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Abstract. Many statistical methods have been proposed to estimate
causal models in classical situations with fewer variables than observa-
tions. However, modern datasets including gene expression data increase
the needs of high-dimensional causal modeling in challenging situations
with orders of magnitude more variables than observations. In this pa-
per, we propose a method to find exogenous variables in a linear non-
Gaussian causal model, which requires much smaller sample sizes than
conventional methods and works even when orders of magnitude more
variables than observations. Exogenous variables work as triggers that
activate causal chains in the model, and their identification leads to more
efficient experimental designs and better understanding of the causal
mechanism. We present experiments with artificial data and real-world
gene expression data to evaluate the method.
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1 Introduction

Many empirical sciences aim to discover and understand causal mechanisms un-
derlying their objective systems such as natural phenomena and human social
behavior. An effective way to study causal relationships is to conduct a con-
trolled experiment. However, performing controlled experiments is often ethi-
cally impossible or too expensive in many fields including bioinformatics [1] and
neuroinformatics [2]. Thus, it is necessary and important to develop methods
for causal inference based on the data that do not come from such controlled
experiments.

Many methods have been proposed to estimate causal models in classical sit-
uations with fewer variables than observations (p<n, p: the number of variables
and n: the number of observations). A linear acyclic model that is a special case
of Bayesian networks is typically used to analyze causal effects between continu-
ous variables [3, 4]. Estimation of the model commonly uses covariance structure
of data only and in most cases cannot identify the full structure (edge direc-
tions and connection strengths) of the model with no prior knowledge on the
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structure [3, 4]. In [5], the authors proposed a non-Gaussian variant of Bayesian
networks called LiNGAM and showed that the full structure of a linear acyclic
model is identifiable based on non-Gaussianity without pre-specifying any edge
directions between the variables, which is a significant advantage over the con-
ventional methods [4, 3].

However, most works in statistical causal inference including Bayesian net-
works have discussed classical situations with fewer variables than observations
(p<n), whereas modern datasets including microarray gene expression data in-
crease the needs of high-dimensional causal modeling in challenging situations
with orders of magnitude more variables than observations (p≫n)[1, 2]. Here
we consider situations in which p is on the order of 1,000 or more, while n is
around 50 to 100. For such high-dimensional data, the previous methods are
often computationally intractable or statistically unreliable.

In this paper, we propose a method to find exogenous variables in a linear
non-Gaussian causal model, which requires much smaller sample sizes than con-
ventional methods and works even when p≫n. The key idea is to identify which
variables are exogenous instead of estimating the entire structure of the model.
The simpler task of finding exogenous variables than that of the entire model
structure would require fewer observations to work reliably. The new method is
closely related to a fairly recent statistical technique called independent compo-
nent analysis (ICA).

Exogenous variables work as triggers that activate a causal chain in the
model, and their identification leads to more efficient experimental designs of
practical interventions and better understanding of the causal mechanism. A
promising application of Bayesian networks for gene expression data is detection
of drug-target genes [1]. The new method proposed in this paper can be used to
find which genes a drug first affects and how it triggers the gene network.

The paper is structured as follows. We first review ICA and linear causal
models in Section 2. We then define a non-Gaussian causal model and propose
a new algorithm to find exogenous variables in Section 3. The performance of
the algorithm is evaluated by experiments on artificial data and real-world gene
expression data in Sections 4 and 5. Section 6 concludes the paper.

2 Background principles

2.1 Independent component analysis

Independent component analysis (ICA) [6] is a statistical technique originally de-
veloped in signal processing. ICA model for a p-dimensional observed continuous
random vector x is defined as

x = As, (1)

where s is a p-dimensional continuous random vector whose components si are
mutually independent and non-Gaussian and are called independent compo-
nents, and A is a constant p×p invertible matrix. Without loss of generality, we
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assume si to be of zero mean and unit variance. Let W̃=A−1. Then we have
s=W̃x. It is known that the matrix W̃ are identifiable up to permutation of
the rows [7].

