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Abstract

The statistical dependencies which independent component analysis (ICA) cannot re-

move often provide rich information beyond the linear independent components. It

would thus be very useful to estimate the dependency structure from data. While such

models have been proposed, they usually concentrated on higher-order correlations such

as energy (square) correlations. Yet, linear correlations are a most fundamental and in-

formative form of dependency in many real data sets. Linear correlations are usually

completely removed by ICA and related methods, so they can only be analyzed by de-

veloping new methods which explicitly allow for linearly correlated components. In

this paper, we propose a probabilistic model of linear non-Gaussian components which

are allowed to have both linear and energy correlations. The precision matrix of the

linear components is assumed to be randomly generated by a higher-order process and

explicitly parametrized by a parameter matrix. The estimation of the parameter matrix

is shown to be particularly simple because using score matching (Hyvärinen, 2005),

the objective function is a quadratic form. Using simulations with artificial data, we

demonstrate that the proposed method improves identifiability of non-Gaussian compo-

nents by simultaneously learning their correlation structure. Applications on simulated

complex cells with natural image input, as well as spectrograms of natural audio data

show that the method finds new kinds of dependencies between the components.
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1 Introduction

Estimating latent non-Gaussian components is important in modern statistical data anal-

ysis and machine learning. A well-known method for that purpose is independent

component analysis (ICA) (Comon, 1994; Hyvärinen & Oja, 2000), whose goal is to

identify non-Gaussian components as statistically independent as possible. ICA has

been applied in a wide range of fields such as brain imaging analysis (Vigário, Särelä,

Jousmäki, Hämäläinen, & Oja, 2000), image processing (Hyvärinen, Hurri, & Hoyer,

2009), pattern recognition (Bartlett, Movellan, & Sejnowski, 2002), or causal analy-

sis (Shimizu, Hoyer, Hyvärinen, & Kerminen, 2006).

The components estimated by ICA, however, are often not independent at all. For

natural images, for instance, the estimated components may have variance dependen-

cies, that is, the squares of the components may be correlated, and the same holds also

for the wavelet coefficients (Hyvärinen & Hoyer, 2000; Karklin & Lewicki, 2005; Si-

moncelli, 1999). Inspired by this fact, extensions of ICA have been developed which

take dependencies between the components into account: Independent subspace anal-

ysis (ISA), which combines the techniques of multidimensional ICA (Cardoso, 1998;

Theis, 2005) and the principle of invariant-feature subspaces (Kohonen, 1995, 1996),

divides the components into pre-defined groups where the components in each group

have variance dependencies (Hyvärinen & Hoyer, 2000). When applied to natural im-

ages, ISA produces a phase invariant pooling of the non-Gaussian components. Meth-

ods for learning topographic representation assume that nearby components have sta-

tistical dependencies, while far-away components are as statistically independent as

possible (Hyvärinen, Hoyer, & Inki, 2001; Mairal, Jenatton, Obozinski, & Bach, 2011;
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Sasaki, Gutmann, Shouno, & Hyvärinen, 2013). The dependencies are used to order the

components and to arrange them on a grid, which provides a convenient visualization

of properties of the data. Thus, the statistical dependencies which ICA cannot remove

often contain rich information. However, a limitation of the work cited above is that

it assumes pre-fixed dependency structures, which can be problematic because speci-

fying a wrong dependency structure can hamper the identifiability of the non-Gaussian

components (Sasaki et al., 2013).

This limitation can be removed by estimating dependency structures themselves

from data. Two-layer models are suitable for this purpose, if they further incorporate

some higher-order process for non-Gaussian components: Karklin and Lewicki (2005)

proposed a method to estimate a two-layer model whose first layer consists of ICA-

like components and whose second layer represents density components. Osindero,

Welling, and Hinton (2006) proposed a two-layer topographic model with non-Gaussian

components in the first layer and weighted connections among them in the second layer.

A related two-layer model was proposed by Köster and Hyvärinen (2010). However,

most of the models focus on higher-order dependencies only, and ignore linear corre-

lations, usually even assuming that they are zero. But linear correlations between non-

Gaussian components can be observed in real data for a couple of models (Coen-Cagli,

Dayan, & Schwartz, 2012; Gómez-Herrero, Atienza, Egiazarian, & Cantero, 2008). It

is thus probable that the underlying components which are forced to be linearly uncor-

related in the estimation would actually be correlated. For instance, Figure 1 illustrates

that the components estimated by ICA are linearly uncorrelated even when the under-

lying source components are correlated. Therefore, it would be meaningless to analyze

4



linear correlations in components estimated by ordinary ICA methods; it is necessary

to incorporate the linear correlations in the very definition of the model. Along these

lines, the estimation of topographic representations has been recently improved by tak-

ing into account both linear and variance correlations (Sasaki et al., 2013). Linear and

higher-order dependencies between the components have also been exploited in order to

find correspondences between features in multiple data sets (Campi, Parkkonen, Hari,

& Hyvärinen, 2013; Gutmann & Hyvärinen, 2011; Gutmann, Laparra, Hyvärinen, &

Malo, 2014).

In this paper, we propose a novel method to estimate latent non-Gaussian com-

ponents and their dependency structure simultaneously. The dependency structure in-

cludes both linear and higher-order correlations, and is parametrized by a single ma-

trix. The off-diagonal elements of this dependency matrix represent the conditional

dependencies much like the precision matrix does for Gaussian Markov random fields.

More generally, the dependency matrix defines a distance matrix which can be used

for visualization via an undirected graph, multidimensional scaling, or some other suit-

able technique. The proposed method can be interpreted as a generalization of ICA

and correlated topographic analysis (CTA) (Sasaki et al., 2013) where the dependency

structures are assumed to be known. To develop the method, we begin with a new gener-

ative model for sources, which generalizes previous models of Hyvärinen et al. (2001);

Karklin and Lewicki (2005); Köster and Hyvärinen (2010); Osindero et al. (2006) by

capturing linear correlations between the components. The previous models generate

non-Gaussian components without linear, but with higher-order correlations (Hyvärinen

et al., 2009, Section 9.3). Divisive normalization models (Ballé, Laparra, & Simoncelli,
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Figure 1: The logarithms of the non-parametric estimates of the two-dimensional probability

density functions (a) for artificially generated source components, and (b,c) for estimated source

components by ICA (maximum likelihood estimation without the decorrelation constraint as

in (29)) and the proposed method, respectively. The first row is for independent non-Gaussian

components, while the second one is for linearly correlated ones. The correlation coefficients in

the second row are (a) 0.499, (b) 0.01 and (c) 0.472, respectively.

2015; Heeger, 1992; Schwartz & Simoncelli, 2001) are also closely related, and focus

on higher-order correlations.

Estimating two-layer models or Markov random fields for non-Gaussian compo-

nents is often difficult because sophisticated parametric models generally have an in-

tractable partition function so that the standard maximum likelihood estimation cannot

be applied. To cope with this problem, several estimation methods have been proposed,
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such as contrastive divergence (Hinton, 2002), score matching (Hyvärinen, 2005), or

noise contrastive estimation (Gutmann & Hyvärinen, 2012) and its extensions (Gut-

mann & Hirayama, 2011; Pihlaja, Gutmann, & Hyvärinen, 2010) (see Gutmann and

Hyvärinen (2013a) for an introductory paper). Score matching has a particularly useful

property for the proposed model: The objective function for the estimation of the de-

pendency parameters takes a simple quadratic form, and can be optimized by standard

quadratic programming. Due to this computational simplification, here we use score

matching, and empirically show that our method estimates the dependency structure

and improves identifiability of the non-Gaussian components.

