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Abstract

Many statistical methods have been proposed to estimate causal models in
classical situations with fewer variables than observations. However, modern
datasets including gene expression data increase the needs of high-dimensional
causal modeling in challenging situations with orders of magnitude more vari-
ables than observations. In this paper, we propose a method to find exoge-
nous variables in a linear non-Gaussian causal model, which requires much
smaller sample sizes than conventional methods and works even under or-
ders of magnitude more variables than observations. Exogenous variables
work as triggers that activate causal chains in the model, and their identifi-
cation leads to more efficient experimental designs and better understanding
of the causal mechanism. We present experiments with artificial data and
real-world gene expression data to evaluate the method.
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1. Introduction

Many empirical sciences aim to discover and understand causal mech-
anisms underlying their objective systems such as natural phenomena and
human social behavior. An effective way to study causal relationships is
to conduct a controlled experiment. However, performing controlled experi-
ments is often ethically impossible or too expensive in many fields including
bioinformatics (di Bernardo et al., 2005) and neuroinformatics (Londei et al.,
2006). Thus, it is important to develop methods for causal inference based
on the data that do not come from such controlled experiments.

Many methods have been proposed to estimate causal models in classical
situations with fewer variables than observations (p<n, p: the number of
variables and n: the number of observations). A linear acyclic model that
is a special case of Bayesian networks is typically used to analyze causal
effects between continuous variables (Pearl, 2000; Spirtes et al., 1993). Esti-
mation of the model commonly uses covariance structure of data only and in
most cases cannot identify the full structure (edge directions and connection
strengths) of the model with no prior knowledge on the structure (Pearl,
2000; Spirtes et al., 1993). Shimizu et al. (2006) proposed a non-Gaussian
variant of Bayesian networks called LiNGAM and showed that the full struc-
ture of a linear acyclic model is identifiable based on non-Gaussianity without
any prior knowledge, which is a significant advantage over the conventional
methods (Pearl, 2000; Spirtes et al., 1993).

However, most works in statistical causal inference including Bayesian
networks have discussed classical situations with fewer variables than obser-
vations (p<n), whereas modern datasets including microarray gene expres-
sion data increase the needs of high-dimensional causal modeling in chal-
lenging situations with orders of magnitude more variables than observa-
tions (p≫n)(di Bernardo et al., 2005; Londei et al., 2006). Here we consider
situations in which p is in the order of 1,000 or more, while n is around
50 to 100. For such high-dimensional data, the previous methods are often
computationally intractable or statistically unreliable.

In this paper, we propose a method to find exogenous variables in a linear
non-Gaussian causal model, which requires much smaller sample sizes than
conventional methods and works even when p≫n. The key idea is to identify
variables which are exogenous instead of estimating the entire structure of
the model. The simpler task of finding exogenous variables than that of the
entire model structure would require fewer observations to work reliably. The
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new method uses some non-Gaussianity measures developed in a fairly recent
statistical technique called independent component analysis (ICA).

Exogenous variables work as triggers that activate a causal chain in the
model, and their identification leads to more efficient experimental designs
of practical interventions and better understanding of the causal mechanism.
A promising application of Bayesian networks for gene expression data is
detection of drug-target genes (di Bernardo et al., 2005). The new method
proposed in this paper can be used to find genes firstly affected by a drug
and triggering the gene network.

The paper is structured as follows. We first review some studies on
non-Gaussianity and linear causal models in Section 2. We then define a
non-Gaussian causal model and propose a new algorithm to find exogenous
variables in Section 3. The performance of the algorithm is evaluated by
using artificial data and real-world gene expression data in Sections 4 and 5.
Section 6 concludes the paper.

2. Background principles

2.1. Non-Gaussianity and Negentropy

Probability distributions excluding Gaussian distributions are called non-
Gaussian distributions. Any variable which follows a non-Gaussian distribu-
tion is called a non-Gaussian variable. Characteristics of the non-Gaussian
distributions and the non-Gaussian variables have been extensively studied
in the research field of Independent component analysis (ICA) (Hyvärinen
et al., 2001). Hyvärinen (1999) proposed a class of non-Gaussianity measures
named negentropy to evaluate the non-Gaussian degree of the distribution
of a variable x:

J(x) = [E{G(x)} − E{G(z)}]2, (1)

where G is a nonlinear and non-quadratic function and z is a Gaussian vari-
able with zero mean and unit variance. In practice, G(s)=− exp(−s2/2) are
widely used for G (Hyvärinen et al., 2001), and the expectations in Eq. (1)
are replaced by their sample means. In the rest of the paper, we say that a
variable u is more non-Gaussian than a variable v if J(u)>J(v).

