
Discovery of linear non-gaussian acyclic models
in the presence of latent classes

Shohei Shimizu12, Aapo Hyvärinen1

1 Helsinki Institute for Information Technology, Finland
2 The Institute of Statistical Mathematics, Japan

http://www.hiit.fi/neuroinf

Abstract. An effective way to examine causality is to conduct an exper-
iment with random assignment. However, in many cases it is impossible
or too expensive to perform controlled experiments, and hence one of-
ten has to resort to methods for discovering good initial causal models
from data which do not come from such controlled experiments. We have
recently proposed such a discovery method based on independent com-
ponent analysis (ICA) called LiNGAM and shown how to completely
identify the data generating process under the assumptions of linearity,
non-gaussianity, and no latent variables. In this paper, after briefly reca-
pitulating this approach, we extend the framework to cases where latent
classes (hidden groups) are present. The model identification can be ac-
complished using a method based on ICA mixtures. Simulations confirm
the validity of the proposed method.

1 Introduction

An effective way to examine causality is to conduct an experiment with random
assignment [1]. However, in many cases it is impossible or too expensive to
perform controlled experiments. Hence one often has to resort to methods for
discovering good initial causal models from data which do not come from such
controlled experiments, though obviously one can never fully prove the validity
of a causal model from such uncontrolled data alone. Thus, developing methods
for causal inference from uncontrolled data is a fundamental problem with a very
large number of potential applications such as social sciences [2], gene network
estimation [3] and brain connectivity analysis [4].

Previous methods developed for statistical causal analysis of non-experimental
data [2, 5, 6] generally work in one of two settings. In the case of discrete data,
no functional form for the dependencies is usually assumed. On the other hand,
when working with continuous variables, a linear-Gaussian approach is almost
invariably taken and has hence been based solely on the covariance structure of
the data. Because of this, additional information (such as the time-order of the
variables and prior information) is usually required to obtain a full causal model
of the variables. Without such information, algorithms based on the Gaussian
assumption cannot in most cases distinguish between multiple equally possible
causal models.



We have recently shown that when working with continuous-valued data, a
significant advantage can be achieved by departing from the Gaussianity assump-
tion [7–9]. The linear-Gaussian approach usually only leads to a set of possible
models that are equivalent in their covariance structure. The simplest such case
is that of two variables, x1 and x2. A method based only on the covariance ma-
trix has no way of preferring x1 → x2 over the reverse model x1 ← x2 [2, 7].
However, a linear-non-Gaussian setting actually allows the linear acyclic model
to be uniquely identified [9].

In this paper, we extend our previous work to cases where latent classes
(hidden groups) are present. The paper is structured as follows. In Section 2 we
briefly describe the basics of LiNGAM and subsequently extend the framework in
Section 3. Some illustrative examples are provided in Section 4, and the proposed
method is empirically evaluated in Section 5. Section 6 concludes the paper.

2 LiNGAM

Here we provide a brief review of our previous work [9]. Assume that we observe
data generated from a process with the following properties:

1. The observed variables xi, i = {1 . . . n} can be arranged in a causal order
k(i), defined to be an ordering of the variables such that no later variable in
the order participates in generating the value of any earlier variable. That
is, the generating process is recursive [2], meaning it can be represented
graphically by a directed acyclic graph (DAG) [5,6].

2. The value assigned to each variable xi is a linear function of the values
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term ei,
and plus an optional constant term µi, that is

xi =
∑

k(j)<k(i)

bijxj + ei + µi. (1)

3. The disturbances ei are all continuous random variables having non-gaussian
distributions with zero means and non-zero variances, and the ei are inde-
pendent of each other, i.e. p(e1, . . . , en) =

∏
i pi(ei).

A model with these three properties we call a Linear, Non-Gaussian, Acyclic
Model, abbreviated LiNGAM.

We assume that we observe a large number of data vectors x (containing
the components xi), and each is generated according to the above described
process, with the same causal order k(i), same coefficients bij , same constants
µi, and the disturbances ei sampled independently from the same distributions.
Note that the above assumptions imply that there are no unobserved (latent)
confounders [5] (hidden variables). Spirtes et al. [6] call this the causally sufficient
case.

