥2, the ℓ1-regularizer λ∥θj∥1 may be used to
obtain a sparse solution [25]. The entire regularization path (i.e., the solutions
for all λ ≥ 0) can also be computed efficiently, based on the piece-wise linearity
of the solution path with respect to λ [12].

4.4 Bregman Loss

The squared loss can be generalized to the Bregman loss [3]. More specifically, for

f being a differentiable and strictly convex function and C
(f)
j =

∫
f(g∗j (x))p

∗(x)dx,

J
(f)
j (gj) =

∫ (
f(g∗j (x))− f(gj(x))− f ′(gj(x))(g∗j (x)− gj(x))

)
p∗(x)dx− C(f)

j

=

∫
(−f(gj(x)) + f ′(gj(x))gj(x)) p

∗(x)dx−
∫
f ′(gj(x))∂jp

∗(x)dx

=

∫
(−f(gj(x)) + f ′(gj(x))gj(x) + ∂jf

′(gj(x))) p
∗(x)dx,

where f ′(t) is the derivative of f(t) with respect to t and the last equality follows

again from integration by parts. The empirical approximation of J
(f)
j is given as

Ĵ
(f)
j (gj) =

1

n

n∑
i=1

(−f(gj(xi)) + f ′(gj(xi))gj(xi) + ∂jf
′(gj(xi))) .
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When f(t) = t2, the Bregman loss is reduced to the squared loss and we can
recover the LSLDG criterion (1). On the other hand, f(t) = − log t gives the
Kullback-Leibler loss [17], f(t) = t log t− (1 + t) log(1 + t) gives the logistic loss
[23], and f(t) = (t1+α − t)/α for α > 0 gives the power loss [2]. Although each
choice has its own specialty, e.g., the power loss possesses high robustness against
outliers, the squared loss was shown to be endowed with the highest numerical
stability in terms of the condition number [16].

4.5 Blurring Mean Shift

Fukunaga and Hostetler originally proposed a mean shift algorithm for updating
not only the data points but also the density estimation at each iteration [11].
Later, this algorithm was named the blurring mean shift [4, 6]. Combined with
the idea of the blurring mean shift, another possible algorithm for LSLDG clus-
tering is to re-estimate the log-density gradient at each iteration for new data
points. This algorithm hopefully works well as the blurring mean shift does [4].

5 Experiments

In this section, we demonstrate the usefulness of the proposed LSLDG method.
A MATLAB implementation of LSLDG and its clustering algorithm based

on the fixed-point approach is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSLDG/index.html

5.1 Illustration of Log-Density Gradient Estimation

We first illustrate how LSLDG estimates log-density gradients using n = 1, 000
samples drawn from p(x), where either

– p(x) is the standard normal density, or
– p(x) is a mixture of two Gaussians with means 2 and −2, variances 1 and 1,

and mixing coefficients 0.5 and 0.5.

As described in Section 2.3, the Gaussian width σ and the regularization pa-
rameter λ are chosen by 5-fold cross-validation from the following candidate
set:

{10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101}. (6)

We compare the performance of the proposed method with Gaussian KDE, where
the Gaussian width is chosen by likelihood cross-validation from the same can-
didate set in (6).

The results for the Gaussian data are presented in the upper row of Figure 1.
Figure 1(a) shows that LSLDG gives a nice smooth estimate, while the estimate
by KDE is rather oscillating. Note that KDE still works well as a density esti-
mator as illustrated in Figure 1(b). This clearly illustrates that a good density
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Fig. 1. LSLDG vs. KDE for (upper row) Gaussian data and (lower row) data sampled
from a mixture of two Gaussians. (a) Profiles of the true log-density gradient and its
estimates obtained by LSLDG and KDE. (b) True and estimated densities by KDE.
(c) Averages and standard deviations of mean ℓ2-norm errors to the true log-density
gradient as functions of input dimensionality over 100 runs.

estimate (obtained by KDE) does not necessarily yield a good estimate of the
log-density gradient. We repeated this experiment 100 times and the mean ℓ2-
norm error to the true log-density gradient, 1

n

∑n
i=1 ∥g(xi)− g∗(xi)∥, is plotted

in Figure 1(c) as a function of the input dimensionality. This shows that while the
error of KDE increases sharply as a function of dimensionality, that of LSLDG
increases only mildly. This implies that the advantage of directly estimating the
log-density gradient is more prominent in high-dimensional cases. Similar ten-
dencies can be observed also for the Gaussian mixture data in the lower row of
Figure 1, where the added dimensions in the lower plot of Figure 1(c) simply
follow the standard normal distribution.

