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Abstract. Independent component analysis (ICA) has been extensively
studied since it was originated in the field of signal processing. However,
almost all the researches have focused on estimation and paid little at-
tention to testing. In this paper, we discuss testing significance of mixing
and demixing coefficients in ICA. We propose test statistics to examine
significance of these coefficients statistically. A simulation experiment im-
plies the good performance of our testing procedure. A real example in
psychometrics, which is a new application area of ICA, is also presented.

1 Introduction

Independent component analysis (ICA) [1] is a multivariate analysis technique
that aims at recovering linearly mixed unobserved multidimensional independent
signals from the mixed observable variables. Let x be an m-dimensional observed
vector. The ICA model for x is written as

x = As, (1)

where A is called a mixing matrix and s is an n-dimensional vector of inde-
pendent components with zero mean and unit variance. Typically, the number
of observed variables m is assumed to equal that of latent variables n, that is,
m = n, which we assume in the following. The main goal of ICA is to estimate
the mixing matrix A or the demixing matrix BT = A−1. (Some authors use
B = A−1 without the transpose [1].)

The ICA has been extensively studied since identification conditions for the
model were provided in [2]. However, almost all the researches have focused on
estimation [3–5], e.g., consistency, stability, robustness and asymptotic variance
[6–8], and have not paid very much attention to testing. In this paper, we discuss
testing of significance of mixing and demixing coefficients aij and bij . Such a test
of significance is an important process in psychometrics for example [9].

The paper is structured as follows. First, in Section 2, we briefly review
asymptotic variance of ICA and provide asymptotic covariance matrices of mix-
ing and demixing coefficients estimated by ICA based on non-gaussianity max-
imization with constraints of orthogonality, e.g., FastICA [5]. In Section 3, we



derive test statistics to evaluate the magnitude of significance of these coefficients
using the asymptotic variances. We also consider multiple comparison procedures
since we usually test significance of more than one coefficient. In Sections 4 and
5, we conduct a simulation study and provide a real data example to study how
the test statistics work empirically. We conclude the paper in Section 6.

2 Asymptotic variance of ICA

Several authors studied asymptotic variance of ICA [7, 8, 10, 11], where the the-
ory of estimating functions [12] was often used. Let us consider a semiparametric
model p(x|θ), where θ is a r-dimensional parameter vector of interest. Note that
the density function p(x|θ) is unknown. Let us denote by θ0 the true parameter
vector of interest. A r-dimensional vector-valued function f(x, θ) is called an
estimating function when it satisfies the following conditions for any p(x|θ0):

E[f(x, θ0)] = 0 (2)

|det Q| �= 0, where Q = E

[
∂

∂θT
f(x, θ)

∣∣∣∣
θ=θ0

]
(3)

E[‖f(x, θ0)‖2] < ∞, (4)

where the expectation E is taken over x with respect to p(x|θ0).
Let x(1), · · · , x(N) be a random sample from p(x|θ0). Then an estimator θ̂

is obtained by solving the estimating equation:

N∑
i=1

f (x(i),θ) = 0. (5)

Under some regularity conditions including identification conditions for θ, the
estimator θ̂ is consistent when N goes to infinity and asymptotically distributes
according to the gaussian distribution N(θ0,G), and

G =
1
N

Q−1E[f (x, θ0)fT (x, θ0)]Q−T . (6)

In [7], an estimating function for (quasi-) maximum likelihood estimation
was derived. In [13], an estimating function for JADE [4] was provided, and an
estimating function for ICA based on non-gaussianity maximization with orthog-
onality (uncorrelatedness) constraints including FastICA [5] was also introduced.

In this paper, we restrict ourselves to testing mixing and demixing coefficients
estimated by FastICA. In FastICA, we first center the data to make its mean zero
and whiten the data by computing a matrix V such that the covariance matrix
of z = Vx is the identity matrix. After that, we find an orthogonal matrix W
so that components of WT z = WTVx have maximum non-gaussianity. Then
we obtain estimates of A and B by A = V−1W and B = VT W.



Let us consider the following function:

F(x,W) = yyT − I + ygT (y) − g(y)yT , (7)

where y = BT x = WT Vx = WT z and g(u) is the nonlinearity. The estimating
function for FastICA is obtained as f = vec(F) taking θ = vec(W) [13], where
vec(·) denotes the vectorization operator which creates a column vector from a
matrix by stacking its columns.

