
Finding a causal ordering via independent

component analysis

Shohei Shimizu a,b,1,2 Aapo Hyvärinen a Patrik O. Hoyer a

Yutaka Kano b

aHelsinki Institute for Information Technology, Basic Research Unit, Department

of Computer Science, University of Helsinki, Finland

bDivision of Mathematical Science, Osaka University, Japan

Abstract

The application of independent component analysis to discovery of a causal ordering
between observed variables is studied. Path analysis is a widely-used method for
causal analysis. It is of confirmatory nature and can provide statistical tests for
assumed causal relations based on comparison of the implied covariance matrix with
a sample covariance. However, it is based on the assumption of normality and only
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1 Introduction

An effective way to examine causality is to conduct an experiment with ran-
dom assignment (Holland, 1986; Rubin, 1974). However, there are many situa-
tions that pose some difficulties to conduct experiments: One of the difficulties
is that the direction of causality is often unknown. It is necessary to develop
useful methods for finding a good initial model of causal orders between ob-
served variables from non-experimental data.

Path analysis was originated by the biologist S. Wright in the 1920’s and has
been often applied to analyze causal relations of non-experimental data in an
empirical way. The path analysis is an extension of regression analysis where
many endogenous and exogenous variables can be analyzed simultaneously.
In the 1970’s, the path analysis was incorporated with factor analysis and
latent variables were allowed in the model. The new framework is now called
structural equation modeling (e.g., Bollen, 1989) and is a powerful tool of
causal analysis.

However, the structural equation modeling (SEM) is of confirmatory nature
and researchers have to model the true causal relationships based on back-
ground knowledge before collecting or analyzing data (e.g., Goldberger, 1972).
It is difficult to model true causal relations in many cases, especially at the be-
ginning of research. Lack of background knowledge often has the consequence
that the causal direction is unknown.

Furthermore, SEM has some problems due to its restriction to normal distri-
bution, for example: One cannot find the possible causal direction between
two variables if only those two variables are observed because the two models
with different direction are equivalent to each other.

A very simple illustration of the problem of finding the direction of causality
is given by two regression models, called Model 1 and Model 2 here:

Model 1: x1 = b12x2 + ξ1 (1)

Model 2: x2 = b21x1 + ξ2, (2)

where the explanatory variable is assumed to be uncorrelated with the dis-
turbance ξ1 or ξ2. We cannot say anything about which model is better from
the two conventional regression analyses based on the two models above in
the framework of SEM. Using the SEM terminology, the both models are
saturated on the covariance matrix of [x1, x2].

Kano and Shimizu (2003) and Shimizu and Kano (2003b) showed that use of
non-normality of observed variables makes it possible to distinguish between

2



Model 1 and Model 2. In this paper, we shall extend their method to more than
two variables and propose an algorithm to explore a causal ordering between
observed variables from non-experimental data.

2 Brief review of independent component analysis

Independent component analysis (ICA) is a multivariate analysis technique
which aims at separating or recovering linearly-mixed unobserved multidimen-
sional independent signals from the mixed observable variables (Hyvärinen,
Karhunen and Oja, 2001).

Let x be an observed m-vector. The ICA model for x is written as

x = As, (3)

where A is called a mixing matrix and s is an n-vector of unobserved variables
or independent components with zero mean and unit variance. Typically, the
number of observed variables m is assumed to equal that of latent variables
n. The main goal of ICA is to estimate the mixing matrix.