2.2. Linear acyclic causal models

Causal relationships between continuous observed variables xi (i = 1, · · · ,
p) are typically assumed to be (i) linear and (ii) acyclic (Pearl, 2000; Spirtes
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et al., 1993). For simplicity, we assume that the variables xi are of zero mean.
Let k(i) denote such a causal order of xi that no later variable causes any
earlier variable. Then, the linear causal relationship can be expressed as

xi :=
∑

k(j)<k(i)

bijxj + ei, (2)

where ei is an external influence associated with xi and is of zero mean. (iii)
The ’faithfulness’ (Spirtes et al., 1993) is typically assumed. In this context,
the faithfulness implies that correlations between variables xi are entailed by
the graph structure, i.e., the zero/non-zero status of bij. (iv) The external
influences ei are assumed to be independent, which implies there are ’no
unobserved confounders’ (Spirtes et al., 1993).

We emphasize that xi is equal to ei if it is not influenced by any other
observed variable xj (j ̸=i) inside the model, i.e., all the bij (j ̸=i) are zeros.
That is, an external influence ei is observed as xi. Then the xi is called an
exogenous observed variable. Otherwise, ei is called an error. For example,
consider the model defined by

x1 = e1,

x2 = 1.5x1 + e2,

x3 = 0.8x1 − 1.3x2 + e3.

x1 is equal to e1 since it is not influenced by either x2 or x3. Thus, x1 is an
exogenous observed variable, and e2 and e3 are errors. Note that there exists
at least one exogenous observed variable xi(=ei) due to the acyclicity and no
unobserved confounder assumptions.

3. A new method to identify exogenous variables

3.1. A new non-Gaussian linear acyclic causal model

We make an additional assumption on the distributions of ei to the model
(2) and define a new non-Gaussian linear causal model. Let a p-dimensional
vector x be a set of the observed variables xi and a p-dimensional vector e
be a set of external influences ei. Let each element bij of a p×p matrix B
represent a causal effect from xj to xi where the diagonal elements bii are all
zeros. Then the model (2) is written in a matrix form as:

x = Bx + e. (3)
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Recall that the set of the external influences ei consist of both exogenous
observed variables and errors. We make the following additional assumption
to characterize difference between exogenous variables and errors, Assump-
tion 1: External influences that correspond to errors are less non-Gaussian
than exogenous variables. That is, the model (3)=the model (2)+Assumption
1. The assumption reflects a fact that observed variables are often consid-
erably non-Gaussian in many fields (Hyvärinen et al., 2001). In particular,
external influences that correspond to exogenous variables are more non-
Gaussian than those corresponding to errors since the errors have been typi-
cally considered to arise as sums of a number of unobserved (non-Gaussian)
independent variables, which is why classical methods assume that errors are
Gaussian resorting to the central limit theorem. However, in reality, almost
all the errors are not exactly Gaussian. Therefore, we allow the errors to be
non-Gaussian as long as they are less non-Gaussian than exogenous variables
as well as to be Gaussian. We further discuss the validity of Assumption 1 in
the next subsection. The distinction between exogenous variables and errors
leads to a simple estimation of exogenous variables proposed in Section 3.3
and 3.4.

3.2. Central limit theorem for independent and not identically distributed
random variables

The assumption in the previous section stating that errors are less non-
Gaussian than exogenous variables is supported by a generic nature of the
central limit theorem explained in this section. Moreover, non-exogenous
observed variables, i.e., endogenous observed variables, are expected to be
less non-Gaussian than exogenous variables by the nature of the central limit
theorem. A key of these considerations is a condition where the central limit
theorem holds. The classical central limit theorem states that the proba-
bility distribution of the sum of a sufficiently large number of independent
and identically distributed random variables will be approximately Gaus-
sian. However, the identicality among the distributions does not always hold
in many practical cases, and thus Gaussianity of the summed variables are
not obviously ensured by the theorem. A past study assessed a wider con-
dition called Lindeberg’s condition where the sum of such random variables
will be Gaussian (Billingsley, 1986). Let us assume that xk (k = 1, · · · , n)
are independent random variables following its own distribution function Fk

which has a finite mean µk = E[xk] and a finite variance σ2
k = Var[xk]. We
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denote the sum of the variances by Dn =
∑n

k=1 σ2
k. The Lindberg’s condition

is as follow.