Let ŝ=Wx. A major estimation principle for W̃ is to find such W that
maximizes the sum of non-Gaussianity of estimated independent components
ŝi, which is known to be equivalent to maximize independence between the
estimates when the estimates are constrained to be uncorrelated [6]. In [8], the
author proposed a class of non-Gaussianity measures:

J(ŝi) = JG(wi) = [E{G(wT
i x)} − E{G(z)}]2, (2)

where wT
i is the i-th row of W and is constrained so that E(ŝ2

i )=E{(wT
i x)2}=1

due to the aforementioned assumption on unit variance of si, G is a nonlinear
and non-quadratic function and z is a Gaussian variable with zero mean and unit
variance. In practice, the expectations in Eq. (2) are replaced by their sample
means. In the rest of the paper, we say that a variable u is more non-Gaussian
than a variable v if J(u)>J(v). The author of [8] further proposed an estimation
method based on maximization of non-Gaussianity and proved a theorem to show
its (local) consistency:

Theorem 1 Assume that the input data x follows the ICA model in Eq. (1).
Assume that G is a sufficiently smooth even function. Then the set of local max-
ima of JG(wi) under the constraint E{(wT

i x)2}=1 includes the rows of W̃ for
which the corresponding independent components si satisfy the following condi-
tion E{sig(si)−g′(si)}[E{G(si)}−E{G(z)}]>0, where g(·) is the derivative of
G(·), and g′(·) is the derivative of g(·).
Note that any independent component si satisfying the condition in Theorem 1 is
a local maximum of JG(w) but may not correspond to the global maximum. Two
conjectures are widely made [6], Conjecture 1: the assumption in Theorem 1
is true for most reasonable choices of G and distributions of the si; Conjecture
2: the global maximum of JG(w) is one of si for most reasonable choices of G
and the distributions of si. In particular, if G(s)=s4, Conjecture 1 is true for any
continuous random variable whose moments exist and kurtosis is non-zero [8],
and it can also be proven that there are no spurious optima [9]. Then the global
maximum should be one of si, i.e., Conjecture 2 is true as well. However, kurtosis
often suffers from sensitivity to outliers. Therefore, more robust functions such
as G(s)=− exp(−s2/2) are widely used [6].

2.2 Linear acyclic causal models

Causal relationships between continuous observed variables xi (i = 1, · · · , p)
are typically assumed to be (i) linear and (ii) acyclic [3, 4]. For simplicity, we
assume that the variables xi are of zero mean. Let k(i) denote such a causal
order of xi that no later variable causes any earlier variable. Then, the linear
causal relationship can be expressed as

xi :=
∑

k(j)<k(i)

bijxj + ei, (3)
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where ei is an external influence associated with xi and is of zero mean. (iii)
The faithfulness [4] is typically assumed. In this context, the faithfulness implies
that correlations and partial correlations between variables xi are entailed by the
graph structure, i.e., the zero/non-zero status of bij , not by special parameter
values of bij . (iv) The external influences ei are assumed to be independent,
which implies there are no unobserved confounders [4].

We emphasize that xi is equal to ei if it is not influenced by any other
observed variable xj (j ̸=i) inside the model, i.e., all the bij (j ̸=i) are zeros. That
is, an external influence ei is observed as xi. Then the xi is called an exogenous
observed variable. Otherwise, ei is called an error. For example, consider the
model defined by

x1 = e1

x2 = 1.5x1 + e2

x3 = 0.8x1 − 1.3x2 + e3.

x1 is equal to e1 since it is not influenced by either x2 or x3. x1 is an exogenous
observed variable, and e2 and e3 are errors. Note that it is obvious that there
exists at least one exogenous observed variable xi(=ei) due to the acyclicity and
no unobserved confounder assumptions.

3 A new method to identify exogenous variables

3.1 A new non-Gaussian linear acyclic causal model

We make two additional assumptions on the distributions of ei to the model (3)
and define a new non-Gaussian linear causal model. Let the observed variables
xi in a p-dimensional vector be x and external influences ei in a p-dimensional
vector e. Let a p×p matrix B consist of the causal effects bij where the diagonal
elements bii are all zeros. Then the model (3) is written in a matrix form as:

x = Bx + e. (4)