Comon (1994) provided conditions for the model to be estimable for the typical
case where m ≤ n. The conditions include that the components of s are
mutually independent and contain at most one normal component. ICA solves
the estimation problem by maximizing independence among the components
of s. The independence is very often measured by non-normality (see e.g.,
Hyvärinen and Kano, 2003). That is, the estimation is implemented by finding
the demixing matrix W such that the components of ŝ = Wx have maximal
non-normality. A classical measure of non-normality is kurtosis, defined as

kurt(u) = E(u4) − 3{E(u2)}2. (4)

The kurtosis is zero for a normal variable and non-zero for most non-normal
variables. Comon (1994) proposed an estimation algorithm to maximize the
sum of squared kurtosis of ŝ, that is,

W = arg max
W

n∑

i=1

kurt(ŝi)
2 = arg max

W

n∑

i=1

kurt(wT
i x)2, (5)

where wT
i denotes the i-th row of W . Here, the data is assumed to be sphered

(whitened) (e.g., Hyvärinen, Karhunen and Oja, 2001) and W is constrained
to be orthogonal.
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Although the idea of ICA using kurtosis is simple, it can be very sensitive to
outliers. Hyvärinen (1999) suggested a class of non-normality measures

J(u) ∝ [E(G(u)) − E(G(ν))]2, (6)

where G(·) is a nonlinear and nonquadratic function and ν follows the normal
distribution with zero mean and unit variance. More robust estimators are
obtained if G does not grow too fast. For example, one can take G(u) =
log cosh(u). He further proposed a very efficient algorithm to estimate W
maximizing (6), called FastICA (Hyvärinen, 1999; Hyvärinen and Oja, 1997).

In ICA as well as the traditional multivariate methods including factor analy-
sis, the following ambiguities hold: i) one cannot determine the sign of si. one
can multiply the independent component by −1 without affecting the model
in (3); ii) one cannot determine the order of the independent components.
A permutation matrix P and its inverse can be substituted in the model to
provide x = AP−1Ps. The element of Ps are the original si, but in another
order.

3 Finding a causal order between two variables

In this section, we shall explain how we can find a causal order between two
variables using non-normality.

3.1 Definition of a causal order

What is causality? Many philosophers and statisticians have tried to answer
the quite difficult question and proposed various frameworks to find causal
relations for a long time (Bollen, 1989; Bullock, Harlow and Mulaik, 1994;
Granger, 1969; Holland, 1986; Hume, 1740; Mill, 1843; Mulaik and James,
1995; Pearl, 2000; Rubin, 1974; Suppes, 1970).

In this article, we say that causality (a causal order) from a random variable
x1 to a random variable x2, which we denote by x1 → x2, is confirmed if an
equation:

x2 = f(x1, ξ2), (7)

holds where ξ2 is a disturbance variable which is distributed independently
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from the explanatory variable x1.
3 The ξ2 is a function of many variables

z1, z2, · · · , zq that have small and not very important influences on x2 or that
may not be noticed by researcher, as well as an error variable e2. That is,
ξ2 = g(z1, z2, · · · , zq, e2) (e.g., Bollen, 1989).

For simplicity, let us assume that f(x1, ξ2) = b21x1 + ξ2, is a simple linear
function of x1 and ξ2. Then we obtain a simple regression analysis model:

x2 = b21x1 + ξ2, (8)

where x1 and ξ2 are independent from each other. Now we can reformulate
the causal order of x1 to x2: a nonzero constant b21 exists so that (8) holds.
Note that independence between an explanatory variable x1 and a disturbance
variable ξ2, not only their uncorrelatedness, is assumed here. 4

The two concepts, independence and uncorrelatedness are very different. The
independence between s1 and s2 is equivalent to

E[h1(s1)h2(s2)] − E[h1(s1)]E[h2(s2)] = 0. (9)

for any two functions h1 and h2. Uncorrelatedness is a much weaker condition
than independence. Two random variables s1 and s2 are said to be uncorrelated
if their covariance is zero,

E(s1s2) − E(s1)E(s2) = 0. (10)

If those two variables are independent, they are uncorrelated, which follows di-
rectly from (9) taking h1(s1) = s1 and h2(s2) = s2. However, uncorrelatedness
does not imply independence (see, e.g., Hyvärinen and Oja, 2000).