According to the estimating function theory, we obtain the asymptotic covari-
ance matrix of vec(W) by (6) (see the Appendix for the complete formula). Here
we assume that the variance in the estimate of V is negligible with respect to
the variance in W, which is validated empirically in the simulation below. Then
we obtain the asymptotic covariance matrix of vec(A) and vec(B) as follows:

acov{vec(A)} = acov{vec(V−1W)}
= (I⊗ V−1)acov{vec(W)}(I ⊗ V−1)T (8)

acov{vec(B)} = acov{vec(VT W)}
= (I⊗ VT )acov{vec(W)}(I ⊗ VT )T , (9)

where ⊗ denotes the Kronecker product. Given an m × n matrix T and p × q
matrix U, the Kronecker product of T and U is the following mp × nq matrix

T⊗ U :=




t11U · · · t1nU
...

. . .
...

tm1U · · · tmnU


 . (10)

Matlab codes to compute acov{vec(A)} and acov{vec(B)} are available on-
line at the webpage: http://chobi.sigmath.es.osaka-u.ac.jp/̃ shimizu/acov/

3 Testing significance of mixing and demixing coefficients

3.1 Wald statistics

In this paper, we would like to test if mixing or demixing coefficients are zero or
not. Such tests are related to the fundamental question typically posed in empir-
ical sciences: Does the independent component sj have a statistically significant
effect on the observed variable xi? Here, the null and alternative hypotheses H0

and H1 are as follows:

H0 : aij = 0 versus H1 : aij �= 0 (11)
or

H0 : bij = 0 versus H1 : bij �= 0. (12)

One can use the following Wald statistics

â2
ij

avar(âij)
or

b̂2
ij

avar(b̂ij)
(13)



to test significance of aij and bij , where avar(âij) and avar(b̂ij) denote the asymp-
totic variances of âij and b̂ij computed by (8) and (9). The Wald statistics can be
used to test the null hypothesis H0. Under H0, the Wald statistic asymptotically
approximates to a chi-square variate with one degree of freedom [9]. Then we
can obtain the probability of having a value of the Wald statistic larger than or
equal to the empirical one computed from data. We reject H0 if the probability
is smaller than a significance level, and otherwise we accept H0. Acceptance of
H0 implies that the assumption aij = 0 (or bij = 0) fits data. Rejection of H0

suggests that the assumption is in error so that H1 holds [9].

3.2 Multiple comparison

Usually, mixing and demixing matrices have more than one element. In many
cases, we need to perform more than one testing simultaneously to find out
if all or all of a set of the coefficients are significantly large in an absolute
value sense. Although a given significance level may be appropriate for each
individual testing, it is not for the set of all the testing. We are bound to have
a lot of spurious significance if we just repeat testing without any corrections.
Suppose we repeat testing 1,000 times at significance level 5%. Assume all the
null hypotheses are true. Nevertheless, we can always expect that approx. 50 null
models are rejected. However, we should not reject the null models. We have to
control the probability of having at least one spurious false positive. In such
a case, we should employ multiple comparison procedures. A simple and basic
method is the Bonferroni correction, where we simply divide a significance level
by the number of testing to obtain the significance level for individual testing.
See [14] for details. We employ the Bonferroni correction in the simulation and
real data analysis below.

4 Simulation

We conducted simulations in an attempt to confirm the theoretical results above.
We employed FastICA, where the hyperbolic tangent function was taken as the
nonlinearity and the symmetric orthogonalization was applied.

The simulation consisted of 10,000 replications. We employed the following
mixing matrix that was lower triangular:

A =


 1 0 0

0.5 1 0
0.65 0.7 1


 , (14)

and then the demixing matrix BT = A−1 was

BT =


 1 0 0
−0.5 1 0
−0.3 −0.7 1


 . (15)



In each replication, we generated independent sources and created observed sig-
nals following the ICA model (1). First, we created three independent compo-
nents si with the sample size N = 300, 500, 1000 where their components were
independently distributed according to the Laplace distribution. The indepen-
dent components were normalized to have zero means and unit variances.