Recall that the set of the external influences ei consist of both exogenous ob-
served variables and errors. To distinguish the exogenous variables and errors, we
make the following additional assumptions, Assumption 1: External influences
that correspond to exogenous observed variables are non-Gaussian; Assump-
tion 2: External influences that correspond to errors are non-Gaussian but less
non-Gaussian than the exogenous observed variables. That is, the model (4)=the
model (3)+Assumptions 1 and 2. The first assumption is made to explain why
observed data are often considerably non-Gaussian in many fields [6]. The second
assumption reflects two facts: i) in statistics, errors have been typically consid-
ered to arise as sums of a number of unobserved (non-Gaussian) independent
variables, which is why classical methods assume that errors are Gaussian re-
sorting to the central limit theorem; ii) the distinction between Gaussian and
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non-Gaussian variables is artificial in practice, though. In reality, many vari-
ables are not exactly Gaussian. Therefore, we allow the errors to be strongly
non-Gaussian as long as they are less non-Gaussian than exogenous variables.4

The distinction between exogenous variables and errors leads to a very simple
estimation of exogenous variables proposed in the next subsections.

3.2 Identification of exogenous variables based on non-Gaussianity
and uncorrelatedness

We relate the linear non-Gaussian causal model (4) with ICA similarly to [5].
Let us solve the model (4) for x and then we have an ICA model represented by
Eq. (1) as follows

x = (I − B)−1e = A′e. (5)

Note that I−B is invertible since it can be permuted to be lower triangular due
to the acyclicity assumption if one knew causal orders k(i) [5] and its diagonal
elements are all non-zero (unity). In the next section we propose a new algorithm
to find exogenous variables xi(=ei) using the relation (5). In this section we
present two lemmas that ensures the validity of the algorithm.

Lemma 1 Assume that the input data x follows the model (4) and that Con-
jecture 2 (Section 2.1) is true. Let us denote by Vx the set of all the observed
variables xi. Then, the most non-Gaussian observed variable in Vx is exogenous:
J(xi) is maximum in Vx ⇒ xi=ei.

Proof Eq. (5) shows that the model (4) is an ICA model, where external influ-
ences ei are independent components (ICs). The set of the external influences
consist of exogenous observed variables and errors. Due to the model assump-
tion (Assumption 2 in Section 3.1), exogenous observed variables are more non-
Gaussian than errors. Therefore, the most non-Gaussian exogenous observed
variable is the most non-Gaussian IC. Next, according to Conjecture 2 that is
here assumed to be true, the most non-Gaussian IC, i.e., the most non-Gaussian
exogenous observed variable, is the global maximum of the non-Gaussianity mea-
sure J(wT x)=JG(w) among such linear combinations of observed variables wT x
with the constraint E{(wT x)2}=1, which include all the observed variables xi

in Vx. Therefore, the most non-Gaussian observed variable is the most non-
Gaussian exogenous variable.

Lemma 2 Assume the assumptions of Lemma 1. Let us denote by E a strict
subset of exogenous observed variables so that it does not contain at least one
exogenous variable. Let us denote by UE the set of observed variables uncorrelated
with any variable in E. Then the most non-Gaussian observed variable in UE is
exogenous: J(xi) is maximum in UE ⇒ xi=ei.

4 It would be rather easy to show that our algorithm in Section 3.3 allows Gaussian
errors as well.
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Proof First, the set Vx is the union of three disjoint sets: E, UE and CE , where
CE is the set of observed variables in Vx\E correlated with a variable in E. By
definition, any variable in UE are not correlated with any variable in E. Since the
faithfulness is assumed, the zero correlations are only due to the graph structure.
Therefore, there is no directed path from any variable in E to any variable in
UE . Similarly, there is a directed path from each (exogenous) variable in E to
a variable in CE . Next, there can be no directed path from any variable in CE

to any variable in UE . Otherwise, there would be a directed path from such a
variable in E from which there is a directed path to a variable in CE to a variable
in UE through the variable in CE . Then, due to the faithfulness, the variable
in E must correlate with the variable in UE , which contradicts the definition of
UE .

To sum up, there is no directed path from any variable in E ∪ CE to any
variable in UE . Since any directed path from the external influence ei associated
with any variable xi in Vx must go through xi, there is no directed path from
the external influence associated with any variable in E ∪CE to any variable in
UE . In other words, there can be directed paths from only the external influences
associated with any variables in UE to some variables in UE . Then, we again
have an ICA model: x̃=Ã′ẽ, where x̃ and ẽ are vectors whose elements are the
variables in UE and corresponding external influences in e in Eq. (5), and Ã′

is the corresponding submatrix of A′ in Eq. (5). Recursively applying Lemma 1
shows that the most non-Gaussian variable in UE is exogenous.