A dependence between x1 and ξ2 would imply the existence of one (or more)
unobserved confounding variables between x1 and x2 (Bollen, 1989; Kano and
Shimizu, 2003). It is known that regression-based causal analysis may be com-
pletely distorted if there are unobserved confounding variables. If x1 and ξ2

3 Rigorously speaking, we need to examine if equation (7) holds for each unit in a
population U to confirm causation from x1 to x2 in U because we have to distinguish
between interpersonal change (causation) and individual difference (association)
(see, e.g., Holland, 1986, for causation and association). However, it is rarely possible
to examine it from non-experimental data since the data is usually one-time-point
data. In this article, we assume that interpersonal change can be approximated by
individual difference in our data sets, which is usually assumed in causal analysis
based on non-experimental data.
4 The condition is related to pseudo-isolation in Bollen (1989). However, he required
only uncorrelatedness, not independence.
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are independent, it implies that no unobserved confounding variable exists
(Kano and Shimizu, 2003). However, if they are merely uncorrelated, it does
not ensure anything about the existence of confounding variables. Let z be an
unobserved confounding variable, and let us assume that

x2 = b21x1 + γ23z + ξ2 (11)

x1 = γ13z + ξ1. (12)

We then have

Cov(x1, x2) = b21Var(x1) + γ23γ13Var(z). (13)

Depending on the particular values of γ23 and γ13, there could be nonzero
covariance between x1 and x2 even if b21=0. Using correlations alone, one
could make an interpretation that a causal order from x2 to x1 or its opposite
exists; on the other hand, there could be zero covariance between x1 and x2

even if b21 is large enough. Thus, independence and non-normality are key
assumptions in our settings.

3.2 Finding a causal order between two variables

Let x1j and x2j (j = 1, . . . , N) be observations on random variables x1 and x2

with zero mean. Denote x2
i = 1

N

∑N
j=1 x2

ij (i = 1, 2) and x1x2 = 1
N

∑N
j=1 x1jx2j .

We shall use similar notation in subsequent derivations without explicit defi-
nitions.

The second-order moment structure of Model 1 is obviously given as

E




x2
1

x1x2

x2
2




=




b2
12E(x2

2) + E(ξ2
1)

b12E(x2
2)

E(x2
2)




which we denote by E[m2] = σ2(τ 2),

where τ 2 = [E(x2
2), E(ξ2

1), b12]
T . The number of sample moments to be used

and the number of parameters (E(x2
2), E(ξ2

1), b12) are both three and thus, the
Models 1 and 2 are saturated and equivalent to each other as far as covariances
alone are concerned. Both models receive a perfect fit to the sample covariance
matrix.

Shimizu and Kano (2003b) assumed that [x1, x2] is non-normally distributed
and utilized higher-order moments to distinguish between Model 1 and Model

6



2. They further assumed that explanatory and disturbance variables, x2 and
ξ1, x1 and ξ2, are independently distributed.

Consider using fourth-order moments. The expectations of the fourth-order
moments can be expressed in a similar manner as

E




x4
1

x3
1x2

x2
1x

2
2

x1x3
2

x4
2




=




b4
12E(x4

2) + 6b2
12E(x2

2)E(ξ2
1) + E(ξ4

1)

b3
12E(x4

2) + 3b12E(x2
2)E(ξ2

1)

b2
12E(x4

2) + E(x2
2)E(ξ2

1)

b12E(x4
2)

E(x4
2)




which we denote by E[m4] = σ4(τ 4),

for Model 1, where τ 4 = [τ T
2 , E(x4

2), E(ξ4
1)]

T .

In Model 1, we have three second-order moments and five fourth-order mo-
ments, whereas there are five parameters. The number of parameters is smaller
than the number of moments used. Thus, if we define a measure of model fit by
a weighted distance between the observed moments and the moments implied
by the model as

T = N







m2

m4


 −




σ2(τ̂ 2)

σ4(τ̂ 4)







T

M̂







m2

m4


 −




σ2(τ̂ 2)

σ4(τ̂ 4)





 , (14)

with appropriate estimators τ̂ i and a correctly chosen weight matrix M̂ , then T
represents distance between data and the model employed and will be asymp-
totically distributed according to the chi-square distribution with df= 3 de-
grees of freedom. See Section 5 for some details. We can thus evaluate a fit of
Model 1 using the statistic T . The same argument holds for Model 2, and we
can confirm that Models 1 and 2 are not equivalent to each other in general,
that is, the independence assumption between explanatory and disturbance
variables is better fitted to one model than the other.

