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Blind Source Separation by Nonstationarity of Variance:
A Cumulant-Based Approach

Aapo Hyvärinen

Abstract—Blind separation of source signals usually relies either
on the nongaussianity of the signals or on their linear autocorrela-
tions. A third approach was introduced by Matsuoka et al., who
showed that source separation can be performed by using the non-
stationarity of the signals, in particular the nonstationarity of their
variances. In this paper, we show how to interpret the nonstation-
arity due to a smoothly changing variance in terms of higher order
cross-cumulants. This is based on considering the time-correlation
of the squares (energies) of the signals and leads to a simple opti-
mization criterion. Using this criterion, we construct a fixed-point
algorithm that is computationally very efficient.

Index Terms—Blind source separation, cumulants, independent
component analysis, nonstationarity, statistical signal processing.

I. INTRODUCTION

I N blind source separation [6], [8], we observe linear mix-
tures of unknown source

signals . This can be expressed
as a latent variables model

(1)

The fundamental assumption is that the source signals are sta-
tistically independent. The problem is then to estimate both the
mixing matrix and the source signals , using observa-
tions of the mixtures alone. For simplicity, we assumed
here that the dimension of equals the dimension of ,
which need not necessarily be the case. Likewise, the matrix
is assumed to be nonsingular.

Estimation of this model is not possible in general: If the
are independently identically distributed (i.i.d.) samples from a
Gaussian distribution, neither the matrixnor the source sig-
nals can be properly estimated [3], [14]. However, if some
assumptions on the are made in addition to independence,
the model can be estimated. Most source separation methods
use one of the following two assumptions. First, one can assume
that the source signals have non-Gaussian (marginal) dis-
tributions [3], [7], [8]. Second, one can assume that the source
signals have (linear) autocorrelations that are nonzero and dis-
tinct [2], [10], [14].

A third assumption that allows estimation of the model was
introduced by Matsuokaet al. [9]. This was the nonstationarity
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of the variances. If the variances of the source signals are non-
stationary and change smoothly in time, the model can be esti-
mated. Note that all these three assumptions are independent in
the sense that none of them implies or presupposes any of the
other assumptions.

In this paper, we propose a simple estimation method for non-
stationary sources. First, we show how to formulate variance
nonstationarity (where the variance is changing smoothly) using
a higher order cross-cumulant. Then we derive a fixed-point al-
gorithm for maximization of this cross-cumulant following the
derivation of the FastICA algorithm in [7]. The resulting estima-
tion method is simpler and computationally more efficient than
the one originally proposed by Matsuokaet al. [9] and shows
clearly the connection of nonstationarity to the cumulant-based
methods widely used in many areas of signal processing.

II. NONSTATIONARITY AND CUMULANTS

A. Nonstationarity and Energy Correlation

To illustrate the variance nonstationarity in its purest form,
let us look at the source signal in Fig. 1. This source signal
was created so that it has a Gaussian marginal density and no
linear timecorrelation, i.e., for any lag

. (All signals here are assumed to have zero mean.) Thus,
source signals of this kind could not be separated by ordinary
source separation methods based on marginal non-Gaussianity
or (linear) time correlations. On the other hand, the nonstation-
arity of the signal is clearly visible.

In this paper,we propose that nonstationarity due to smoothly
changing variance could be measured by cumulants. To see
how this works, consider the energy (i.e., the squares )
of the signal in Fig. 1. The energies of the initial 1000 time
points are shown in Fig. 2. The energy of the signal has a power
spectrum mostly concentrated at lower frequencies. This is
of course a consequence of the assumption that the variance
changes smoothly in time. Thus, the variance nonstationarity is
related to the time structure of the energies.

Before proceeding, note that the nonstationarity of a signal
depends on the time-scale and the level of the detail in the model
of the signal. If the nonstationarity of the variance is incorpo-
rated in the model (by hidden Markov models, for example), the
signal no longer needs to be considered nonstationary [12]. This
is the approach that we choose in the following. In particular, the
energies arenot considered nonstationary, but rather they are
considered as stationary signals that are time-correlated. This is
simply a question of changing the viewpoint.

B. A Cumulant-Based Criterion

Inspired by the example above, we could thus measure the
variance nonstationarity of a signal using a
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Fig. 1. A signal with nonstationary variance.