The paper is organized as follows: In Section 2, we begin with a novel probabilistic

generative model for conditional precision matrices. Based on the generative model, we

derive an approximation of the marginal density for non-Gaussian components where

the dependency structure is explicitly parametrized like a precision matrix. Section 3

deals with estimation of the model, presenting a powerful algorithm for identifying the

non-Gaussian components and their dependency structure. In Section 4, we perform

numerical experiments and compare the proposed method with existing methods on

artificial data. Section 5 demonstrates the applicability of the method to real data. Con-

nections to past work and extensions of the proposed method are discussed in Section 6.

Section 7 concludes this paper. A preliminary version of this paper was presented at

AISTATS 2014 (Sasaki, Gutmann, Shouno, & Hyvärinen, 2014).
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2 Generative Model with Dependent Non-Gaussian

Components

Here, we introduce a novel generative model with dependent non-Gaussian compo-

nents. The probability density function (pdf) of the components and the data is shown

to be only implicitly defined via an intractable integral. We derive an approximation of

the pdf where the dependency structure of the components is explicitly parametrized,

and demonstrate the validity of the approximation using both analytical arguments and

simulations.

2.1 The Generative Model

As in previous work related to ICA (Hyvärinen & Oja, 2000), we assume a linear mixing

model for the data,

x = s1a1 + s2a2 + · · ·+ sdad = As, (1)

where x = (x1, x2, . . . , xd)
> denotes the d-dimensional data vector, A =

(a1,a2, . . . ,ad) is the d by d mixing matrix formed by the basis vectors ai, and

s = (s1, s2, . . . , sd)
> is the d-dimensional vector consisting of the latent non-Gaussian

components (the sources). The non-Gaussianity assumption about s is fundamental for

the identification of the mixing model (Comon, 1994).

We next construct a model for the components si which allows them to be statis-

tically dependent, in contrast to ICA. We assume that s is generated from a Gaussian

distribution with precision matrix Λ whose elements λij of Λ are random variables
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themselves, generated before s in a higher level of hierarchy as

λij =


−uij, i 6= j,∑d
k=1 uik, i = j.

(2)

The uij are independent non-negative random variables, and because precision matrices

are symmetric, we set uij = uji. To ensure invertability, we also require that uii >

0. Nonzero uij produce positive correlations between si and sj (given the remaining

variables), and larger values of uij result in more strongly correlated variables. The

motivation for the definition of the diagonal elements λii is that it guarantees realizations

of Λ which are invertible and positive definite (Λ is symmetric and strictly diagonally

dominant, from which the stated properties follow (see Theorem 6.1.10 in Horn and

Johnson (1985) and Appendix E)). Readers familiar with graph theory will recognize

that Λ equals the Laplacian matrix of a weighted graph defined by the matrix U with

elements uij (Bollobás, 1998).

Another property of the model is that the components si are super-Gaussian:

Hyvärinen et al. (2001) showed that the marginal pdfs of the Gaussian variables with

random variances have heavier tails than a Gaussian pdf. Furthermore, since the condi-

tional variances are dependent on each other in model (2), higher-order correlations are

likely to exist (Hyvärinen et al., 2001; Sasaki et al., 2013).

We thus assume that the conditional pdf of s given Λ equals p(s|Λ),

p(s|Λ) =
|Λ|1/2

(2π)d/2
exp

(
−1

2
s>Λs

)
(3)

=
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
λiis

2
i +

∑
j 6=i

λijsisj

})
, (4)
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which we can write in terms of the uij as p(s|U),

p(s|U) =
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
j>i

(si − sj)2 uij

})
, (5)

as proved in Appendix A. While not explicitly visible from the notation, the determinant

|Λ| is a function of the uij .

The specification of the distribution of the uij completes the model, but this is a

complex issue which we postpone to the next subsection. Denoting the pdf of the uij

generally by pu, the pdf of the sources equals ps(s),

ps(s) =

∫ ∞
0

p(s|U)pu(U)dU. (6)

and the pdf of x follows from the standard formula for linear transformations of random

variables,

px(x) = ps(Wx)|W|, (7)

with W = A−1. However, since the determinant |Λ| in p(s|U) depends on U, solv-

ing the multi-dimensional integral in (6) is practically impossible for any choice of

pu. While the integral can be estimated using Monte Carlo methods, it could be time-

consuming. Therefore, we consider next an analytical approximation of the determinant

which allows us to find an approximation of ps that holds qualitatively for any pu. Once

we have an approximation, p̃s say, we can use (7) to obtain a tractable approximation

p̃x of the pdf of x,

p̃x(x) = p̃s(Wx)|W|. (8)
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2.2 Approximating the Density of the Dependent Non-Gaussian

Components

In order to derive an approximation p̃s of ps, we approximate the determinant of Λ via

a product over the uii,

|Λ| ≈
d∏
i=1

uii. (9)

This is the only approximation which we need to obtain the tractable p̃s below. Another

meaning of this approximation is to give a lower bound of p(s|U), and consequently

p̃s is a lower-bound of ps, which is proved by using the Ostrowski’s inequality in Ap-

pendix B. In other words, p̃s is an unnormalized model which is defined up to a multi-

plicative factor not depending on s. This is not an insurmountable problem but needs

to be taken into account when performing the estimation (see, for example, Gutmann

& Hyvärinen, 2013a).

Inserting the approximation (9) and the independence assumption of the uij into (6)

yields the following approximation of ps(s):

ps(s) ≈ p̃s(s) ∝
∫ ∞
0

[
d∏
i=1

√
uii

]
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
j>i

(si − sj)2 uij

})
pu(U)dU

(10)

∝
∫ ∞
0

[
d∏
i=1

√
uii

][
d∏
i=1

exp

(
−1

2
s2iuii

)∏
j>i

exp

(
−1

2
(si − sj)2uij

)]
×[

d∏
i=1

∏
j>i

pij(uij)

]
dU, (11)

where the product over the pij in the last line is the pdf pu of the uij due to their inde-

pendence. The expression for p̃s can be simplified by grouping together terms featuring
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uii and uij only,

p̃s(s) ∝
d∏
i=1

[∫ ∞
0

√
uii exp

(
−1

2
s2iuii

)
pii(uii)duii

]
×

∏
j>i

[∫ ∞
0

exp

(
−1

2
(si − sj)2 uij

)
pij(uij)duij

]
(12)

∝
d∏
i=1

gii(s
2
i )
∏
j>i

gij((si − sj)2), (13)

where we have introduced the non-negative functions gii(v) and gij(v), defined for v ≥

0,

gii(v) ∝
∫ ∞
0

√
uii exp

(
−v
2
uii

)
pii(uii)duii, (14)

gij(v) ∝
∫ ∞
0

exp
(
−v
2
uij

)
pij(uij)duij for i 6= j. (15)

The proportionality sign is used because p̃s is only defined up to the partition function.

The approximation of the determinant thus allowed us to transform the multidimen-

sional integral in (6) into a product of functions which are defined via one-dimensional

integrals. The one-dimensional integrals can be easily solved numerically for arbitrary

pij , or also analytically for particular choices of them. We also note that the gij are

related to the Laplace transform of the pij .