4 Finding a causal ordering between more than two variables based

on ICA

In this section, we propose a new method of finding causal orders that gener-
alizes our previous work, reviewed in the preceding section, to more than two
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variables.

4.1 Definition of a causal ordering

We say that observed variables xi have a causal ordering if they can be ordered
so that each variable is a function of the preceding variables plus an indepen-
dent disturbance variable ξi. Let us denote this ordering by i(1), . . . , i(n).

In other words, we say that random variables, x1, x2, · · · , xn, have a causal
ordering, xi(1) → xi(2) → · · · → xi(n), if nonzero coefficients βi(j),i(k) (j =
1, 2, · · · , n, k < j) exist so that the equations:

xi(j) =
j−1∑

k=1

βi(j),i(k)xi(k) + ξi(j) for all j = 1, · · · , n, (15)

hold where ξi(j) is a disturbance variable and is independently distributed from
xi(k) and from ξi(k) for all k < j.

4.2 Definition of data model

Our definition of causality in (15) can also be interpreted as a data model. In
the following, we actually assume that the data follows such a model so that
the causal ordering is possible to find. Thus, we assume the following data
model:

xi(j) =
j−1∑

k=1

bi(j),i(k)xi(k) + ξi(j) for all j = 1, · · · , n. (16)

We also assume that the disturbance variables ξi(j) are non-normal, and mu-
tually independent. This implies that ξi(j) is independent from xi(k) for all
k < j.

To investigate the causal structure of the xi, we would like to find the correct
ordering i(j). Thus, the problem is finding the permutation of the observed
variables that reflects the causal structure of the data. In what follows, we will
show how such an ordering can be identified.

8



4.3 Estimation of model

Let us normalize the equation (16) so that the disturbance variables ξi have
unit variance. Denoting

wi(j),i(j) =1/
√

var(ξi(j)) (17)

wi(j),i(k) =−bi(j),i(k)/
√

var(ξi(j)) for k 6= j, (18)

the equation (16) can be expressed as:

wi(j),i(j)xi(j) =
∑

k<j

−wi(j),i(k)xi(k) + ξ∗i(j), (19)

where ξ∗i(j) are the disturbance variables standardized to have unit variance.

Let us denote by x̃ the vector where the observed variables are ordered ac-
cording to i(j). In matrix form, equation (16) can be expressed as

x̃ = Bx̃ + ξ̃, (20)

where the matrix B is lower triangular. Using W , this becomes

diag(W )x̃ = −offdiag(W )x̃ + ξ̃
∗

or equivalently W x̃ = ξ̃
∗
, (21)

where W is still lower triangular, for the correct permutation of the observed
variables. This corresponds to the correct permutation of the columns of W .
From the theory of ICA, we know that this W can be estimated up to a
permutation of its rows, using standard ICA methods.

Now we can use the following theorem:

Theorem 1 If W is lower triangular and all the elements wij are nonzero for

i ≥ j, no other permutation of rows and columns is lower triangular

Proof First, note that any joint permutation of rows and columns can be
performed by first permuting the rows and then the columns. This is because
the permutations of rows or columns can be expressed by left and right multi-
plication by permutation matrices, respectively, and any product of multiple
permutations therefore reduces to a multiplication by two permutation matri-
ces, one from the right and one from the left, and either of the multiplications
can be done first. Assume a permutation of rows has been done, and denote
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this new matrix by W †. Assume that the first row in W † is not the same as the
first row in W . Then, at least two elements on the first row of W † are nonzero.
Now, any permutation of columns cannot change the number of nonzero ele-
ments on the first row. Thus, a combination of row and column permutation
that is lower-triangular must be such that the first row of the row-permuted
matrix W † is equal to the first row of W . Also, the column-permutation can-
not move the first column in order to preserve lower-triangularity. Thus, we
have proven that the first row must remain the first row, and the first column
must remain the first column. The same proof can be applied on every row
and column in succession, which proves the theorem.