To see how we can identify the parameters of the model from the set of data
vectors x, we start by subtracting out the mean of each variable xi, leaving us
with the following system of equations:



x = Bx + e, (2)

where B is a matrix that contains the coefficients bij and that could be permuted
(by simultaneous equal row and column permutations) to strict lower triangular-
ity if one knew a causal ordering k(i) of the variables. (Strict lower triangularity
is here defined as lower triangular with all zeros on the diagonal.) Solving for x
one obtains

x = Ae, (3)

where A = (I − B)−1. Again, A could be permuted to lower triangularity (al-
though not strict lower triangularity, actually in this case all diagonal elements
will be non-zero) with an appropriate permutation k(i). Taken together, equa-
tion (3) and the independence and non-gaussianity of the components of e define
the standard linear independent component analysis (ICA) model [10,11], which
is known to be identifiable.

While ICA is essentially able to estimate A (and W = A−1), there are
two important indeterminacies that ICA cannot solve: First and foremost, the
order of the independent components is in no way defined or fixed. Thus, we
could reorder the independent components and, correspondingly, the columns
of A (and rows of W) and get an equivalent ICA model (the same probability
density for the data). In most applications of ICA, this indeterminacy is of no
significance and can be ignored, but in LiNGAM, we can and we have to find
the correct permutation as described in [9]: the correct permutation is the only
one which has no zeros in the diagonal.

The second indeterminacy of ICA concerns the scaling of the independent
components. In ICA, this is usually handled by assuming all independent com-
ponents to have unit variance, and scaling W and A appropriately. On the other
hand, in LiNGAM (as in structural equation modeling, SEM [2]) we allow the
disturbance variables to have arbitrary (non-zero) variances, but fix their weight
(connection strength) to their corresponding observed variable to unity. This re-
quires us to re-normalize the rows of W so that all the diagonal elements equal
unity in order to obtain B.

Our LiNGAM discovery algorithm [9] can thus be briefly summarized: First,
use a standard ICA algorithm to obtain an estimate of the demixing matrix W,
permute its rows such that there are no zeros on its diagonal, rescale each row
by dividing by the element on the diagonal, and finally compute B = I − W′,
where W′ denotes the permuted and rescaled W. To find a causal order k(i) we
must subsequently find a second permutation, to be applied equally both to the
rows and columns of B, which yields strict lower triangularity.

3 LiNGAM in the presence of latent classes

In this section, we extend the basic LiNGAM above to cases where latent (hid-
den) classes are present.



3.1 Motivation

Let us begin by an example. Regarding a child’s and a parent’s height, earlier
studies (e.g., [12]) pointed out that there is a hereditary effect on height, which
is especially stronger between a child and the same-sex parent. This implies that
the connection strengths from parent’s height to child’s height (and possibly the
network structures) could be different between the two classes (same-sex and
different-sex children). This is a nonlinear relation between child’s and parent’s
height even if the relations are still linear in each class, which cannot be found
if the class-membership is ignored (see Section 4 for some artificial examples).
In cases where such class-membership is observed, we only have to analyze each
class separately. However, in many cases, it would be quite difficult to detect
and observe class-membership especially before collecting data. Thus, we need
a sophisticated method to estimate latent classes in a data-driven way. In the
following, we extend the basic LiNGAM so that the method can estimate latent
classes of samples that have similar network structures.

3.2 Model

Let us assume that the data are generated by the following mixture density:

p(x|Θ) =
K∑

k=1

p(x|µk,Bk)p(C = k), (4)

where Θ = [θ1, · · · ,θk], θk = [µT
k , vec(Bk)T ]T , µk is a mean vector, Bk is a

connection strength matrix for class k and C is a discrete variable that indicates
the class k = 1, · · · ,K. (The vec(·) denotes the vectorization operator which
creates a column vector from a matrix by stacking its columns. ) Here, we do
not assume that we know the number of latent classes K and a priori probability
p(C = k). Moreover, the data within class k are assumed to be generated by the
LiNGAM model:

x = Bkx + (I − Bk)µk + ek, (5)

where ek is the disturbance (error) vector for class k. Note that the means,
connection strengths and structure of the network (µk and Bk) can be different
between classes. See Section 4 for some illustrative examples.