Different pdfs pij yield different functions gij . But, Appendix C shows that unless

gij(v) is a constant, the different log gij(v) are monotonically decreasing convex func-

tions for any choice of pij . We thus focus on the following particular class of functions

log gij(v) = −mij

√
v + const. (16)

Themij are free parameters which will be estimated from the data. They are symmetric,

mij = mji. Further, we require thatmii > 0 so that p̃s depends on all si. Formij , i 6= j,
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we only require non-negativity: If mij = 0, then gij((si−sj)2) = const which happens

when the variable uij is deterministically zero.

The particular choice (16) is motivated by its simplicity, but we show in Appendix D

that it corresponds to choosing an inverse-Gamma distribution for the uij ,

pij(uij) =


m2

ii

2
u−2ii exp

(
−m2

ii

2uii

)
, i = j,

mij√
2π
u
−3/2
ij exp

(
−m2

ij

2uij

)
, i 6= j.

(17)

The parameters mij determine the mode of the pij (i.e. the point at which pij is maxi-

mum): The mode is m2
ii/2 for i = j and 2m2

ij/3 otherwise.

Denoting by M the matrix formed by the mij , and its upper-triangular part by m,

m = (m11, . . .m1d,m22, . . .m2d,m33, . . . ,m3d, . . . ,mdd), we obtain the approxima-

tion p̃s(s) = p̃s(s;m),

p̃s(s;m) ∝
d∏
i=1

exp

(
−mii|si| −

∑
j>i

mij|si − sj|

)
, (18)

which we will use in the following sections. The terms |si| in (18) are related to mod-

elling the si as super-Gaussian, and the terms |si − sj| capture statistical dependencies

between the components. The dependencies can be read out from the dependency ma-

trix M: If mij = 0 for some j 6= i, si is independent from the sj conditioned on the

other variables. Furthermore, larger mij imply stronger conditional (positive) depen-

dencies between si and sj .

The model (18) generalizes pdfs used in previous work in the following ways:

1. p̃ approaches the Laplacian factorizable pdf when mij → 0 for all j 6= i. Lapla-

cian factorizable pdfs are often assumed for super-Gaussian components in ICA.

2. p̃ approaches the topographic pdf in CTA (Sasaki et al., 2013) when mii → 1,
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mi,i+1 → 1 for all i and mij → 0 otherwise. The topographic pdf was derived

using a different generative model and resorting to two quite heuristic approx-

imations. This is contrast to this paper where a single relatively well-justified

approximation was used. The new derivation is not only more elegant, but it

allows for further extensions of the model as well, which is done in Appendix E.

3. p̃ was heuristically proposed in our preliminary conference paper (Sasaki et al.,

2014) as a simple extension of CTA. In this paper, on the other hand, we derived

p̃ from a novel generative model for random precision matrices.

2.3 Numerical Validation of the Approximation

Here, we investigate the validity of the approximative pdf p̃s(s;m) in (18) using nu-

merical simulations.

We generated a large number of samples for dependent non-Gaussian components

according to the generative model in Section 2.1, fitted a nonparametric density to the

sample, and compared it with our approximation in (18). The dimension of s was d = 2

and the size of the sample was T = 106. The uij were drawn from the inverse-Gamma

distribution in (17) with m11 = m22 = 1. We performed the comparison for multiple

m12 between 0 and 1. Using the generated sample, the density ps in (6) was estimated

as a normalized histogram. The approximative pdf p̃s(s,m) was normalized using

numerical integration and evaluated with the same mij used to generate the sample.
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Figure 2: Numerical validation of the approximation in (18). (a) Contour plots of a simple non-

parametric estimate of the density ps. (b) Contour plot of the approximation p̃s. (c-e) Goodness

of the approximation as a function of m12. “Approx.” is the approximation; “Gauss” and

“Laplace” are standard models (multivariate Gaussian density, and Laplace factorizable density,

respectively). Note that for (c), larger is better, while for (d) and (e), smaller is better.

We evaluated the goodness of the approximation using three different measures,

ang(ps, p̃s) =
∑N

l=1

∑N
k=1 ps(l, k)p̃s(l, k)√∑N

l=1

∑N
k=1 ps(l, k)

2
∑N

l=1

∑N
k=1 p̃s(l, k)

2

, (19)

KL(ps, p̃s) =
N∑
l=1

N∑
k=1

log
ps(l, k)

p̃s(l, k)
ps(l, k), (20)

SQ(ps, p̃s) =
N∑
l=1

N∑
k=1

{ps(l, k)− p̃s(l, k)}2 ps(l, k), (21)
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where ps(l, k) and p̃s(l, k) denote the values of the two-dimensional normalized his-

togram and the normalized p̃s(s;m) in bin (l, k), respectively. Equation (19) is the

cosine of the angle between ps and p̃s, and the larger the value, the better the approxima-

tion. Equations (20) and (21) are the KL divergence and the expected squared distance,

respectively. For comparison, we additionally computed these distance measures for a

Laplace factorizable pdf with the same mean and marginal variance of the generated

sources s, and a Gaussian pdf with the same mean and covariance matrix.

The logarithms of ps and p̃s for m12 = 0.95 are shown in Figure 2(a) and (b),

respectively. The two pdfs seem to have similar properties in terms of the heavy-tailed

profiles and linear correlations. Figures 2(c,d,e) show that p̃s approximates ps better

than the Laplace and Gaussian distributions for all m12. This is due to the fact that

our approximation captures both the heavy-tails of ps and its dependency structure.

Thus, we conclude that our approximation p̃s captures, at least qualitatively, the basic

characteristics of the true distribution of the dependent non-Gaussian components.

3 Estimation of the Model

In this section, we first show how to estimate the linear mixing model (1) and the de-

pendency matrix M formed by m using score matching, and then discuss important

implementation details.
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3.1 Using Score Matching for the Estimation

Approximating ps in (7) with p̃s from (18) yields an approximative pdf for the data as

px(x) ≈ p̃x(x;W,m) ∝
d∏
i=1

exp

(
−mii|w>i x| −

∑
j>i

mij|w>i x−w>j x|

)
|W|,

(22)

where wi denotes the i-th row of W. Both W and m are unknown parameters which

we wish to estimate from a set of T observations {x1, . . . ,xT} of x. A conventional

approach for the estimation would consist in maximizing the likelihood. However, max-

imum likelihood estimation cannot be done here because p̃x(x;W,m) is an unnormal-

ized model, only defined up to a proportionality factor (partition function) which de-

pends on m. To cope with such estimation problems, several methods have been pro-

posed (Gutmann & Hyvärinen, 2012; Hinton, 2002; Hyvärinen, 2005) (see Gutmann

and Hyvärinen (2013a) for a review paper). One of the methods is score matching

(Hyvärinen, 2005) whose objective function for models from the exponential family is

a quadratic form (Hyvärinen, 2007, Section 4). If W is fixed, p̃x in (22) belongs to the

exponential family, so that estimation of m given an estimate of W would be straight-

forward with score matching. This motivated us to estimate the model in (22) by score

matching, and to optimize its objective function by alternating between W and m.

We next derive the score matching objective function J(W,m) for the joint esti-

mation of W and m, and then show how it is simplified when W is considered fixed.