Therefore, if the bi(j),i(k) are not zeros, the permutation to make

W = Var(ξ)−1/2(In − B), (22)

lower triangular is unique. The In denotes an n-dimensional identity matrix.
Then the causal ordering between xi is uniquely determined taking the bi(j),i(k)

as the βi(j),i(k) in (15).

In practice, because of finite sample effects, all elements of the W given by ICA
are non-zero even if the model holds. That is, those entries which should be
exactly zero are only approximately zero. This complicates the search for the
correct row and column permutations, requiring us to search for permutations
which yield approximate lower-triangularity.

Here, we suggest to optimize lower triangularity using a cost function which
sums the squares of all entries above the main diagonal, i.e.

C =
∑

j<k

w2
jk. (23)

Finding the globally optimal row and column permutations for this problem
is hard. Our approach is to employ a greedy column- and row-swapping algo-
rithm: At each step, calculate the change in C resulting from every possible
pairwise swap of columns or swap of rows, and perform the swap which de-
creases C the most. This step is iterated until no pairwise swap can decrease
the cost any further.

Although the above-described greedy algorithm often gets stuck in subop-
timal local minima, it is very fast to run. This implies that one can run
it from a large number of different random initial permutations in a rea-
sonable time, leading to a very high probability of finding the global opti-
mum. A Matlab implementation of this permutation algorithm is available at
http://www.cs.helsinki.fi/u/phoyer/code/csdapack.tar.
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If we have correctly permuted W , the disturbance standard deviation
√

var(ξi(j))

can be estimated by 1/wi(j),i(j) from (17). 5 Then we obtain the estimate of
B by

B̂ = In − diag(Ŵ )−1Ŵ . (24)

Thus, the model (20) can be estimated by

(1) estimating an initial W by ICA,
(2) finding a combination of permutations of the rows and the columns of

W̃ so that W̃ becomes as close to lower triangular as possible, using the
algorithm above,

(3) estimating B by In − diag(W̃ )−1W̃ .

The W̃ denotes a correctly permuted version of W . It should be noted that the
correct causal ordering is given by the permutation of the columns found by
our method. The correct permutation of rows and the value of B are additional
information that are not always necessary.

4.4 Example

Now we shall show the models 1 and 2 can be expressed in this framework. In
Model 1, the causal order of observed variables is (i(1), i(2)) = (2, 1). Model
1 can be rewritten as:

Model 1:




x1

x2


 =




0 b12

0 0







x1

x2


 +




ξ1

ξ2


 (25)

⇔




x2

x1


 =




0 0

b12 0







x2

x1


 +




ξ2

ξ1


 . (26)

Here x̃ and B are

x̃=




x2

x1


 , B =




0 0

b12 0


 . (27)

5 ICA has the sign ambiguity. The estimated wii could have a negative sign. Then
we multiply the i-th row vector wT

i by −1 so that wii has a positive sign.
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One can see that the B is lower triangular when the observed variables are
ordered according to i(j). Also in Model 2, one can see the lower triangularity
of B in the same manner.

4.5 Alternative approach

Above, we said that the causal ordering between observed variables is uniquely
determined if all the bi(j),i(k) are not zeros, which is a sufficient but not a
necessary condition. There is another possibility where the causal ordering is
unique. Let A be the inverse of W . Note that A is also lower triangular. The
aij/ajj represents the total effect of xj to xi, whereas the bij the direct effect of
xj to xi (see, Bollen, 1989, for total effect and direct effect). Then the model
(20) can be rewritten as

x̃ = Aξ̃
∗
, (28)

which is the ICA model in (3) and the A is estimable up to a permutation of its
columns, using standard ICA methods. We can find the optimal permutations
in A in the same manner as finding those in W . Now, the causal ordering
between xi is uniquely determined if ai(j),i(k) are not zeros (Theorem 1).