To find uncorrelated variables, we simply use the ordinary Gaussianity-based
testing method [10] and control the false discovery rate [11] to 5% for multiplicity
of tests. Though non-parametric methods [10] is desirable for more rigorous
testing in the non-Gaussian setting, we used the Gaussian method that is more
computationally efficient and seems to work relatively well in our simulations.
Future work would address what is the better testing procedure taking non-
Gaussianity into account.

3.3 Exogenous generating variable finder: EggFinder

Based on the discussions in the previous subsection, we propose an algorithm
to find exogenous variables one by one, which we call EggFinder (ExoGenous
Generating variable Finder):

1. Given Vx, initialize E=∅, U
(1)
E =Vx, and m:=1.

2. Repeat until no variables xi are uncorrelated with exogenous variable can-
didates, i.e., U

(m)
E =∅:

(a) Find the most non-Gaussian variable xm in U
(m)
E :

xm = arg max
x∈U

(m)
E

J(x), (6)

where J is the non-Gaussianity measure in Eq. (2) with

G(x) = − exp(−x2/2). (7)
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(b) Add the most non-Gaussian variable xm to E, that is, E=E∪{xm}.
(c) Let U

(m+1)
E to be the set of variables xi uncorrelated with any variable

in E, and m:=m+1.

In Step 2c, we use the Gaussianity-based testing method and control the false
discovery rate to 5%.

4 Experiments on artificial data

We studied the performance of EggFinder when p≫n under a linear non-Gaussian
acyclic model having a sparse graph structure and various degrees of error non-
Gaussianity. Many real-world networks such as gene networks are often consid-
ered to have scale-free graph structures. However, as far as we know, there is no
standard way to create a directed scale-free graph. Therefore, we first randomly
created a (conventional) sparse directed acyclic graph with p=1,000 variables
using a standard software Tetrad (http://www.phil.cmu.edu/projects/tetrad/).
The resulting graph contained 1,000 edges and ℓ=171 exogenous variables. We
randomly determined each element of the matrix B in the model (4) to follow
this graph structure and make the standard deviations of xi owing to parent
observed variables ranged in the interval [0.5, 1.5].

We generated non-Gaussian exogenous variables and errors as follows. We
randomly generated a non-Gaussian exogenous observed variable xi(=ei) that
was sub- or super-Gaussian with probability 50%. We first generated a Gaussian
variable zi with zero mean and unit variance and subsequently transformed
it to a non-Gaussian variable by si = sign(zi)|zi|qi . The nonlinear exponent
qi was randomly selected to lie in [0.5, 0.8] or [1.2, 2.0] with probability 50%.
The former gave a sub-Gaussian symmetric variable, and the latter a super-
Gaussian symmetric variable. Finally, the transformed variable si was scaled
to the standard deviation randomly selected in the interval [0.5, 1.5] and was
taken as an exogenous variable. Next, for each error ei, we randomly generated
h (h=1, 3, 5 and 50) non-Gaussian variables having unit variance in the same
manner as for exogenous variables and subsequently took the sum of them. We
then scaled the sum to the standard deviation selected similarly to the cases of
exogenous variables and finally took it as an error ei. A larger h (the number of
non-Gaussian variables summed) would generate a less non-Gaussian error due
to the central limit theorem.

Finally, we randomly generated 1,000 datasets under each combination of h
and n (n=30, 60, 100 and 200) and fed the datasets to EggFinder. For each
combination, we computed percentages of datasets where all the top m esti-
mated variables were actually exogenous. In Fig. 1, the relations between the
percentage and m are plotted for some representative conditions due to the lim-
ited space. First, in all the conditions the percentages monotonically decrease
when m increases. Second, the percentages generally increase when the sample
size n increases. Similar changes of the percentages are observed when the errors
are less non-Gaussian. This is reasonable since a larger n enables more accurate



8 Y. Sogawa et al.

Fig. 1. Percentages of datasets where all the top m estimated variables were actually
exogenous under (a) n=60; (b) n=200.

estimation of non-Gaussianity and correlation, and a larger h generates data
more consistent with the assumptions of the model (4). In summary, EggFinder
successfully finds a set of exogenous variables up to more than m=10 in many
practical conditions. However, EggFinder may not find all the exogenous vari-
ables when p≫n, although it asymptotically finds all the exogenous variables if
all the assumptions made in Lemmas 1 and 2 hold.