By definition of score matching (Hyvärinen, 2005),

J(W,m) =
1

T

T∑
t=1

d∑
k=1

1

2
ψk(xt;W,m)2 + ∂kψk(xt;W,m), (23)

where ψk and ∂kψk are the first- and second-order derivatives of log p̃x with respect to
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the k-th coordinate of x,

ψk(x;W,m) =
∂ log p̃x(x;W,m)

∂xk
, ∂kψk(x;W,m) =

∂2 log p̃(x;W,m)

∂x2k
. (24)

For our model in (22), we have

ψk(x;W,m) = −
d∑
i=1

miiG
′(w>i x)wik −

∑
j>i

mijG
′(w>i x−w>j x)(wik − wjk),

(25)

∂kψk(x;W,m) = −
d∑
i=1

miiG
′′(w>i x)w

2
ik −

∑
j>i

mijG
′′(w>i x−w>j x)(wik − wjk)2,

(26)

where the absolute value in (18) is approximated by |u| ≈ G(u) = log cosh(u) for

numerical stability, G′(u) = dG(u)/du = tanh(u) and G′′(u) = sech2(u).

Inspection of (25) and (26) shows that ψk and ∂ψk are linear functions of themii and

mij . If we consider W fixed, and let gwk (x) be the column vector formed by the terms in

(25) which are multiplied by the elements of m, and let hwk (x) be the analogous vector

for (26), we have ψk(x;W,m) = m>gwk (x) and ∂kψk(x;W,m) = m>hwk (x). The

superscript “w” is used as a reminder that the vectors gwk (x) and hwk (x) depend on W.

For fixed W, we can thus write J(W,m) in (23) as a quadratic form J(m|W),

J(m|W) =
1

2
m>

(
1

T

T∑
t=1

d∑
k=1

gwk (xt)g
w
k (xt)

>

)
m+m>

(
1

T

T∑
t=1

d∑
k=1

hwk (xt)

)
.

(27)

For fixed W, an estimate of m is obtained by minimizing J(m|W) under the constraint

that the mii are positive and the other mij are nonnegative.

However, for estimation of W, fixing m does not lead to an objective which takes

a simpler form than J(W,m) in (23). Therefore, we optimize J(W,m) by a simple

gradient descent whose details are given below.
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3.2 Implementation Details

We estimate the parameters W and m of our statistical model (22) for dependent non-

Gaussian components by alternately minimizing J(W,m) in (23) with respect to W

and m. We next discuss some important details in this optimization scheme.

In our discussion of p̃s in (18), we noted that larger values of mij , j > i, indicate

stronger (conditional) correlation between components si and sj . In preliminary simu-

lations, we observed that, sometimes, the estimated mij would take much larger values

than the estimated mii, leading to estimated sources ŝi and ŝj , and hence estimated fea-

tures ŵi and ŵj , which were almost the same. In order to avoid this kind of degeneracy,

we imposed the additional constraint that a mii had to be larger than the off-diagonal

mij summed together. Having this additional constraint, we found that the strict posi-

tivity constraint on themii could be relaxed to non-negativity. In summary, we imposed

the following constraints on m:

(∀(i, j) : i ≤ j) 0 ≤ mij, (∀i)
∑
j 6=i

mij ≤ mii. (28)

The constraints are linear, so that constrained minimization of J(m|W) can be done

by standard methods from quadratic programming.

The mixing model (1) has a scale indeterminancy because dividing a feature by

some number while multiplying the corresponding source by the same amount does not

change the value of x. While this scale indeterminancy is a well-known phenomenon

in ICA, the situation is here more complicated because we have terms of the form

mii|w>i x| and mij|w>i x − w>j x| in the model-pdf instead of the more simple |w>i x|

terms found in ICA. While in ICA, the scale indeterminancy is not a problem for max-
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imum likelihood estimation, we have found that for our model, it was necessary to

explicitly resolve the indeterminancy by imposing a unit norm constraint on the wi (for

whitened data).

For the optimization of J(W,m), we have to choose some initial values for W and

m. We initialized W using a maximum-likelihood-based ICA algorithm, additionally

imposing the norm constraint on the wi. In more detail, we initialized W as Ŵ,

Ŵ = argmin
1≤i≤d,‖wi‖=1

J0(W), J0(W) =
1

T

T∑
t=1

d∑
i=1

G(w>i xt)− log | detW|. (29)

Given the initial value Ŵ, we obtained an initial value for m by minimizing J(m|Ŵ)

in (27) under the constraints in (28).

While J(m|W) can be minimized by quadratic programming, minimization of

J0(W) and J(W,m) for fixed m has to be done by less powerful methods. We used a

simple gradient descent algorithm where the step-size µk at each iteration k was chosen

adaptively by trying out 2µk−1 and 1/2µk−1 in addition to µk−1, and selecting the one

which yielded the smallest objective.

Algorithm 1 summarizes our approach to estimate the model (22), where it is as-

sumed that the data have already been preprocessed by whitening and, optionally, di-

mension reduction by principal component analysis (PCA). In the proposed method,

good initialization is important because the objective function has local optima, which

can produce spurious correlations in the estimated s. Therefore, we first perform ICA

to give reasonable initialization both for M and W. One weakness of the proposed

method is that optimization for high-dimensional and large data can be slow compared

with ICA because we alternately repeat Step 1 and 2. To alleviate this problem, in Sec-

tion 5, we perform dimensionality reduction by PCA, and estimate W and M based on
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a randomly chosen subset of data samples at every repeat of Step 1 and 2.

4 Simulations on Artificial Data

In this section, using artificial data, we evaluate how well the proposed method identifies

the sources and their dependency structure. The proposed method is compared to ICA

and CTA.

4.1 Methods

For our evaluation, we used data generated according to the model in Section 2.1. We

considered both data with independent components and data with components which

had statistical dependencies within certain blocks. The interest of using independent

components (sources) in the evaluation is to check that the model does not impose de-

pendencies among the estimates when the underlying sources are truly independent. For

the independent sources, the uii in (2) were sampled from an inverse-Gamma distribu-

tion with shape parameter kii = 2 and scale parameter (m′ii)
2 = 1. The other elements

uij, i 6= j, were set to zero. Thus, Λ was a diagonal matrix, with λii = uii, and

the generated sources si were statistically independent on each other. For the block-

dependent sources, λii =
∑d

k=1 uik and λij = −uij as in (2). The uii were for all i

from an inverse-Gamma distribution with shape parameter kii = 2 and scale parame-

ter (m′ii)
2 = 1. The variables u12, u13 and u23 were sampled from an inverse-Gamma

distribution with shape parameter kii = 2 and scale parameter (m′ij)
2 = 1/3, while the

remaining uij were set to zero. With this setup, the s1, s2 and s3 are statistically depen-
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Algorithm 1: Estimation of the mixing matrix A and dependency matrix M

Input: Data {x1,x2, . . . ,xT} which have been whitened.

• Initialization (ICA): Compute Ŵ as in (29). Fixing W = Ŵ, compute m̂

by minimizing J(m|W) in (27) under the constraints in (28), using a

standard solver for quadratic programs.

• Repeat Step 1 and Step 2 until some conventional convergence criterion

is met:

Step 1 Fixing m = m̂, update Ŵ by taking one gradient step to minimize

J(W,m) in (23) under the unit norm constraint on the rows wi of W.

Step 2 Fixing W = Ŵ, re-compute m̂ by minimizing J(m|W) in (27) under

the constraints in (28), using a standard solver for quadratic

programs.

Output: Mixing matrix Â = Ŵ−1, dependency matrix M̂ formed by m̂.