The link between the lower triangularity of A and the causal ordering can
be seen as follows. For the lower triangular mixing matrix, xi(1) is essentially
equal to ξ∗i(1), up to a multiplicative constant, ai(1),i(1). On the other hand, xi(2)

is a function of ξ∗i(1) and ξ∗i(2), ai(2),i(1)ξ
∗
i(1) +ai(2),i(2)ξ

∗
i(2). Thus, xi(2) is a function

of xi(1) and a new independent variable, ξ∗i(2), that is, (ai(2),i(1)/ai(1),i(1))xi(1) +
ai(2),i(2)ξ

∗
i(2). This indicates that xi(1) may cause xi(2), but xi(2) cannot cause

xi(1). Continuing the same logic, we see that xi(1) can cause xi(3) and xi(2) can
cause xi(3), but xi(3) cannot cause either xi(1) or xi(2) because xi(3) is simply a
function of xi(1) and xi(2). In general, xi(j) is a function of xi(1), · · · , xi(j−1) and
ξ∗i(j), which establishes the direction of possible causality.

The two methods: i) W -based method; ii) A-based method compensate each
other. For example, let us assume that




xi(1)

xi(2)

xi(3)




=




0 0 0

b21 0 0

0 b32 0







xi(1)

xi(2)

xi(3)




+




ξi(1)

ξi(2)

ξi(3)




, (29)

where b21 and b32 are not zeros. The b31 is zero and the causal ordering may
not be unique if the W -based method is applied. However, let us rewrite (29)
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as




xi(1)

xi(2)

xi(3)




=







1 0 0

0 1 0

0 0 1



−




0 0 0

b21 0 0

0 b32 0







−1 


Var(ξi(1)) 0 0

0 Var(ξi(2)) 0

0 0 Var(ξi(3))




1/2 


ξ∗i(1)

ξ∗i(2)

ξ∗i(3)




=




Var(ξi(1))
1/2 0 0

b21Var(ξi(1))
1/2 Var(ξi(2))

1/2 0

b32b21Var(ξi(1))
1/2 b32Var(ξi(2))

1/2 Var(ξi(3))
1/2







ξ∗i(1)

ξ∗i(2)

ξ∗i(3)




. (30)

Then the causal ordering can be recovered by the A-based method.

Another simple example is:




xi(1)

xi(2)

xi(3)




=




0 0 0

b21 0 0

b31 b32 0







xi(1)

xi(2)

xi(3)




+




ξi(1)

ξi(2)

ξi(3)




, (31)

where b21, b31, b32 are not zeros and b31 + b32b21 is zero, for example, b21 =
0.3, b31 = 0.6, b32 = −0.2. Then all the direct effect of xi(k) to xi(j), bi(j),i(k) (k <
j), are not zeros and the causal ordering can be recovered by the W -based
method. However, the A-based method fails to recover the causal ordering
because the total effect of xi(1) to xi(3), b31 + b32b21, is zero:




xi(1)

xi(2)

xi(3)




=




Var(ξi(1))
1/2 0 0

b21Var(ξi(1))
1/2 Var(ξi(2))

1/2 0

(b31 + b32b21)Var(ξi(1))
1/2 (= 0) b32Var(ξi(2))

1/2 Var(ξi(3))
1/2







ξ∗i(1)

ξ∗i(2)

ξ∗i(3)




.

Thus both W -based and A-based methods are useful for finding a causal or-
dering between observed variables. In the latter part of this article, we report
the simulation experiment and real example using only the W -based method
to save space.

5 Examination of independence

In our setting, the independence assumption between explanatory and distur-
bance variables is crucial. We propose a test statistic to examine the indepen-
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dence assumption statistically.