Theorem 1 (Lindeberg’s condition). If the random variables satisfy the
Lindeberg’s condition:

lim
n→∞

1

Dn

n∑
k=1

∫
|xk−µk|≥ϵ

√
Dn

(xk − µk)
2dFk = 0 for ∀ϵ,

the sum of a sufficient number of independent random variables will be Gaus-
sian as n → ∞.

Though this is only a sufficient condition, the inverse is also true if the
random variables xk satisfies the following condition:

lim
n→∞

max
k=1,...,n

σ2
k

D2
n

= 0. (4)

That is, the Lindeberg’s condition is sufficient and neccesary unless no ran-
dom variable has a quite large variance nearly equal to an infinite variance.
It is expected that the random variables hardly have distributions other than
ones having Lindeberg’s condition in most cases. Therefore, an error which
is a sum of many unobserved independent variables widely tends to be less
Gaussian than exogenous observed variables which reflects a unique or a few
unobserved (non-Gaussian) independent variables. This supports the afore-
mentioned Assumption 1 which states that an error which is considered as
a sum of unobserved random variables is less non-Gaussian than exogenous
variables.

3.3. Identification of exogenous variables based on non-Gaussianity and un-
correlatedness

In this section, we present two lemmas that ensure the validity of our
algorithm to find exogenous variables xi(= ei). Before showing the lemmans,
we introduce a conjecture widely made in the region of Independent Compo-
nent Analysis (ICA) (Hyvärinen et al., 2001) since the non-Gaussian linear
acyclic model proposed in Section2.2 is considered as a variant model of ICA:

x = Ae, (A = (I − B)−1) (5)

Let W̃=A−1. Then we have e=W̃x. ICA aims to obtain a demixing ma-
trix W̃ from observed data of x. A major estimation principle for W̃ is to
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find such W that maximizes the sum of non-Gaussianity of external influ-
ences J(wT x), which is known to be equivalent to maximize independence
between the estimates when the estimates are constrained to be uncorre-
lated (Hyvärinen et al., 2001). In the region of ICA, a following conjecture
is widely made, Conjecture 1: If a function G in the non-Gaussianity mea-
sure J(x) is a sufficiently smooth even function such as G(x) = exp(−x2/2),
∃ei ∈ e ei=arg maxw∈Rp J(wT x). This conjecture states that a sum of even
two observed variables is less non-Gaussian than the most non-Gaussian ex-
ternal influence in e. Then, we employ this conjecture and show the lemmas
and their proof.

Lemma 1. Let us denote by Vx the set of all the observed variables in the
model (3). Assume that the input data of x follows the model (3) and that
Conjecture 1 is true. Then, the most non-Gaussian observed variable xi in
Vx is exogenous: J(xi) is maximum in Vx ⇒ xi = ei.

Proof. Due to the model assumption, B is strictly lower triangular in the
model (3). Therefore, there is at least one relation such as xi = ei. This
implies that there is at least one exogenous observed variable in Vx. Because
of Conjecture 1, J(ei) ≥ J(wT x) for all w ∈ Rp. This implies J(ei) ≥
J(xj) for all xj ∈ x. Since Assumption 1 states that external influences
that correspond to errors are less non-Gaussian than exogenous variables, the
most non-Gaussian external influence is an exogenous variable, and therefore,
the most non-Gaussian observed variable xi is an exogenous observed variable
ei, i.e., J(xi) is maximum in Vx ⇒ xi = ei.

Lemma 2. Assume the assumptions of Lemma 1. Let us denote by E a
strict subset of exogenous observed variables in Vx so that it does not contain
at least one exogenous variable. Let us denote by UE the set of observed
variables uncorrelated with any variable in E. Then the most non-Gaussian
observed variable xi ∈ UE is exogenous: J(xi) is maximum in UE ⇒ xi=ei.