22



dent while the other sources are conditionally independent. This dependency structure

creates a block structure in the linear and energy correlation matrices where any pairs

of (s1, s2, s3) show relatively stronger dependencies than the other pairs (Figure 4 (c)

and (d)). The energy correlation matrix is the correlation matrix of the squared random

variables whose (i, j)-th element is given by

E{s2i s2j} − E{s2i }E{s2j}√
E{(s2i − E{s2i })2}E{(s2j − E{s2j})2}

, (30)

where E denotes the expectation and E{si} = 0. After generating the sources, each

component was standardized so that it has the zero mean and unit variance.

The observed data were generated from the mixing model (1) where the elements

in A were sampled from the standard normal distribution. The data dimension was

d = 10 and the total number of observations was T = 20, 000. The preprocessing was

whitening based on PCA. The performance matrix P = WA was used to visualize

and evaluate the results. If P is close to a permutation matrix, the sources are well-

identified.

To measure the goodness of the estimated dependency matrix, we used the scale

parameters of the inverse-Gamma distributions employed to generate the sources in this

simulation. For independent sources, first we constructed a reference matrix M′ by

setting the diagonals and off-diagonals to m′ii = 1 and zeros, respectively. To enable a

comparison to the reference matrix, we normalize M̂ by diving m̂ij by
√
m̂iim̂jj so that

the diagonals are all ones, and denote the normalized M̂ by M̂′. Finally, the goodness

was measured by

ErrorM′ = ‖M′ − M̂′‖Fro, (31)
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where ‖ · ‖Fro denotes the Frobenius norm. The reason of the error definition (31) is that

since the different shape parameter kii from the ones in the inverse-Gamma distribution

(17) was used for numerical stability, we could not know the exact M and therefore

had to focus on the relative values of the elements in M̂. For block sources, we con-

structed the reference matrix by setting the diagonals in M′ to 1, and the off-diagonals

to m′ij/
√∑d

j=1m
′
ij

∑d
i=1m

′
ji inside the block and to zeros outside the block. As a

result, M′ becomes a diagonally dominant matrix with a block structure.

For comparison, we performed ICA and CTA (Sasaki et al., 2013) on the same

data.1 The ICA method was the same as the method used to initialize W in Algorithm 1,

with the unit norm constraint on the rows wi of W. For all methods, to avoid local

optima, we performed 10 runs with different initialization of W and chose the run with

the best value of each objective function. For ICA and CTA, after estimating W, we

estimated their dependency matrices by minimizing (27) with the same constraints (28).

4.2 Results

We first report the performance on a single dataset, and then the average performance

on 100 randomly generated datasets. The results for the independent sources from

the single dataset are presented in Figure 3. For ICA and the proposed method, the

performance matrices are close to permutation matrices (Figure 3(a)), the estimated de-

pendency matrices resemble a diagonal matrix (Figure 3(b)), as they should be, and

the correlation matrices are almost diagonal (Figures 3(c) and (d)). For CTA, on the

other hand, the performance matrix includes more cross-talk, the dependency matrix is

1The MATLAB package for CTA is available at the first author’s web page.
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ICA CTA Proposed

−1 10

(a) Performance Matrices

ICA CTA Proposed

0 0.5 1 1.5 0.4 0.8 1.2 0.5 1 1.5

(b) Dependency Matrices
ICA CTA Proposed True

−1 0 1

(c) Linear Correlation Matrices
ICA CTA Proposed True

−1 0 1

(d) Energy Correlation Matrices

Figure 3: Simulation results for independent sources. From (b) to (d), the permutation inde-

terminacy of ICA and the proposed method was compensated so that the largest element in

each row of the performance matrix is on the diagonal. The true linear and energy correlation

matrices of the sources are presented in the rightmost figures of (c) and (d).
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(a) Performance Matrices

ICA CTA Proposed

0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

(b) Dependency Matrices
ICA CTA Proposed True

−1 0 1

(c) Linear Correlation Matrices
ICA CTA Proposed True

−1 0 1

(d) Energy Correlation Matrices

Figure 4: Simulation results for block-dependent sources. From (b) to (d), the permutation

indeterminacy of ICA and the proposed method was compensated so that the largest element in

each row of the performance matrix is on the diagonal.
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Figure 5: Estimation error for 100 runs, for both independent and block sources, summarized

in terms of Amari index and ErrorM′ . In the comparisons, ICA and CTA were used to estimate

W, and their dependency matrices were estimated by minimizing the objective in (27) with the

same constraints (28).

tri-diagonal, and the linear and energy correlation matrices are clearly different from

a diagonal matrix. These unsatisfactory results for CTA come from the fact that the

dependency structure of CTA is pre-fixed, and thus CTA forcibly imposes linear corre-

lations among the estimated neighboring components even though the original compo-

nents are linearly uncorrelated. This drawback has been already reported by Sasaki et

al. (2013). In contrast, the proposed method learned automatically that the sources are

independent, and solved the identifiability issue of CTA.

The results for block-dependent sources are shown in Figure 4. The proposed

method separates the sources, that is, estimates the linear components, with good ac-

curacy, while ICA has more errors. The performance matrix for CTA includes again a

lot of cross-talk (Figure 4(a)). Regarding M and the correlations matrices, we compen-

sated for the permutation indeterminacy of the sources for both ICA and the proposed

method so that the largest element in each row of the performance matrix is on the di-

agonal. Figure 4(b) shows that the proposed method yields a dependency matrix with
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a clearly visible block structure in the upper left corner, while ICA and CTA do not.

In addition, the linear and energy correlation matrices have the block structure for the

proposed method, while ICA and CTA do not produce it (Figure 4(c) and (d)). Thus,

only the proposed method was able to correctly identify the dependency structure of the

latent sources.

We further analyzed the average performance for 100 randomly generated datasets.

Figure 5(a) shows the distribution of the Amari index (AI) (Amari, Cichocki, & Yang,

1996) for the independent and block-dependent sources. AI is an established measure

to assess the performance of blind source separation algorithms, and a smaller value

means better performance. For independent sources, the proposed method has almost

the same performance as ICA, while the performance of CTA is much worse. For block-

dependent sources, the performance of the proposed method is better than ICA and

CTA. This result means that when the original sources si are linearly correlated, ICA is

not the best method in terms of identifiability of the mixing matrix, and that taking into

account the dependency structure for linear correlations improves the identifiability.

For the goodness of the estimated dependency matrix, we plot the distribution of

ErrorM′ in Figure 5(b). In this analysis, the permutation indeterminacy was compen-

sated as done in Figure 4. The plot confirms the qualitative findings in Figures 3 and 4:

the proposed method is able to capture the dependency structure of the sources better

than ICA and CTA.
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5 Application to Real Data

This section demonstrates the applicability of the proposed method on two kinds of real

data: speech data and natural image data.

Basic ICA and related methods based on energy (square) correlation work well on

raw speech and image data, due to the symmetry of the data distributions. The symmetry

implies in particular that positive and negative values of linear features are to some

extent equivalent, as implicitly assumed in computation of Fourier spectra or complex

cell outputs in models of early (mammalian) vision, which is compatible with energy

correlations.

However, on higher levels of feature extraction, such symmetry cannot be found

anymore, and energy correlations cannot be expected to be meaningful. Our goal here

is to apply our new method on such higher-level features, where linear correlations

are likely to be important. In particular, we use speech spectrograms, and outputs of

complex cells simulating computations in the visual cortex, respectively.