Let N be a sample size and define V as

V = lim
N→∞

N × Var[mT
2 , mT

4 ]T . (32)

Letting τ be a vector that contains the model parameters and m2 and m4 be
the vectorized second- and fourth-order moments after removing the redun-
dant elements and σ2(τ ) = E(m2), σ4(τ ) = E(m4), the test statistic T to
examine the model assumption is defined as

T = N







m2

m4


 −




σ2(τ̂ )

σ4(τ̂ )







T

M̂







m2

m4


 −




σ2(τ̂ )

σ4(τ̂ )





 , (33)

with

M̂ = V̂ −1 − V̂ −1Ĵ(ĴT V̂ −1Ĵ)−1ĴT V̂ −1, (34)

where

Ĵ =
∂[σ2(τ )T , σ4(τ )T ]T

∂τ T

∣∣∣∣∣
τ=τ̂

. (35)

The statistic T approximates to a chi-square variate with degrees tr[V M ] of
freedom where N is large enough (e.g., Shimizu and Kano, 2003a). The re-
quired assumption for this is that τ̂ is a

√
N -consistent estimator. No asymp-

totic normality is needed. See Browne (1984) for details.

6 Simulation experiments

We conducted simulation experiments to study the performance of the method
developed above.

The simulation consisted of 1000 causal ordering recovery trials for data of two
different dimensions: 3 and 15 variables xi. In each trial, we generated three-
or fifteen-dimensional random vector ξ̃

∗
of different sample sizes (see Table 1

and 2 below) as standardized disturbance variables where their components
are independently distributed according to the t distribution with parameters

14



yielding kurtoses from 2 to 6. The variables were standardized to have zero
mean and unit variance.

A random lower triangular matrix B where the element bij (i > j) was dis-
tributed according to the uniform distribution U(0.2, 1) and multiplied by
−1 with probability 50% was created. A random diagonal matrix D whose
diagonal elements are independently distributed according to the uniform dis-
tribution U(0.2, 1) was created. Then a random mixing matrix A = (I−B)−1D
was computed. The standardized disturbance variables were linearly mixed by
A after its rows were permuted randomly.

We employed FastICA 6 as an ICA method and took log cosh(u) as G(u) in
(6), where the symmetric orthogonalization was applied (Hyvärinen, 1999;
Hyvärinen and Oja, 1997).

The W -based method developed above was then applied on the data. We com-
puted how many trials recovered the correct permutation of observed variables.
We also compared the performance of our permutation algorithm to that of
a bruteforce permutation algorithm that tried all the combinations of rows
and columns of estimated W for three variables. (The bruteforce permutation
algorithm is computationally too hard to apply to the fifteen variables cases.)

The results are shown in Table 1 and 2. The numbers of trials where FastICA
did not converge were given in parentheses (if it occurred), and such trials
were excluded when counting the numbers of successful recoveries. For three
variables (Table. 1), more than 95% of causal orderings were recovered when
N = 500. The table also implied that our permutation algorithm provided as
good performance as the bruteforce permutation algorithm. For fifteen vari-
ables (Table. 2), more than 95% of causal orderings were recovered when
N = 2500. Overall, we would say that our method successfully recovered the
correct causal orderings for reasonable sample sizes.

Table 1
Numbers of recovered causal orderings for 3 variables out of 1000 trials. (The num-
bers of trials where FastICA did not converge are given in parentheses if it occurred.)

N

100 250 500 750 1000

Our permutation alg. 509 (179) 813 (51) 963 (4) 977 (1) 990

Bruteforce permutation alg. 509 (179) 813 (51) 963 (4) 977 (1) 990

6 The MATLAB package is available at http://www.cis.hut.fi/projects/ica/fastica/.
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Table 2
Numbers of recovered causal orderings for 15 variables out of 1000 trials. (The
numbers of trials where FastICA did not converge are given in parentheses if it
occurred.)

N

1000 1500 2000 2500 3000

Our permutation alg. 666 (6) 843 928 965 975

7 Real data example

Questionnaire data about criminal psychology were analyzed as an example
to illustrate the effectiveness of our method. The survey was conducted to stu-
dents at Osaka University, Japan (Murakami, 2000). The sample size was 222.
Observed variables were standardized to have zero means and unit variances.