Fig. 2. The energy (i.e., squares) of the initial part of the signal in Fig. 1. This is clearly correlated in time.

measure based on the autocorrelation of energy:
where is some lag constant, often equal to one. For the

sake of mathematical simplicity, it is often useful to use cumu-
lants instead of such basic higher order correlations. Cumulants
also have useful algebraic properties that enable a powerful al-
gorithm as will be seen below. The cumulant corresponding
to the autocorrelation of energy is given by the fourth-order
cross-cumulant

cum

(2)

This could be considered as a normalized version of the auto-
correlation of energy. In particular, if the signal has no linear
time-correlations, we have and this cumu-
lant is equal to the covariance of the energies: cov

.
In order for our approach to work, we must assume that the

cross-cumulants cum are not
zero for the source signals. This is analogous to the case in basic
ICA using kurtosis [4], [7], where it has to be assumed that
the kurtoses of the sources are not zero. In our case where the
variances are changing smoothly, this cumulant can actually be
assumed positive for all source signals because the first term in
(2) dominates the two normalizing terms (at least if the lag is
not too large).

In particular, this assumption implies that a source signal
must not havejointly gaussian statistics, that is, the vector

must not have a jointly Gaussian distribution.
Note that although cross-cumulants are zero for random
variables with jointly Gaussian distributions [11], they need
not be zero for variables that merely have Gaussianmarginal
distributions. Thus, positive cross-cumulants do not imply
non-Gaussian marginal distributions for the source signals,
which shows that the property measured by this cross-cumulant
is indeed completely different from the property of non-Gaus-
sianity as measured, for example, by kurtosis.

A valid separation criterion can be easily obtained using
this cross-cumulant, assuming that the corresponding cross-cu-
mulants are nonzero. The idea is to use the cross-cumulant in
exactly the same way as kurtosis in [4], [7]. Thus, we estimate
the source signals by finding the linear combinations, say

, such thatthe absolute value of the
cross-cumulant is maximized. At the same time, we must con-
strain the scale, because otherwise the cross-cumulant could be
made infinitely large by letting the norm of grow infinitely.
Just like in [4], [7], we do this by constraining the variance of

to be constant (say, equal to one). Thus, to estimate one
source signal, we solve the following optimization problem:

cum (3)

under constraint: var (4)

In fact, just as the kurtosis approach to ICA leads to the
observation that the source signals are obtained as the most
non-Gaussian (most kurtotic) linear combinations, we have
here the result that the combinations with maximally nonsta-
tionary, smooth variance give the source signals. Proof of these
properties are given next.

C. Mathematical Analysis of Criterion

Now we show in detail the validity of the criterion given
above. This linear combination is a linear combina-
tion of the source signals , say

. Using the basic properties of cumulants [7], [11],
this particular cumulant of such a linear combination can be
evaluated as

cum

cum (5)

Now, we can constrain the variance of to be equal to
unity to normalize the scale (cumulants are not scale-invariant).
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Fig. 3. Simulations with the fixed-point algorithm. The figure shows a convergence index (see text for definition) in log-scale. Solid curve: mean over ten runs.
Dashed curves: maximum and minimum over ten runs. The algorithm converged with a small number of iterations.

This implies var . Let us consider what
happens if we maximize the absolute value of the cumulants
with respect to . This is equivalent to the optimization problem

cum (6)

This optimization problem is formally identical to the one en-
countered when the absolute value of kurtosis is maximized to
find the most non-Gaussian directions. The only difference is
that the kurtoses of the source signals are replaced by the cumu-
lants measuring nonstationarity. It was proven in [4] that such
solutions to this optimization problem give the source signals.
In other words, the maxima of (6) are obtained when only one
of the is nonzero. This proof applies directly in our case as
well and thus we see that the maximally nonstationary linear
combinations give the source signals. Since the cross-cumulants
are assumed to be all positive, the problem we have here is in
fact slightly simpler since we can then simply maximize the
cross-cumulant of the linear combinations and need not neces-
sarily consider its absolute value as is done with kurtosis [4],
[7]. As with kurtosis, we must assume that the cumulants with
the time lag are nonzero. Finding such ais a further problem
in practice; taking is the basic choice.