5.1 Speech Data

Previously, sparse coding (Olshausen & Field, 1996) and ICA-related-methods have

been applied to audio data to investigate the basic properties of cells in the primary

auditory cortex (A1) (Klein, König, & Körding, 2003; Terashima & Hosoya, 2009;

Terashima, Hosoya, Tani, Ichinohe, & Okada, 2013). More recently, topographic ICA

(TICA) (Hyvärinen et al., 2001) was employed to analyze spectrogram data, and fea-

ture maps were learned which are similar to the tonotopic maps in A1 (Terashima &

Okada, 2012). However, in TICA, the dependency structure is influenced by higher-
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Figure 6: Results for speech (spectrogram) data.
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Figure 7: Speech data: Visualization of the estimated dependency structure between features

(basis vectors) by MDS. In the figure, features with stronger mij should be closer to each other

in this visualization. The positions of some too close or too far-away features were magnified in

order to show all features in a reasonable scale.
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order correlations only and it is fixed to nearby components beforehand. Furthermore,

using energy correlations for spectrograms may not be well justified. Here, we lift these

restrictions and learn the dependency structure from the data by taking both linear and

higher-order correlations between the latent sources into account.

Following Terashima and Okada (2012), we used human narratives data (Interna-

tional Phonetic Association, 1999). The data were down-sampled to 8 kHz, and the

spectrograms were computed by using the NSL toolbox.2 After re-sizing the vertical

(spectral) size of the spectrograms from 128 to 20, short spectrograms were randomly

extracted with the horizontal (temporal) size equal to 20. The vectorized spectrogram

patches were our T = 100, 000 input data points {x1,x2, . . . ,xT}.

As preprocessing, we removed the DC component of each xt, and then rescaled

each xt to unit norm. Finally, whitening and dimensionality reduction were performed

simultaneously by PCA. We retained d = 60 dimensions. To reduce the computational

cost, in this experiment, at every repeat of Step 1 and 2 in Algorithm 1, we randomly

selected 30, 000 data points from T = 100, 000 data points to be used for estimation.

The estimated basis vectors ai will be visualized in the original domain as spec-

trograms. For the estimated dependency matrix, we apply a multidimensional scaling

(MDS) method to M̂ to visualize the dependency structure on the two-dimensional

plane. To employ MDS, we constructed a distance matrix from M̂ similarly as done

in Hurri and Hyvärinen (2003): We first normalized each element m̂ij by
√

m̂iim̂jj

to make the diagonals ones, then computed the square root of each element in the nor-

malized matrix, and finally subtracted each element from one. The purpose of MDS

2Available at http://www.isr.umd.edu/Labs/NSL/Downloads.html
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is to project the points in a high-dimensional space to the two-dimensional plane so

that the distance in the high-dimensional space is preserved as much as possible in the

two-dimensional space. Thus, applying MDS should yield a representation where the

dependent features (basis vectors) are close to each other.

The estimated basis vectors âi and dependency matrix M̂ are presented in Fig-

ure 6(a). Most of the basis vectors show vertically (spectrally) and horizontally (tempo-

rally) localized patterns with single or multiple peaks. These properties have been also

found in previous work (Terashima & Okada, 2012). But, unlike previous work, we

also estimated the dependency structure from the data. As shown in the right panel of

Figure 6(a), the off-diagonal elements of the dependency matrix are sparse: most of the

elements are zero. Figure 6(b) shows that basis vectors with similar peak frequencies

tend to have strong (conditional) dependencies. The visualization of M̂ further globally

supports this observation (Figure 7).

Compared with previous work, the properties of nearby features in Figure 7 seem

to be more consistent: Nearby features tend to have similar peak positions along with

the spectral (vertical) axis, while the peak positions on the temporal (horizontal) axis

are more random. On the other hand, Terashima and Okada (2012) found that nearby

features often show different peak positions on the spectral axis, and the estimated

features on the topographic map are locally disordered. These results may reflect that

linear correlations in sound spectrogram data should be important dependencies, and

that the proposed method captured the structure in the data better than TICA.
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5.2 Outputs of Complex Cells

We next apply our method to the outputs of simulated complex cells in the primary

visual cortex when stimulated with natural image data. Previously, ICA, non-negative

sparse coding and CTA have been applied to this kind of data, and some prominent

features such as long contours and topographic maps have been learned (Hoyer &

Hyvärinen, 2002; Hyvärinen, Gutmann, & Hoyer, 2005; Sasaki et al., 2013). However,

these methods have either assumed that the features are independent, or pre-fixed their

dependency structure. Our method removes this restriction and learns the dependency

structure from the data.

As in the previous work cited above, we computed the outputs of the simulated

complex cells x as

x′k =

(∑
x,y

W o
k (x, y)I(x, y)

)2

+

(∑
x,y

W e
k (x, y)I(x, y)

)2

,

xk = log(x′k + 1.0),

where I(x, y) is a 24 × 24 natural image patch,3 and W o
k (x, y) and W e

k (x, y) are odd-

and even-symmetric Gabor functions with the same spatial positions, orientation and

frequency. The total number of outputs was T = 100, 000. The complex cells were

arranged on a 6 by 6 spatial grid, having 4 orientations each. In total, there were 144

cells. Since the simulated complex cells in this experiment are stimulated by natural

images, we regard this data as real data. We performed the same preprocessing steps

as in Section 5.1 above; the dimensionality was here reduced to d = 60. As in the

3To compute the complex cell outputs, we used the contournet package which is available at

http://www.cs.helsinki.fi/u/phoyer/software.html.
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last section, to reduce the computational cost, we randomly selected a subset of data

points from the whole data points at every repeat of the two steps in Algorithm 1. We

visualized the basis vectors as in previous work (Hoyer & Hyvärinen, 2002; Hyvärinen

et al., 2005): Each basis vector is visualized by ellipses which have the orientation and

spatial position preferences of the underlying complex cells.

The estimated basis vectors âi and the dependency matrix M̂ are presented in Fig-

ure 8. One prominent kind of features among the basis vectors are long contours, as

also found in previous work (Hoyer & Hyvärinen, 2002; Hyvärinen et al., 2005).

Unlike in previous work, we also learned the dependencies between the features.

As with the speech data, the off-diagonal elements of the dependency matrix are sparse

(Figure 8(a), right), and similar features tend to have stronger dependencies (Fig-

ure 8(b)).

Figure 9 visualizes the dependency structure by MDS as in Section 5.1. This vi-

sualization supports the observation that the contour features tend to have stronger de-

pendencies. In particular, it is often the case that contour-features are closer to other

contour-features which are slightly shifted along their non-preferred orientation. If put

together, such two contour-features would form either a broader contour of the same ori-

entation or a slightly bent even longer contour. This property is in line with higher-level

features learned using a three-layer model of natural images (Gutmann & Hyvärinen,

2013b).

We further investigate whether the proposed method estimated linearly corre-

lated components on real data in contrast to previous energy-correlation-based meth-

ods (Karklin & Lewicki, 2005; Köster & Hyvärinen, 2010; Osindero et al., 2006). Fig-
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Figure 8: Results for the simulated complex cell data.

ure 10 shows a scatter plot for linear and energy correlation coefficients for all the pairs

of estimated components. As the sparsity of M̂ implies, most pairs have only weak

statistical dependencies. However, some pairs show both strong linear and energy cor-

relations. Thus, the proposed method did find linearly correlated components on real

data as well.
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Figure 9: Complex cell outputs: Visualization of the estimated dependency structure between

features (basis vectors) by MDS. In the graph, features with stronger mij should be closer to

each other in this visualization.
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Figure 10: A scatter plot for linear and energy correlation coefficients from the estimated

sources. Each point corresponds to one pair of estimated components (ŝi, ŝj).