We explored a possible causal ordering between observed variables x1, x2 and
x3 using the W -based method proposed in Section 4. The labels of the variables
x1, x2 and x3 are shown in Table 3. According to a criminal psychology theory
(Gottfredson and Hirschi, 1990), the frequency of criminal opportunities (x2)
is a typical environmental cause of the frequency of criminal behaviors (x1)
(Murakami, 2000). Also, the x1 and x2 were preceding in time to x3. Therefore,
the possible causal ordering from the background knowledge was x2 → x1 →
x3. However, these were of course unknown to our method. The aim in this
real example was to know if our method was really able to find the correct
causal ordering without any background knowledge.

The kurtoses of the variables were 1.29, 8.71, 2.35 respectively and a Kolmogorov-
Smirnov test showed that all variables could not be assumed to come from the
normal distribution (significance level 1%). Thus, statistical methods based
on the non-normal assumption including our method should be applicable on
this kind of non-normal data.

Table 3
Variable labels

x1: Sum of items that ask subjective evaluation on frequency of your

criminal behavior when you went to high school

x2: Sum of items that ask subjective evaluation on frequency of your

criminal opportunities when you went to high school

x3: Sum of items that ask subjective evaluation on frequency of your

criminal behavior last one year

We employed FastICA, where log cosh(u) is taken as G(u) in (6) and the
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symmetric orthogonalization was applied.

The estimated W by FastICA was




−1.26 1.00 −0.11

0.07 0.83 0.24

0.55 0.35 −1.14







x1

x2

x3




=




ξ∗1

ξ∗2

ξ∗3




, (36)

and the permuted W so that it becomes as lower triangular as possible was




0.83 0.07 0.24

1.00 −1.26 −0.11

0.35 0.55 −1.14







x2

x1

x3




=




ξ∗2

ξ∗1

ξ∗3




, (37)

where the first and second rows and the first and second columns were per-
muted, respectively. The independence assumption was not rejected (T in (33)
was 13.12 with p value of 0.16), which implied that no unobserved confound-
ing variables existed. The result implied the causal ordering, x2 → x1 → x3,
that is, criminal opportunities at high schools → criminal behaviors at high
schools → criminal behaviors last one year. The order x2 → x1 was reasonable
to the criminal psychology theory, and the order x1 → x3 was reasonable to
the time order. Therefore, the causal ordering founded by our method would
be reasonable to the background knowledge.

Further, we conducted a simulation to study the stability of our method in this
example. We generated 1000 data sets in the same manner as the simulations
in the previous section other than two points: i) we created three standardized
disturbance variables that had exactly the distributions of the standardized
disturbance variables (independent components) found in the real example,
which was possible simply by taking the independent components from the real
data, and making them really independent reordering randomly each variable
in the sample. (The kurtoses of the independent components found in the real
data were 7.39, 2.16, 2.53.); ii) we computed constant matrices B and D:

B =




0 0 0

0.79 0 0

0.30 0.48 0




, D =




1.21 0 0

0 0.79 0

0 0 0.87




, (38)

by setting the upper triangular elements of the W̃ :
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W̃ =




0.83 0.07 0.24

−1.00 1.26 0.11

−0.35 −0.55 1.14




, (39)

to zeroes and created a mixing matrix A = (I − B)−1D.

Our method recovered 96.60 % of the causal orderings. The stability was quite
good, and the causal ordering found was reasonable to the background knowl-
edge. Therefore, we would conclude that our method successfully recovered
the correct causal ordering in this real example.

8 Discussion

We developed a new statistical method for discovering a possible causal or-
dering using non-normality of observed variables. Whereas there are some
approaches to causal analysis such as SEM, our approach based on ICA is to-
tally different from them. SEM cannot find the direction of causality in many
cases without much background knowledge because the normal assumption
on SEM limits its applicability. We provided a partial solution to the problem
utilizing non-normality of observed variables.

There are some drawbacks of our model. When the distribution is close to the
normal distribution, our method is unstable. Linearity assumption is rather
restrictive.

Researchers should and can make further confirmatory causal inferences in-
cluding experimental and longitudinal studies based on the result of our ex-
ploratory causal inference method. The method developed here would be help-
ful to construct a good initial model.
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