5.2 Illustration of Clustering

Next, we illustrate the behavior of LSLDG clustering on 1, 000 samples gath-
ered from the mixture of three Gaussians whose means are (0, 2), (−2,−2), and
(2,−2), and covariance matrices are the identity matrix. The mixing coefficients
are 0.4, 0.3, and 0.3. Figure 2 illustrates the transition of data samples over
update iterations, showing that all points converge to the nearest modes within
47 iterations.
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Fig. 2. Transition of data points toward the modes. The blue, red, and green symbols
represent the three centers of the Gaussian mixture model.
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Fig. 3. Means and standard deviations of clustering performance over 100 runs mea-
sured by ARI as functions of (a) dimensionality of data and (b) the Gaussian width
(when dimensionality is 8). CPU time is also compared with respect to (c) dimension-
ality and (d) sample size. (e) ARI and (f) CPU time for LSLDG clustering are plotted
as functions of the number of basis functions.

We compare the performance of the proposed method with the Gaussian
mean shift [5, 6]. To investigate the effect of high dimensionality, further di-
mensions following the standard normal distribution are added to data points.
We measure the clustering performance by the adjusted Rand index (ARI) [13],
which takes the maximum value 1 when clustering is perfect.
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ARI values are plotted as a function of input dimensionality in Figure 3(a)
averaged over 100 runs. When the dimensionality of data is in the range of 2–4,
both methods work very well. However, when the dimensionality is beyond 4,
the performance of the Gaussian mean shift drops sharply. In contrast, for the
proposed method, reasonably high ARI values are still attained even when the
dimensionality is increased.

Figure 3(b) plots the ARI values for d = 8 when the Gaussian widths are
changed. This shows that the proposed LSLDG clustering performs well for a
wide range of Gaussian widths, while the ARI plot for the Gaussian mean shift
is peaky. This implies that selection of Gaussian widths is much harder for the
Gaussian mean shift than LSLDG clustering.

LSLDG clustering is also advantageous in terms of the computational costs.
Figure 3(c) shows that CPU time of LSLDG clustering is almost the same as or
shorter than that of the mean shift, when the ARI values for both methods are
high enough. The shorter CPU time of the mean shift when the dimensionality
is more than 8 comes from the fact that a smaller bandwidth is chosen; then
the number of clusters is close to the number of kernels and thus the mean shift
converges very quickly, although this choice is poor as a clustering method. With
the same sample size, LSLDG clustering is much faster than the mean shift, as
plotted in Figure 3(d). The speedup was brought by reducing the kernel cen-
ters, which was shown to significantly improve the computational costs without
worsening the clustering performance, as depicted in Figures 3(e) and (f).

5.3 Image Discontinuity Preserving Smoothing and Image
Segmentation

The mean shift has been successively applied to image discontinuity preserving
smoothing and segmentation tasks [8, 24, 26]. Here, we investigate the perfor-
mance of LSLDG clustering in those tasks.

As image data, we use the Berkeley segmentation dataset (BSD500) [1].1

From one image, the information of color (three dimensions) and spatial positions
(two dimensions) are extracted per pixel. Thus, the dimensionality of data is five,
and the total number of samples is the same as the total number of pixels. As
often assumed in the mean shift [8], for image data, we use the following mother
basis function:

ϕi(x) = exp

(
−∥x

c − cci∥2

2σ2
c

)
exp

(
−∥x

s − csi∥2

2σ2
s

)
, (7)

where xc and xs denote the elements for colors and spatial positions in a data
vector x, respectively. cci and c

s
i are the Gaussian centers. For the two Gaussian

widths σc and σs, cross-validation is performed as in Section 2.3. In this exper-
iment, we use a reduced image (11 by 16 or 16 by 11 pixels) as the Gaussian

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

resources.html
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Fig. 4. Examples of images after LSLDG clustering. The left-hand figure in each pair
is the input image, and the right-hand one is the image after LSLDG clustering.

Table 1.Mean ARI values for 200 images. The numbers in the parentheses are standard
deviations. The difference between the methods is statistically significant at level 1%
by the t-test.