The FastICA was then applied to the data, and estimates of mixing and
demixing coefficients aij and bij were obtained. Then we computed Wald statis-
tics for these coefficients and tested the null hypotheses of the coefficients being
zero as described above. The significance level was set at 5%. We computed how
many null hypotheses on the coefficients in these matrices were rejected to know
if the chi-square approximation worked for finite sample sizes. We also counted
the numbers of cases where at least one of null hypotheses on the coefficients
with zero values (here, elements in strictly upper triangular parts of A and BT )
was rejected to know if the Bonferroni correction was effective.

The results are shown in Tables 1 and 2. First in Table 1, we shall examine
the empirical significance levels (number of rejections) for a12, a13 and a23, and
b12, b13 and b23 that had zero values. Overall, we would say that the numbers
of rejections of the null models were very close to the theoretically expected
number 500. Second, Table 1 allows us to examine the statistical power of the
test for the other coefficients that had non-zero values. The power of 0.99 (9,900
rejections) was achieved for all the conditions other than when testing b31 with
N = 300. Thus, Table 1 showed that the Wald statistics were well approximated
by the chi-square distribution, and the power of test was quite good.

Table 1. Numbers of rejected null hypotheses with significance level 5% (10,000 repli-
cations)

a11 a21 a31 a22 a32 a33 a12 a13 a23

N =
300 9,999 9,914 9,931 9,995 9,946 9,984 467 499 478
500 10,000 9,997 9,995 10,000 9,997 10,000 506 473 475

1,000 10,000 10,000 9,996 10,000 10,000 10,000 488 468 477

b11 b21 b31 b22 b32 b33 b12 b13 b23

N =
300 9,994 9,903 9,159 9,990 9,962 9,999 406 452 422
500 10,000 9,994 9,893 10,000 9,998 10,000 442 454 464

1,000 10,000 10,000 9,999 10,000 10,000 10,000 428 456 507

Note: N is sample size in estimation.

Next in Table 2, we examine the numbers of cases where at least one of
null hypotheses on the coefficients with zero values to study the performance
of the Bonferroni correction for multiple comparison discussed in Section 3.2.
Overall, we would say that the numbers of rejections with the Bonferroni cor-
rection were rather close to the theoretically expected number 500 for all the



Table 2. Numbers of cases where at least one of null hypotheses on coefficients with
zero values was rejected (10,000 replications)

Testing aij Testing bij

N= 300 500 1,000 N= 300 500 1,000

Bonferroni correction 497 471 447 383 408 411
No corrections 1,307 1,344 1,326 1,139 1,222 1,249

Note: N is sample size in estimation.

conditions, though the null models were rejected a bit less often than the theo-
retically expected number 500 when testing bij . On the other hand, the numbers
of rejections with no Bonferroni correction were much larger than the theoret-
ically expected number for all the conditions. Thus, Table 2 showed that the
Bonferroni correction was effective and should be applied to real data analyses.

5 Example with real data

Questionnaire data about criminal psychology were analyzed as an example.
The survey was conducted with university students in Japan [15]. The sample
size was 222. Observed variables were standardized to have zero mean and unit
variance. The labels of the variables x1 and x2 are “x1: Sum of scores of items
that ask subjective evaluation on frequency of your criminal opportunities when
you went to high school” and “x2: Sum of scores of items that ask subjective
evaluation on frequency of your criminal behavior when you went to high school”.
A Kolmogorov-Smirnov test showed that all variables could not be assumed to
come from the gaussian distribution (significance level 1%). Thus, ICA should
be applicable to this kind of non-gaussian data.

We employed FastICA with the nonlinearity g(u) = tanh(u) and the symmet-
ric orthogonalization. We set the significance level at 5% and used the Bonferroni
method for multiple comparison. The estimated A by FastICA was

[
0.93 0.36
0.77 0.64

]
, (16)

where a11, a21 and a22 were significant, and a12 was not significant. See Table 3
for the Wald statistics. Thus, the matrix A could be seen to be lower triangular.