Proof. First, the set Vx is the union of three disjoint sets: E, UE and
CE, where CE is the set of observed variables in Vx\E correlated with a
variable in E. By definition, any variable in UE are not correlated with any
variable in E. Since the faithfulness is assumed, the zero correlations are
only due to the graph structure. Therefore, there is no directed path from
any variable in E to any variable in UE. Similarly, there is a directed path
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from each (exogenous) variable in E to a variable in CE. Next, there can be
no directed path from any variable in CE to any variable in UE. Otherwise,
there would be a directed path from such a variable in E to a variable in UE

through a variable in CE. Then, because of the faithfulness, the variable in
E must correlate with the variable in UE, which contradicts the definition of
UE.

To sum up, there is no directed path from any variable in E ∪ CE to
any variable in UE. Since any directed path from the external influence ei

associated with any variable xi in Vx must go through xi, there is no directed
path from the external influence associated with any variable in E ∪ CE to
any variable in UE. In other words, there can be directed paths from only the
external influences associated with any variables in UE to some variables in
UE. Then, we again have our new non-Gaussian linear acyclic causal model:
x̃=B̃x̃ + ẽ, where x̃ and ẽ are vectors whose elements are the variables
in UE and corresponding external influences in e of Eq. (3), and B̃ is the
corresponding submatrix of B in Eq. (3). Recursively applying Lemma 1
shows that the most non-Gaussian variable in UE is always exogenous.

To find uncorrelated variables, we simply use the ordinary Gaussianity-
based testing method (Lehmann & Romano, 2005) and control the false dis-
covery rate (Benjamini & Hochberg, 1995) to 5% for multiplicity of tests.
Though non-parametric methods (Lehmann & Romano, 2005) is desirable
for more rigorous testing in the non-Gaussian setting, we used the Gaussian
method that is more computationally efficient and seems to work relatively
well in our simulations. Future work would address what is the better testing
procedure taking non-Gaussianity into account.

3.4. ExoGenous Generating variable Finder: EggFinder

Based on the discussions in the previous subsection, we propose an al-
gorithm to successively find exogenous observed variables, which we call
EggFinder (ExoGenous Generating variable Finder):

1. Given Vx, initialize E=∅, U
(1)
E =Vx, and m:=1.

2. Repeat until no variables xi are uncorrelated with exogenous variable can-
didates, i.e., U

(m)
E =∅:

(a) Find the most non-Gaussian variable xm in U
(m)
E :

xm = arg max
x∈U

(m)
E

J(x), (6)
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where J is the non-Gaussianity measure in Eq. (1) with

G(x) = − exp(−x2/2). (7)

(b) Add the most non-Gaussian variable xm to E, that is, E=E∪{xm}.
(c) Let U

(m+1)
E be the subset of U

(m)
E where variables are uncorrelated

with xm, and m:=m+1.

In Step 2(c), we use the Gaussianity-based testing method and control the
false discovery rate to 5%.

4. Experiments on artificial data

We studied the performance of EggFinder when p≫n under a linear non-
Gaussian acyclic model having a sparse graph structure and various degrees
of error non-Gaussianity. Many real-world networks such as gene networks
are often considered to have scale-free graph structures. However, as far as we
know, there is no standard way to create a directed scale-free graph. There-
fore, we first randomly created a sparse directed acyclic graph with p=1,000
variables using a software Tetrad (http://www.phil.cmu.edu/projects/tetrad/,
Accessed in Nov. 14). The resulting graph contained 1,000 edges and ℓ=171
exogenous variables. We randomly determined each element of the matrix
B in the model (3) to follow this graph structure and make the standard
deviations of xi owing to parent observed variables ranged in the interval
[0.5, 1.5].

We generated exogenous variables and errors as follows. We randomly
generated a non-Gaussian exogenous observed variable xi(=ei) that was sub-
or super-Gaussian with probability 50%. We first generated a Gaussian vari-
able zi with zero mean and unit variance and subsequently transformed it
to a non-Gaussian variable by si = sign(zi)|zi|qi . The nonlinear exponent qi

was randomly selected to lie in [0.5, 0.8] or [1.2, 2.0] with probability 50%.
The former gave a sub-Gaussian symmetric variable, and the latter a super-
Gaussian symmetric variable. Finally, the transformed variable si was scaled
to the standard deviation randomly selected in the interval [0.5, 1.5] and was
taken as an exogenous variable. Next, for each error ei, we randomly gen-
erated h (h=1, 3, 5 and 50) non-Gaussian variables having unit variance in
the same manner as for exogenous variables and took the sum of them. We
then scaled the sum to the standard deviation selected similarly to the cases
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of exogenous variables and finally took it as an error ei. A larger h would
generate a less non-Gaussian error due to the central limit theorem.