3.3 Model identification using ICA mixtures

We propose that the new model above can be estimated using ICA mixture
models [13]. As in the basic LiNGAM, ICA model holds for each class:

x = µk + Akek, (6)

where Ak = (I − Bk)−1. Then the mixture density is just the ICA mixture
model [13]. After µk and Ak are estimated, we can obtain estimates of Bk



and causal orderings k(i) for class k in the same manner as the basic LiNGAM
(Section 2).

Some estimation methods for the ICA mixtures have been proposed [13,14].
Here we employ the minimum β-divergence method [14] since the β-divergence
method does not require that the number of classes K and a priori probability
p(C = k) are known, which is a big advantage over [13]. Some drawbacks are
that one has to tell the algorithm whether the disturbances ei are super- or
sub-gaussian and select a tuning parameter β using a cross-validation technique
[15]. Fortunately, the first problem can be solved by (possibly non-parametric)
estimation of the source densities [14,16].

4 Illustrative examples

In this section, we provide two illustrative examples of the LiNGAM in the pres-
ence of latent classes (abbreviated as LcLiNGAM) proposed above. We selected
µk and Bk manually as explained below. The disturbances followed the Laplace
distribution with zero means and selected the variances so that observed vari-
ables had unit variances. Moreover, the number of latent classes was 2, and
250 data points were generated for each class. Note that the numbers of latent
classes were estimated as well by the β-divergence method [14]. The scatterplots
of observed variables were shown in Figure 1.

Fig. 1. Left: Scatterplots of the observed variables in Example 1. Right: Scatterplots of
the observed variables in Example 2. In the scatterplots, ”.” denote members of class
1 and ”+” those of class 2.



4.1 Example 1

We generated data using the following means, connection strengths and struc-
tures of networks:

Class 1 : µ1 =
[

0
0

]
, B1 =

[
0 0

0.3 0

]
(7)

Class 2 : µ2 =
[

4
5

]
, B2 =

[
0 0

0.3 0

]
. (8)

Both classes 1 and 2 had the same causal orders x1 → x2, but different means
(µ1 and µ2). The different mean structures created a strong correlation (0.88)
for the whole data, although the connection strength in each class was rather
weak (0.3).

The estimation results by the LcLiNGAM and basic LiNGAM were as follows:
LcLiNGAM3:

Class 1 : µ1 =
[
−0.02
0.06

]
, B1 =

[
0 0

0.30 0

]
(9)

Class 2 : µ2 =
[

4.01
5.01

]
, B2 =

[
0 0

0.41 0

]
, (10)

LiNGAM:

µ =
[
−0.09
3.99

]
, B =

[
0 0.81
0 0

]
. (11)

The LcLiNGAM successfully recovered the means and structures of the networks
and estimated connection strengths fairly well for both latent classes. However,
the basic LiNGAM failed to find the correct causal order and overestimated the
connection strength.

4.2 Example 2

Next, we tried data whose means, connection strengths and structures of network
were as follows:

Class 1 : µ1 =
[

0
0

]
, B1 =

[
0 0

0.3 0

]
(12)

Class 2 : µ2 =
[

5
4

]
, B2 =

[
0 0.3
0 0

]
. (13)

Now the two classes had the different causal orders: x1 → x2 for class 1 and
x1 ← x2 for class 2. The connection strengths were the same but the mean
structures were different between the classes.
3 Obviously, the orders of latent classes are not recovered. In the examples, for the

clarity, we permuted the classes so that the differences of estimates and true values
were minimized.



The estimation results were as follows:
LcLiNGAM:

Class 1 : µ1 =
[
−0.02

0.07

]
, B1 =

[
0 0

0.39 0

]
(14)

Class 2 : µ2 =
[

5.01
4.01

]
, B2 =

[
0 0.41
0 0

]
, (15)

LiNGAM:

µ =
[

3.88
0.08

]
, B =

[
0 0.78
0 0

]
. (16)

The LcLiNGAM estimated the connection strengths fairly well and found correct
causal orders for each class. However, the basic LiNGAM could not find that
the two classes have different causal orders because it cannot represent any
difference between the classes; it estimated, rather arbitrarily, one single causal
order x1 ← x2.