Thus we see that maximization of the nonstationarity, as mea-
sured by the cross-cumulant, of a linear combination of the ob-
served mixtures allows for the estimation of one source signal.
This also gives a one-unit approach [4], [7] to source separation
by nonstationarity.

III. A F IXED-POINT ALGORITHM

To maximize the nonstationarity as measured by the cross-cu-
mulant, we propose a fixed-point algorithm along the same lines
as the FastICA algorithm [7] for maximizing non-Gaussianity.

To begin with, let us whiten the data. In other words, the data
is linearly transformed into a vector so that

the covariance of equals unity: . This
is a well-known preprocessing in source separation [7]. This
implies that the variance of is equal to its norm: Thus
the normalization of its variance can be done by simply dividing

by its norm.
Now, using the principle of fixed-point iteration [7], [13], let

us equate to the gradient of the cross-cumulant of .
This gives, after straightforward calculations, the following up-
date formula :

(7)

where we have multiplied the gradient by 1/2 for notational sim-
plicity and the matrix is given by

. The algorithm thus consists of iteratively
computing the new value of as in (7), normalizing to unit
norm after every step. Incidentally, if the lagis zero, the al-
gorithm reduces to the FastICA algorithm using kurtosis [7].
(More sophisticated versions of the FastICA algorithm were in-
troduced in [5].)

To estimate several source signals, different kinds of orthog-
onalization schemes need to be used [6], [7]. Basically, we use
the update formula in (7) for several different vectorsand
orthogonalize these vectors. Both deflationary and symmetric
orthogonalization can be used, see [5], [7].

The convergence of the algorithm can be proven to be cubic,
i.e., very fast. A detailed proof can be constructed as in [7]. To
adapt the proof in [7] for our case, it is enough to express the
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algorithm with respect to the transformed variable, which can
be simply obtained by computing the gradient of (5), to give

cum (8)

followed by normalization of the norm of. This can be easily
seen [7], [13] to lead to convergence ofto a vector where
only one of the is nonzero.1 The index for which will
be nonzero depends on the initial value of.2

IV. SIMULATIONS

Artificial signals as in Fig. 1, i.e., with Gaussian marginal dis-
tributions and zero linear autocovariance, were created. They
were mixed with random matrices and the fixed-point algorithm
was used to estimate the mixing matrix. The number of sources
and mixtures was four and the data size was 10 000. The algo-
rithm was run ten times with different mixing matrices.

The convergence of the algorithm is shown in Fig. 3. The
figure shows the values of a convergence index, defined as the
sums of the absolute values of the matrix , minus four. Thus
a value of zero means that was estimated perfectly. In most
cases, convergence was obtained after five iterations.

V. CONCLUSION

We considered blind source separation using the less known
principle of signal nonstationarity [9], [12]. We gave an inter-
pretation of a particular cross-cumulant as a measure of non-
stationarity (for an alternative interpretation of the cumulant,
see [1]). This leads to a fast fixed-point algorithm that is sim-
ilar to the FastICA algorithm [5], [7]. The convergence of the
algorithm is cubic, i.e., very fast, like the convergence of the
cumulant-based FastICA [7]. This computational efficiency is a
major advantage when compared to other methods for separa-
tion of nonstationary signals [9], [12]. Moreover, the algorithm
allows for sequential (deflationary) estimation of the source sig-
nals.

1In fact, this does not necessarily mean that we have found a maximum of the
cumulant. As in the case of kurtosis [7], the algorithm actually finds a maximum
of the absolute value of the cumulant. But in any case, this leads to separation
of the signals, as discussed in Section II-C.

2There is a set of measure zero in the space of initial conditions in which
convergence is not obtained [7], but we can safely assume that in practice, the
initial conditions do not lie in that set.

The choice of the estimation principle for ICA depends, of
course, on the data at hand. Marginal nongaussianity and linear
autocorrelations are certainly fundamental properties found in
many data sets. Nonstationarity due to smoothly changing vari-
ance has not been investigated as thoroughly but it is likely that
it is a strong feature of data sets in certain applications. An in-
teresting feature of this principle is that it takes into account the
time structure of the data (unlike methods based on marginal
non-Gaussianity), but it does not require the time-correlations
to be different for each source signal (unlike methods based on
linear time-correlations).
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