Finally, we randomly generated 1,000 datasets under each combination
of h and n (n=30, 60, 100 and 200) and fed the datasets to EggFinder. For
each combination, we computed percentages of datasets where all the top m
estimated variables were actually exogenous. In Fig. 1, the relations between
the percentage and m are plotted for some representative conditions due to
the limited space. First, in all the conditions the percentages monotonically
decrease when m increases. Second, the percentages generally increase when
the sample size n increases. Similar changes of the percentages are observed
when the errors are less non-Gaussian. This is reasonable since a larger
n enables more accurate estimation of non-Gaussianity and correlation and
generates data more consistent with the assumptions of the model (3). In
summary, EggFinder successfully finds a set of exogenous variables up to
more than m=10 in many conditions. However, EggFinder may not find all
the exogenous variables when p≫n, although it asymptotically finds all the
exogenous variables if all the assumptions made in Lemmas 1 and 2 hold.

Interestingly, EggFinder did not fail completely and identified a couple
of exogenous variables even for the h=1 condition where the distributional
assumption on errors was most likely to be violated. This is presumably
because the errors and the exogenous variables might satisfy the condition
mentioned in Section 3.2, and therefore, endogenous variables, especially the
variables being lower in the network, which are sums of errors and exogenous
variables are likely to be less non-Gaussian than the exogenous variables due
to the central limit theorem, even if the errors and the exogenous variables
have the same degree of non-Gaussianity.

5. Application to microarray gene expression data

To evaluate the practicality of EggFinder, we analyzed a real-world dataset
of DNA microarray collected in experiments on human breast cancer cells
(Ivshina et al., 2006), where epidermal growth factor EGF was dosed to the
breast cancer cells, and their gene expression levels were measured. The ex-
periment was conducted with completely random sampling of the cells under
every combination of two factors. The first factor was the concentration of
EGF (0.1, 0.5, 1.0, and 10.0 nmol/ℓ), and the second factor was the elapsed
time after its dose (5, 10, 15, 30, 45, 60 and 90 minutes). The total num-
ber of experimental conditions was 27. No experiment under the condition
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Figure 1: Percentages of datasets where all the top m estimated variables were actually
exogenous under (a) n=60; (b) n=200.

of the concentration of EGF 10.0 nmol/ℓ at 45 minutes elapsed time was
conducted. For each condition, gene expression levels of 22,277 genes were
measured using Affymetrix GeneChip microarrays.

As a standard preprocessing, we first conducted t-tests for the differences
of means of the gene expression levels between the lowest and highest con-
centration conditions of EGF under 5, 10, 15 and 30 minutes elapsed time.
We then selected 1,000 genes that expressed the most significance of the dif-
ferences since such genes were likely to be relevant to EGF dosing. Thus, we
obtained a data matrix with p=1,000 and n=27.

Subsequently, we applied EggFinder to the data matrix. Table 1 shows
29 candidates of exogenous genes found by EggFinder. To evaluate the can-
didates, we obtained gene pathways from EGF receptor EGFR to the can-
didates by Ingenuity Pathways Database (IPD, http://www.ingenuity.com/,
Accessed in Sep. 30) which is a literature-based biological pathway database.
The gene pathway network from EGFR to the candidates is shown in Fig. 2
where both a dashed line and a solid line stand for a direct influence from a
gene to another gene. A dashed line goes through some intermediate factor
such as enzymes, while a solid line does not. In the obtained gene pathway
network, 15 of the 29 candidates listed in the left column in Table 1 are
reached from EGFR within two edges. These 15 candidates are likely to be
exogenous under the biological knowledge. However, it dose not mean that
the other 14 candidates listed in the right column in Table 1 are not exoge-
nous at all since the biological knowledge on the exogeneity of genes has not
been sufficiently accumulated in the database. We merely obtained no strong
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Table 1: Candidates of exogenous genes
found from the dataset of EGF dosing.

The genes likely
The othersto be exogenous

ACBD3 CAPRIN2
ARPC2 CDC2L6
EIF3M FKBP15
GULP1 IFT52
MED13 KDM6B
MUT LOC100134401

NCOA2 LOC202181
NOLC1 PHF20L1
PPIB PMS2L2

RBMS1 PPDPF
RRM1 PPIH
RSRC1 PPPDE1
SET RAB14

SKAP2 SH3YL1
UBE2D2

Table 2: Candidates of exogenous genes
found from the dataset of HRG dosing.