Table 3. Estimates, Wald statistics and p values

a11 a21 a12 a22

Estimates 0.93 0.77 0.36 0.64
Wald statistics 48.70 17.57 1.69 9.24

p values 0.00 0.00 0.19 0.00



The fact that A is lower triangular allows us to interpret the results in terms
of a causal ordering of the variables [16]. The result implied the causal order,
x1 → x2, that is, criminal opportunities at high schools → criminal behaviors at
high schools. The link between the lower triangularity of A and the causal order
can be seen as follows. For the lower triangular mixing matrix, x1 is essentially
equal to s1, up to a multiplicative constant, a11. On the other hand, x2 is a
function of s1 and s2, a21s1 + a22s2. Thus, x2 is a function of x1 and a new
independent variable, s2, that is, (a21/a11)x1 + a22s2. This indicates that x1

may cause x2, but x2 cannot cause x1. See [16] for details.
In fact, the order x1 → x2 was reasonable to the criminal psychology the-

ory. According to a criminal psychology theory [17], the frequency of criminal
opportunities (x1) is a typical environmental cause of the frequency of crimi-
nal behaviors (x2) [15]. Therefore, the possible causal order from background
knowledge was x1 → x2. Thus, the causal order founded by our method would
be reasonable to the background knowledge.

6 Conclusion

In this paper, we proposed Wald statistics to test significance of mixing and
demixing coefficients in ICA. We conducted a small simulation experiment, which
implied that our testing procedure worked well even for finite sample sizes, al-
though more simulation studies are needed to study to what extent the result
can be generalized. We also provided a real data example in psychometrics that
would be a promising new area that ICA applies.

Appendix: A complete formula of acov{vec(W)}
The formula of acov{vec(W)} for FastICA is written as

acov{vec(W)} =
1
N

Q−1E[vec{F(x,W)}vec{F(x,W)}T ]Q−T . (17)

Denote by Fpq the (p, q)-element of F and by Fq the q-th column of F, respec-
tively. We shall provide E(FpqFrs) to compute E{vec(F)vec(F)T }. Denote by
i, j, k, l four different subscripts. Then we have

E(FiiFii) = E(s4
i ) + 1, E(FiiFjj) = 2, E(FkiFij) = −E{g(sk)}E{g(sj)}

E(FkiFli) = E{g(sk)}E{g(sl)}, E(FkiFkj) = E{g(si)}E{g(sj)}
E(FiiFli) = −E(s3

i )E{g(sl)}, E(FkiFii) = −E(s3
i )E{g(sk)}

E(FiiFij) = E(s3
i )E{g(sj)}, E(FjiFjj) = E(s3

j)E{g(si)}
E(FiiFlj) = 0, E(FkiFjj) = 0, E(FkiFlj) = 0
E(FjiFij) = 1 + 2E{sig(si)}E{sjg(sj)} − E{g(si)2} − E{g(sj)2}
E(FjiFlj) = 1 + E{sig(si)} + E{sjg(sj)}

+E{sig(si)}E{sjg(sj)} − E{g(si)}E{g(sl)}



E(FkiFki) = 1 + 2E{sig(si)} − 2E{skg(sk)} + E{g(si)2}
+E{g(sk)2} − 2E{sig(si)}E{skg(sk)}.

We also give E
{
(∂Fi)/(∂wT

j )
}

to compute Q = E
[{∂vec(F)}/{∂vec(W)T }]:

E

[
∂Fi

∂wT
i

]
=

{
2wT

i (i−th row)
[1 − E{skg(sk)} + E{g′(si)}]wT

k (k−th row, k �= i)

E

[
∂Fi

∂wT
j

]
=

{
[1 − E{g′(sj)} + E{sig(si)]wT

i (j−th row, j �= i)
0T (k−th row, k �= j) .
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rithm and Cramèr-Rao bounds for linear independent component analysis. IEEE
Transactions on Signal Processing (2005) In press.

12. Godambe, V.P.: Estimating functions. Oxford University Press, New York (1991)
13. Kawanabe, M., Müller, K.R.: Estimating functions for blind separation when

sources have variance dependencies. Journal of Machine Learning Research 6
(2005) 453–482

14. Hochberg, Y., Tamhane, A.C.: Multiple comparison procedures. John Wiley &
Sons, New York (1987)

15. Murakami, N.: Research on causes of criminal and deviant behavior. Bachelor
thesis, Osaka University, School of Human Sciences (2000) (In Japanese).

16. Shimizu, S., Hyvärinen, A., Kano, Y., Hoyer, P.O.: Discovery of non-gaussian
linear causal models using ICA. In: Proc. the 21st Conference on Uncertainty in
Artificial Intelligence (UAI-2005). (2005) 526–533

17. Gottfredson, M.R., Hirschi, T.: A general theory of crime. Stanford University
Press, Stanford, CA (1990)