6 Discussion

We discuss some connections to previous work and possible extensions of the proposed

method.

6.1 Connection to Previous Work

We proposed a novel method to simultaneously estimate non-Gaussian components and

their dependency (correlation) structure. So far, a number of methods to estimate non-

Gaussian components have been proposed: ICA assumes that the latent non-Gaussian

components are statistically independent, and ISA (Hyvärinen & Hoyer, 2000) and to-

pographic methods (Hyvärinen et al., 2001; Mairal et al., 2011; Sasaki et al., 2013)

pre-fix the dependency structure inside pre-defined groups of components, or overlap-

ping neighborhoods of components. Methods to estimate tree-dependency structures

have also been proposed (Bach & Jordan, 2003; Zoran & Weiss, 2009). In contrast to

these methods, our method does not make any assumptions on the dependency structure

to be estimated.
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Some methods based on two-layer models also estimate the dependency structures

of non-Gaussian components from data (Karklin & Lewicki, 2005; Köster & Hyvärinen,

2010; Osindero et al., 2006). Most of the methods mainly focus on high-order corre-

lations, assuming that the components are linearly uncorrelated. The method proposed

by Osindero et al. (2006) can estimate an overcomplete model as well, which necessar-

ily makes the estimated components linearly correlated; however, it is unclear in what

way such linear correlations reflect the dependency structure of the underlying sources.

Our method models both linear and higher-order correlations explicitly. As a new the-

oretical approach, in this paper, we proposed a generative model for random precision

matrices. The proposed generative model generalizes a previous generative model for

sources used in existing two-layer methods (Karklin & Lewicki, 2005; Osindero et al.,

2006): The previous model corresponds to a special case in our model where the off-

diagonal elements are deterministically zero.

Another line of related work is graphical models for latent factors (He, Qi,

Kavukcuoglu, & Park, 2012). This work assumes that both the latent factors and the

undirected graph are sparse. The main goal of that approach is to estimate a latent

lower-dimensional representation of the input data where pair-wise dependencies be-

tween latent factors are represented by an undirected graph. The main difference to our

work is that He et al. (2012) use a constant precision matrix instead of a stochastic one,

and thus that they do not really model non-Gaussian components. Instead, He et al.

(2012) emphasize sparsity in the sense that the undirected graphs to be estimated have

sparse edges. As discussed below, our method can be easily extended to include the

sparsity constraint while still keeping the objective function a simple quadratic form.
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6.2 Extensions of the Proposed Method

Next, we discuss some extensions of our model which could be considered in future

work. One extension of the proposed method would be to incorporate prior information

or an additional constraint on M. Recently, a number of methods to estimate sparse

Gaussian graphical models has been proposed (Banerjee, El Ghaoui, & d’Aspremont,

2008; Friedman, Hastie, & Tibshirani, 2008). In our method, the sparseness constraint

on mij can be easily incorporated into the objective function J(m|W) in (27) yielding

Jλ(m|W),

Jλ(m|W) = J(m|W) + λm>1, (32)

where λ is the regularization parameter, and 1 is a vector of ones. The objective func-

tion Jλ(m|W) is still a quadratic form and its minimization is not more difficult than

the minimization of J(m|W). However, this extension involves selecting the parame-

ter λ, which adds a complexity to the problem which need to be solved. In practice, we

may perform cross-validation (CV) under some criterion, but employing CV is compu-

tationally demanding especially in our alternate optimization. Therefore, selecting an

appropriate value of λ is an issue in the future.

Another extension would be to estimate additional parameters modelling linear cor-

relations. As shown in Appendix E, the model for the sources in (18) can be generalized

to

p̃s(s;m,Θ) ∝
d∏
i=1

exp

(
−θiimii|si| −

∑
j>i

mij

√
θiis2i + θjjs2j + 2θijsisj

)
,

where the θii are positive parameters and θij ∈ {−1, 0, 1} for i 6= j. The pdf in (18)

is a special case of the above pdf: it is obtained for θii = 1 and θij = −1 for i 6= j.
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Thus, by estimating all the θij , we can estimate more complex dependency structures,

generalizing our method. However, estimating θij leads a complicated optimization

problem because the objective function for score matching is no longer a quadratic

form, and the θij are discrete variables. That is why we decided to use the simpler

model in (18) and leave this interesting challenge for future work.

7 Conclusion

In this paper, we proposed a method to simultaneously estimate non-Gaussian com-

ponents and their dependency structure. The dependency structure is defined in terms

of both linear and higher-order correlations, can be represented in a convenient form,

and thus can be readily interpreted. Using score matching, the estimation of the depen-

dency structure is particularly simple because the objective function takes a quadratic

form and can be minimized using standard methods from quadratic programming.

The proposed method generalizes previous methods: Independent component and

correlated topographic analysis both assume pre-fixed dependency structures for the

non-Gaussian components, while our method flexibly estimates the dependency struc-

ture from the data themselves. Several existing methods based on two-layer models also

aim at estimating the dependency structure, but they focus on higher-order correlations,

ignoring linear correlations.

We experimentally demonstrated on artificial data that the proposed method im-

proves identifiability of latent non-Gaussian components over existing methods by

learning their dependency structure, and application to the outputs of simulated com-
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plex cells and the spectrograms of natural audio data unveiled new kinds of relationships

among the latent non-Gaussian components.
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Appendix

A Calculations for (5)

With (2), the conditional pdf (4) can be written as

p(s|U) =
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
λiis

2
i +

∑
j 6=i

λijsisj

})
, (33)

=
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2i

d∑
k=1

uik −
∑
j 6=i

sisjuij

})
, (34)

=
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
k 6=i

s2iuik −
∑
j 6=i

sisjuij

})
. (35)

Since the uij are symmetric, we have further

p(s|U) =
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
k>i

(
s2i + s2k

)
uik − 2

∑
j>i

sisjuij

})
,

(36)

=
|Λ|1/2

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
j>i

(si − sj)2 uij

})
, (37)
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which is (5).

B Approximation of the Determinant in (9)

We prove that (9) approximates the determinant with a lower bound and that the result-

ing approximation p̃s of the source density ps is an unnormalized model.

By definition in (2), Λ is a strictly diagonally dominant matrix. Ostrowski’s in-

equality (Ostrowski, 1937) thus yields

|Λ| ≥
d∏
i=1

λii − d∑
j=1
j 6=i

λij

 , (38)

and by definition of the λij in (2), we obtain

|Λ| ≥
d∏
i=1

 d∑
j=1

uij −
d∑
j=1
j 6=i

uij

 =
d∏
i=1

uii, (39)

which shows that the approximation (9) corresponds to a lower bound of the determi-

nant.

Applying the approximation of the determinant to p(s|U) in (5) gives p̃(s|U),

p̃(s|U) =

∏d
i=1

√
uii

(2π)d/2
exp

(
−1

2

d∑
i=1

{
s2iuii +

∑
j>i

(si − sj)2 uij

})
, (40)

which is a lower bound for p(s|U) due to (39),

p̃(s|U) ≤ p(s|U). (41)

Using the approximation p̃(s|U) instead of p(s|U) in (6) yields an approximation p̃s

of the pdf of the dependent non-Gaussian components which inherits the lower bound

property,

p̃s(s) =

∫ ∞
0

p̃(s|U)pu(U)dU ≤
∫ ∞
0

p(s|U)pu(U)dU = ps(s). (42)
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Since ps integrates to one, we have

∫
p̃s(s)ds ≤ 1, (43)

which means that p̃s is an unnormalized model.