The genes likely
The othersto be exogenous

RELA ARGEF10
CFLAR HTATSF1
PRPF6 KDM4A
BRCA2 C19ORF40
BUB1 TOR1AIP1
ATF6 CLPTM1

TGOLN2 HNRNPUL2
MAMLD1 N4BP2L2
SYNJ2 PRPF38B
NFAT5 CAMSAP1L1
EIF4B ZCCHC8
CLIC4 RCLRE1C
EWSR1 POLG2
PSME4
SART3
TCF3
USO1

evidence that the 14 candidates are exogenous by IPD. For instance, among
the 14 candidates, CAPRIN2 might be also expected to be exogenous since it
is known to be induced by FGF (Fibroblast Growth Factor) similar to EGF
(Lorén et al., 2009). In biological aspects, the relation between EGFR and
these 14 candidates are worth to be examined.

After evaluating the practicality of EggFinder, we analyzed another dataset
of DNA microarray collected in experiments where HRG was dosed to the
breast cancer cells instead of EGF. The experiments were conducted in the
same manner as for those where EGF was dosed. Unlike the dataset of EGF
dosing, there was no lack of experiment, and thus the total number of ex-
perimental conditions was 28. We conducted the same preprocessing and
selected 1000 genes from 22277 genes that expressed the most significance of
the differences of means of the gene expression levels between the lowest and
highest concentration conditions of HRG. Then, we obtained a data matrix
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Figure 2: The pathway network from EGFR to candidates found by EggFinder from the
dataset of EGF dosing. The genes boxed and indicated in italic type are the candidates.

with the number of variables p=1, 000 and n=28. Following after the analysis
for the dataset of EGF dosing, we applied EggFinder to the data matrix to
derive up to 30 candidates of exogenous genes.

Eventually, we derived 30 candidates of exogenous genes shown in Table 2.
Then, we evaluated the candidates in the same way of the evaluation of ones
derived from the dataset of EGF dosing. As a result, 17 of the 30 candidates
listed in the left column in Table 2 are likely to be actually exogenous, and
the other 13 candidates listed in the right column are worth to be examined.
In these manners, we can narrow down to the genes worth for examining by
using EggFinder.
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6. Conclusion

We proposed a method to find exogenous variables from data having
orders of magnitude more variables than observations. Experiments on mi-
croarray gene expression data showed that our method is promising. This
would be an important first step for developing advanced causal analysis
methods in the challenging situations p≫n.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.
B , 57 , 289–300.

di Bernardo, D., Thompson, M., Gardner, T., Chobot, S., Eastwood, E.,
Wojtovich, A., Elliot, S., Schaus, S., & Collins, J. (2005). Chemogenomic
profiling on a genome-wide scale using reverse-engineered gene networks.
Nature Biotech., 23 , 377–383.

Billingsley, P. (1986). Probability and measure. Wiley Series in Prob. and
Math. Stat.: Probability and Mathematical Statistics.

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans. on Neural Networks , 10 , 626–634.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component
analysis . New York: Wiley.

Ivshina, A. V., George, J., Senko, O., Mow, B., Putti, T. C., Smeds, J.,
Lindahl, T., Pawitan, Y., Hall, P., Nordgren, H., Wong, J. E. L., Liu, E. T.,
Bergh, J., Kuznetsov, V. A., & Miller, L. D. (2006). Genetic reclassification
of histologic grade delineates new clinical subtypes of breast cancer. Cancer
Res., 66 , 10292–10301.

Lehmann, E., & Romano, J. (2005). Testing Statistical Hypotheses . Springer.

Londei, A., D’Ausilio, A., Basso, D., & Belardinelli, M. O. (2006). A new
method for detecting causality in fMRI data of cognitive processing. Cog.
Proc., 7 , 42–52.

14



Lorén, C., Schrader, J., Ahlgren, U., & Gunhaga, L. (2009). FGF signals
induce Caprin2 expression in the vertebrate lens. Differentiation, 77 , 386–
394.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Camb. Univ.
Press.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kerminen, A. (2006). A linear
non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res., 7 ,
2003–2030.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction, and
Search. Springer Verlag.

15