5 Simulation

To further verify the validity of our method, we performed experiments with
simulated data. We repeatedly performed the following experiment:

1. First, we randomly constructed a strictly lower-triangular matrix B for each
class, where the number of classes was 2 and the number of variables was 4.
We also randomly selected variances of the disturbance variables. We further
generated values for the constants µi making the classes have small overlap.4

2. Next, we generated data with sample size 500 by independently drawing the
disturbance variables ei from the uniform distribution with zero mean and
unit variance for each class. The observed data X were generated according
to the assumed recursive process and were combined to create a whole data.

3. Finally, we fed the data to our discovery algorithm. The β-divergence method
was employed to estimate ICA mixtures. Here we told the algorithm that
the disturbances were sub-gaussian.

4. We compared the estimated parameters to the generating parameters. In
particular, we made a scatterplot of the entries in the estimates µ̂k and B̂k

against the corresponding ones in µk and Bk. (Note that the numbers of
latent classes were estimated as well.)

Figure 2 gives scatterplots of the elements of estimated µk and Bk versus
the generating ones. The left is the scatterplot of the estimated means µi versus
the original (generating) values. The right is the scatterplot of the estimated
connection strengths bij versus the original (generating) values. We can see that
the estimation works well, as evidenced by the grouping of the data points onto
the main diagonal.
4 We first set —1 = 0 and took as the elements of —2 1.5 times the sum of standard

deviations of corresponding observed variables of each class multiplied by -1 with
probability 50%.



Fig. 2. Left: Scatterplots of the estimated µi versus the original (generating) values.
Right: Scatterplots of the estimated bij versus the original (generating) values. Five
data sets were generated for the scatterplots.

6 Conclusion

Developing statistical causal inference methods based on non-experimental data
is a fundamental problem with a large number of potential applications. Previ-
ous methods developed for linear causal models [2, 5, 6] have been based on an
explicit or implicit assumption of gaussianity, and have hence been based solely
on the covariance structure of the data. Therefore, algorithms based on the
gaussian assumption cannot in most cases distinguish between multiple equally
possible causal models. In previous work, we have shown that an assumption
of non-gaussianity of the disturbance variables, together with the assumption of
linearity and no latent variables, allows the linear acyclic model to be completely
identified [9].

In this paper, we extended our previous work to cases where latent (hidden)
classes are present. The new method can identify the DAG structures within
latent classes and would enjoy a wider variety of applications.

Although in the artificial experiments our method worked well, obviously we
need to evaluate its empirical performance by more extensive simulations as well
as real-world data. For example, in many real situations latent classes would be
much more overlapping than in the simulations. Unfortunately, however, for such
heavily overlapping cases, ICA estimation methods are still under development
[14]. These are important topics for future research.

As a further analysis, it is quite important to investigate what characterizes
the latent classes in order to understand how the model can be applied, for ex-
ample, in the design of practical interventions. The estimated means, connection
strengths and structures of networks could provide an interpretation of the la-
tent classes. For example, in Examples 1 and 2 above (Section 4), the differences



of the means would be useful to interpret the difference of the two classes (and
probably classify new samples). An additional or alternative way is to analyze
the samples classified into the latent classes using logistic regression analysis if
some covariates such as sex and age are available. One direction of future re-
search would be to combine the latent class LiNGAM and logistic regression to
improve the class distinction ability.5

A related topic is the case where hidden confounding (continuous) variables
are present (Latent variable LiNGAM) [18]. We would like to mention a useful
connection between the two extensions of the basic LiNGAM. In the latent class
LiNGAM discussed here, we basically have a binary (discrete) hidden confound-
ing variable (=class membership) which determines the connection strengths
when the structure of the network is the same for the different classes. In future
work, we will consider a unifying framework that combines the two extensions.
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