C Properties of the Nonlinearities in (15)

We here investigate properties of the nonlinearities gij(v) in (15). It is shown that,

unless constant, the log gij(v) are monotonically decreasing convex functions.

For the analysis, it is helpful to introduce the functions φij(u), u ≥ 0,

φij(u) =


√
upii(u) if i = j

pij(u) otherwise,

(44)

which allow us to rewrite the gij(v) as

gij(v) =

∫ ∞
0

exp

(
−1

2
vu

)
φij(u)du, v ≥ 0, (45)

for all (i, j). The functions φij are non-negative but they are not pdfs if i = j because

they do not integrate to one. We note that gij , i 6= j, is constant if pij corresponds to a

Dirac measure concentrated at zero, that is, to a uij which is deterministically zero. In

what follows, we assume that the pij are pdfs with nonzero variance.

The derivative of log gij(v) is

∂ log gij(v)

∂v
=

∂gij(v)

∂v

gij(v)
(46)

=
−1

2

∫∞
0
u exp

(
−1

2
vu
)
φij(u)du∫∞

0
exp

(
−1

2
vu
)
φij(u)du

, (47)
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which is negative for all v > 0. Importantly, the derivative is related to the expected

value µijv of the pdf γijv(u),

γijv(u) =
exp

(
−1

2
vu
)
φij(u)∫∞

0
exp

(
−1

2
vu
)
φij(u)du

, (48)

that is,

∂ log gij(v)

∂v
= −1

2
µijv. (49)

The second derivative equals

∂2 log gij(v)

∂v2
=

∂2gij(v)

∂v2
1

gij(v)
−
(
∂gij(v)

∂v

)2
1

gij(v)2
(50)

=
∂2gij(v)

∂v2
1

gij(v)
−
(
∂ log gij(v)

∂v

)2

(51)

=
∂2gij(v)

∂v2
1

gij(v)
− 1

4
µ2
ijv, (52)

which can be written in terms of the variance of the pdf γijv: We have

∂2gij(v)

∂v2
=

1

4

∫ ∞
0

u2 exp

(
−1

2
vu

)
φij(u)du (53)

so that

∂2gij(v)

∂v2
1

gij(v)
=

1

4

∫ ∞
0

u2γijv(u)du, (54)

and

∂2 log gij(v)

∂v2
=

1

4

(∫ ∞
0

u2γijv(u)du− µ2
ijv

)
. (55)

The term in the parentheses is the variance of the pdf γijv and hence positive since the

pdf is not degenerate. In conclusion, for non-constant functions gij , we have

∂ log gij(v)

∂v
< 0, (56)

∂2 log gij(v)

∂v2
> 0, (57)

for all v > 0, which makes the log gij monotonically decreasing convex functions.
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D Inverse-Gamma Distributions and the Nonlinearities

in (16)

We here show that the functions gij in (16) are obtained from inverse-Gamma dis-

tributed uij with the pdfs in (17). Inserting the pdf pii from (17) into (15) yields gii(s2i ),

gii(s
2
i ) =

∫ ∞
0

√
uii exp

(
−1

2
s2iuii

)
pii(uii)duii (58)

=

∫ ∞
0

√
uii exp

(
−1

2
s2iuii

)
m2
ii

2
u−2ii exp

(
−m

2
ii

2uii

)
duii (59)

=
m2
ii

2

∫ ∞
0

u
−3/2
ii exp

(
−1

2

[
s2iuii +

m2
ii

uii

])
duii, (60)

and the pdf pij yields gij((si − sj)2),

gij((si − sj)2) =
∫ ∞
0

exp

(
−1

2
(si − sj)2 uij

)
pij(uij)duij (61)

=

∫ ∞
0

exp

(
−1

2
(si − sj)2 uij

)
mij√
2π
u
−3/2
ij exp

(
−
m2
ij

2uij

)
duij (62)

=
mij√
2π

∫ ∞
0

u
−3/2
ij exp

(
−1

2

[
(si − sj)2uij +

m2
ij

uij

])
duij. (63)

It can be seen that both gii and gij are defined in terms of the integral∫ ∞
0

x−3/2 exp

(
−1

2

[
β2x+

α2

x

])
dx,

where α corresponds to mii > 0 or mij > 0, and β to |si| or |si − sj|. The integral can

be solved in closed form (Sasaki et al., 2013, Equation (47)),∫ ∞
0

x−3/2 exp

(
−1

2

[
β2x+

α2

x

])
dx =

(
2π

α2

)1/2

exp(−|αβ|), (64)

so that

gii(s
2
i ) ∝ exp(−mii|si|) (65)

gij((si − sj)2) ∝ exp(−mij|si − sj|), (66)
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or, with v > 0,

log gii(v) = −mii

√
v + const, (67)

log gij(v) = −mij

√
v + const, (68)

as claimed in the main text.

E A General Generative Model for Precision Matrices

We here extend the generative model for precision matrices (2) to the more general form

Λ = Ω ◦Θ, (69)

where ◦ denotes the Hadamard product or element-wise multiplication. The matrix

Ω is symmetric and its elements are non-negative random variables, Θ is a d by d

deterministic symmetric matrix whose diagonal elements θii are positive and whose

off-diagonal elements θij , i 6= j, take values in {−1, 0, 1}. The matrix Θ determines

whether two components are positively, not at all, or negatively conditionally correlated.

The matrix Ω scales the variances and correlations randomly and is defined as

ωij =


∑d

k=1 uik, i = j,

uij, i 6= j,

(70)

where the uij = uji are symmetric non-negative random variables, with uii > 0. The

model (69) generalizes the model (2) of Λ in the main text which is recovered for θii = 1

and θij = −1.

From the discussion of (2), it follows that Ω is always a strictly diagonally dominant

matrix. We now show that Λ defined in (69) has the same property.
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Proposition 1. For Ω as in (70), if θii ≥ |θij| for all i and j, Λ is a strictly diagonally

dominant matrix.

Proof. It is sufficient to prove that for all i, λii >
∑

j 6=i |λij|. We compute

λii −
d∑
j=1
j 6=i

|λij| = θiiωii −
d∑
j=1
j 6=i

|θij|ωij,

= θii

d∑
j=1

uij −
d∑
j=1
j 6=i

|θij|uij,

= θiiuii +
d∑
j=1
j 6=i

(θii − |θij|)uij.

Since θii > 0, uii > 0, and uij ≥ 0, the proposition follows.

Since Λ is symmetric and strictly diagonally dominant, it is also invertible and positive

definite (Horn & Johnson, 1985, Theorem 6.1.10).

Following the same procedure as in Section 2.2, we can derive the following ap-

proximation of the pdf of the dependent non-Gaussian components,

p̃s(s;m,Θ) ∝
d∏
i=1

exp

(
−θiimii|si| −

∑
j>i

mij

√
θiis2i + θjjs2j + 2θijsisj

)
. (71)

For θii = 1 and θij = −1, we recover the model in (18). However, estimation of the

parameters is much more difficult because (71) no longer belongs to the exponentially

family and the θij are discrete variables.
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