Mean Shift LSLDGC

0.10(0.06) 0.13(0.06)

centers in (7). For the Gaussian mean shift, (7) is employed as a Gaussian kernel,
and the two Gaussian widths are cross-validated based on the likelihood.

Six examples of color images after LSLDG clustering are shown in Figure 4.
In the results, some of the segments, such as grass, are cleanly smoothed out,
while the edges outlining the objects are preserved. These properties are similar
to the results for the mean shift [8].

Next, to clarify the difference from the mean shift, we compare the perfor-
mance measured by ARI. In this experiment, the input images are reduced to
81 by 121 (or 121 by 81) pixels. Since this benchmark dataset contains several
ground truths per image, we simply computed the mean ARI value to all the
ground truths.

The ARI values are summarized in Table 1, showing that LSLDG clustering
outperforms the original mean shift on image segmentation.

5.4 Performance Comparison to Existing Clustering Methods

Finally, we compare LSLDG clustering to existing clustering methods using ac-
celerometric sensor and speech data.
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Table 2. Mean ARI for various methods over 100 runs. The standard deviations are
indicated in the parentheses. The best method in terms of the average ARI and methods
judged to be comparable to the best one by the t-test at the significance level 1% are
described in boldface.

Accelerometry (d = 5, n = 300, and c = 3)
KM SC Mean Shift LSLDGC

0.50(0.03) 0.20(0.26) 0.51(0.05) 0.61(0.13)

Speech (d = 50, n = 400, and c = 2)
KM SC Mean Shift LSLDGC

0.00(0.00) 0.00(0.00) 0.00(0.00) 0.13(0.02)

For comparison, we employ K-means (KM) [18], spectral clustering (SC) [20,
19] with the Gaussian similarity, and Gaussian mean shift. Since the user has
to set the number of clusters in advance for KM and SC, we set it at the true
number of clusters in each dataset. For the Gaussian mean shift, the Gaussian
width is chosen by likelihood cross-validation. For LSLDG, in this experiment,
we modify the linear-in-parameter model as

gj(x) =
n∑

i=1

θiψi,j(x) = θ
⊤ψj(x).

The main difference from the model introduced in Section 2.2 is that the coef-
ficients θi do not depend on j, namely, the dimensionality of data. This mod-
ification considerably decreases the computational costs to higher dimensional
data.

In this experiment, we used the following two datasets, where d denotes the
dimensionality of data, n denotes the number of samples, and c denotes the
number of true clusters:

1. Accelerometry (d = 5, n = 300, and c = 3). The ALKAN dataset2, which
contains 3-axis (i.e., x-, y-, and z-axes) accelerometric data.

2. Speech (d = 50, n = 400, and c = 2). An in-house speech dataset, which
contains short utterance samples recorded from 2 male subjects speaking in
French with sampling rate 44.1kHz.

The details of the two datasets can be seen in [22]. For each dataset, as prepro-
cessing, the variance was normalized after centering in the element-wise manner.

The experimental results are described in Table 2. For the accelerometry
dataset, LSLDG clustering shows the best performance among all the methods
in the table. In addition to the superior performance, another advantage is that
LSLDG clustering does not include any parameters which have to be manually
tuned. On the other hand, KM and SC require the users to fix the number of

2 http://alkan.mns.kyutech.ac.jp/web/data.html
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clusters beforehand, which largely influences the clustering performance. Thus,
LSLDG clustering would be easier to use in practice. For the speech dataset,
LSLDG outperforms the existing clustering methods again (Table 2). Since the
dimensionality of the dataset, d = 50, is much higher than the accelerometry
dataset (d = 5), LSLDG seems to perform well on high-dimensional data, while
the mean shift does not work well on high-dimensional data, as already indicated
in Section 5.2.

6 Conclusions

In this paper, we developed a method to directly estimate the log-density gra-
dient, and constructed a clustering algorithm on it. The proposed log-density
gradient estimator can be regarded as a non-parametric extension of score match-
ing [14, 21], and the proposed clustering algorithm can be regarded as an exten-
sion of the mean shift algorithm [6, 8, 11]. The key advantage compared to the
original mean shift is that the proposed clustering method works well on high-
dimensional data for which the mean shift works poorly. Furthermore, we showed
experimentally that the proposed method outperforms existing clustering meth-
ods.
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