Interestingly, EggFinder did not fail completely and identified a couple of
exogenous variables even for the h=1 condition where the distributional as-
sumption on errors was most likely to be violated. This is presumably because
the endogenous variables are sums of non-Gaussian errors and exogenous vari-
ables, so due to the central limit theorem they are likely to be less non-Gaussian
than the exogenous variables, even if the errors and exogenous variables have
the same degree of non-Gaussianity.

5 Application to microarray gene expression data

To evaluate the practicality of EggFinder, we analyzed a real-world dataset of
DNA microarray collected in experiments on human breast cancer cells [12],
where epidermal growth factor EGF was dosed to the breast cancer cells, and
their gene expression levels were measured. The experiment was conducted with
completely random sampling of the cells under every combination of two factors.
The first factor was the concentration of EGF (0.1, 0.5, 1.0, and 10.0 nmol/ℓ),
and the second factor was the elapsed time after its dose (5, 10, 15, 30, 45,
60 and 90 minutes). The total number of experimental conditions was 27. No
experiment under the condition of the concentration of EGF 10.0 nmol/ℓ at 45
minutes elapsed time was conducted. For each condition, gene expression levels
of 22,277 genes of were measured using Affymetrix GeneChip microarrays.

As a standard preprocessing, we first conducted t-tests for the differences of
means of the gene expression levels between the lowest and highest concentration
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Table 1. Candidates of exogenous genes
found by EggFinder.

The genes likely
The othersto be exogenous

ACBD3 CAPRIN2
ARPC2 CDC2L6
EIF3M FKBP15
GULP1 IFT52
MED13 KDM6B
MUT LOC100134401

NCOA2 LOC202181
NOLC1 PHF20L1
PPIB PMS2L2

RBMS1 PPDPF
RRM1 PPIH
RSRC1 PPPDE1
SET RAB14

SKAP2 SH3YL1
UBE2D2

Fig. 2. A part of the pathway net-
work from EGFR to candidates found by
EggFinder. The genes boxed and indi-
cated in italic type are the candidates.

conditions of EGF under 5, 10, 15 and 30 minutes elapsed time. We then selected
1,000 genes that expressed the most significance of the differences since such
genes were likely to relevant to EGF dosing. Thus, we obtained a data matrix
with the number of variables p=1,000 and the sample size n=27.

Subsequently, we applied EggFinder to the data matrix. Table 1 shows 29
candidates of exogenous genes found by EggFinder. To evaluate the candidates,
we obtained gene pathways from EGF receptor EGFR to the candidates by In-
genuity Pathways Database (http://www.ingenuity.com/) which is a literature-
based biological pathway database. A part of the gene pathways are shown in
Fig. 2 where both a dashed line and a solid line stand for a direct influence from
a gene to another gene. A dashed line goes through some intermediate factor
such as enzymes, while a solid line does not. In the obtained gene pathway net-
work, 15 of the 29 candidates listed in the left column in Table 1 are reached
from EGFR within two edges. These 15 candidates are likely to be exogenous
under the biological knowledge. However, it dose not mean that the other 14
candidates listed in the right column in Table 1 are not exogenous at all since
the biological knowledge on the exogeneity of genes has not been sufficiently ac-
cumulated in the database. We merely obtained no strong evidence that the 14
candidates are exogenous by Ingenuity Pathways Database. For instance, among
the 14 candidates, CAPRIN2 might be also expected to be exogenous since it is
known to be induced by FGF (Fibroblast Growth Factor) similar to EGF [13].
In biological aspects, the relation between EGFR and these 14 candidates are
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worth to be examined. By using EggFinder, we can narrow down to the genes
worth for examining.

6 Conclusion

We proposed a method to find exogenous variables from data having orders of
magnitude more variables than observations. Experiments on microarray gene
expression data showed that our method is promising. This would be an impor-
tant first step for developing advanced causal analysis methods in the challenging
situations p≫n.
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