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Fast and Robust Fixed-Point Algorithms
for Independent Component Analysis

Aapo Hywarinen

Abstract—ndependent component analysis (ICA) is a statistical independent from each other as possible. Thus this method is
method for transforming an observed multidimensional random g special case of redundancy reduction [2].
vector into components that are statistically as |ndepend_ent _from Two promising applications of ICA are blind source sepa-
each other as possible. In this paper, we use a combination of . . . .
two different approaches for linear ICA: Comon'’s information-  'ation and feature extraction. biind source separatiof27],
theoretic approach and the projection pursuit approach. Using the observed values ot correspond to a realization of an
maximum entropy approximations of differential entropy, we m-dimensional discrete-time signa{¢), ¢ = 1, 2, ---. Then
introduce a family of new contrast (objective) functions for ICA.  the componentss;(t) are called source signals, which are
These contrast functions enable both the estimation of the whole o4y original, uncorrupted signals or noise sources. Often
decomposition by minimizing mutual information, and estima- . .
tion of individual independent components as projection pursuit such sources are statistically independent from each other, and
directions. The statistical properties of the estimators based on thus the signals can be recovered from linear mixtureby
such contrast functions are analyzed under the assumption of finding a transformation in which the transformed signals are
the Ilpear mixture model, and it is shqwn how to choos.e contrast 4q independent as possible, as in ICAfdature extractior4],
functions that are robust and/or of minimum variance. Finally, we [25], 5; is the coefficient of theth feature in the observed data

introduce simple fixed-point algorithms for practical optimization L .
of the contrast functions. These algorithms optimize the contrast VeCctorx. The use of ICA for feature extraction is motivated by

functions very fast and reliably. results in neurosciences that suggest that the similar principle
of redundancy reduction [2], [32] explains some aspects of
I. INTRODUCTION the early processing of sensory data by the brain. ICA has

ﬁl|SO applications imxploratory data analysig the same way

CE.NTRA.L problem in neural-netvyork_regeqrch, as .WeE}S the closely related method of projection pursuit [12], [16].
as in statistics and signal processing, is finding a suitable

) . : n this paper, new objective (contrast) functions and algo-
representation or transformation of the data. For computation . . . .
T S rithms for ICA are introduced. Starting from an information-
and conceptual simplicity, the representation is often sought

: . . tﬁ%oretic viewpoint, the ICA problem is formulated as min-
a linear transformation of the original data. Let us denote by -~ ° T )
ization of mutual information between the transformed

T . .
x = (21,22, -, T a zero-meann-dimensional random . . .
. (1, 2, -, Tm) - variabless;, and a new family of contrast functions for ICA
variable that can be observed, and oy (sq, s2, -~ -, sn)

its n-dimensional transform. Then the problem is to determi 12 introduced (Section II). These contrast functions can also

a constant (weight) matri¥vV so that the linear transformation € |tr)1|tert|cr)1reted fron][_ t?e wevgpomt of ptrOJetc_:tlon szu't’ a(r;d i
of the observed variables enable the sequential (one-by-one) extraction of independen

components. The behavior of the resulting estimators is then
s=Wx (1) evaluated in the framework of the linear mixture model,

. , o obtaining guidelines for choosing among the many contrast
has some suitable properties. Several principles and methdsitions contained in the introduced family. Practical choice

have been developed to find such a linear representatigf.ihe contrast function is discussed as well, based on the
including principal component analysis [30], factor analySigagistical criteria together with some numerical and pragmatic
[15], projection pursuit [12], [16], independent component e ria (Section Il). For practical maximization of the contrast

analysis [27], etc. The transformation may be defined usigg, tions we introduce a novel family of fixed-point algo-

such criteria as optimal dimension reduction, statistical “intelrl—thms (Section V). These algorithms are shown to have very

estln?ness ) of the rﬁsultmg gomp?ng_@ts 5|m|pI|C|t_y of t_he ppealing convergence properties. Simulations confirming the
transtormation, or other criteria, including application-orientesariness of the novel contrast functions and algorithms are
Ones. reported in Section V, together with references to real-life

we t.reat n this paper the. problem of estimating the tranékperiments using these methods. Some conclusions are drawn
formation given by (linear) independent component analyﬂ? Section VI

(ICA) [7], [27]. As the name implies, the basic goal in
determining the transformation is to find a representation II. CONTRAST EUNCTIONS FORICA
in which the transformed components are statistically as
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the data [1], [3], [5], [6], [23], [24], [27], [28], [31]: negentropy is maximizedhis formulation of ICA also shows
explicitly the connection between ICA and projection pursuit
X =As (@) [11], [12], [16], [26]. In fact, finding a single direction that
where x is an observedn-dimensional vectors is ann- Maximizes negentropy is a form of projection pursuit, and
dimensional (latent) random vector whose components &euld also be interpreted as estimation of a single independent
assumed mutually independent, aAdis a constantn x n  COmponent [24].
matrix to be estimated. It is usually further assumed that the
dimensions ofx ands are equal, i.e.;x = n; we make this B. Contrast Functions through Approximations of Negentropy
assumption in the rest of the paper. A noise vector may alsoTo use the definition of ICA given above, a simple estimate
be present. The matri¥ defining the transformation as in (1)of the negentropy (or of differential entropy) is needed. We use
is then obtained as the (pseudo)inverse of the estimate of fge the new approximations developed in [19], based on the
matrix A. Non-Gaussianity of the independent components igaximum entropy principle. In [19] it was shown that these
necessary for the identifiability of the model (2), see [7].  approximations are often considerably more accurate than the
Comon [7] showed how to obtain a more general formonventional, cumulant-based approximations in [1], [7], and
lation for ICA that does not need to assume an underlyifge]. In the simplest case, these new approximations are of
data model. This definition is based on the concept of mutugk form
information. First, we define the differential entrogy of a

~ AN 2
random vectoy = (y1, - -+, ¥»)* with densityf(.) as follows J(yi) = clB{G(y)} — E{G("}] (6)
[33]: where G is practically any nonquadratic functiom, is an
irrelevant constant, and is a Gaussian variable of zero mean
H(y) = _/ f(y) log f(y)dy. (3) and unit variance (i.e., standardized). The random variable

- il b lized ) i hyi is assumed to be of zero mean and unit variance. For
Differential entropy can be normalized to give raise to thg,,metric variables, this is a generalization of the cumulant-

definition of negentropy, which has the appealing property Bhsed approximation in [7], which is obtained by taking
being invariant for linear transformations. The definition 0&@‘) — y*. The choice of the functior is deferred to
negentropy./ is given by Secztion 1 v

J(y) = H(Ygauss) — H() (4) The approximation of negentropy given above in (6) gives
readily a new objective function for estimating the ICA
where yg..uss iS @ Gaussian random variable of the samgansform in our framework. First, to findne independent
covariance matrix ay. Negentropy can also be interprete@omponent, or projection pursuit direction as= w’x, we
as a measure of nongaussianity [7]. Using the concept @hximize the function/s given by
differential entropy, one can define the mutual informatfon T 5
between the: (scalar) random variableg, i = 1, -- -, n [7], Ja(w) = [E{G(w" x)} — E{G(1)}] (7

[8]. Mutual information is a natural measure of the dependengerew is anm-dimensional (weight) vector constrained so
between random variables. It is particularly interesting #at £{(w”'x)?} = 1 (we can fix the scale arbitrarily). Several
express mutual information using negentropy, constraining thgjependent components can then be estimated one-by-one
variables to beauncorrelated In this case, we have [7] using a deflation scheme, see Section IV.
Second, using the approach of minimizing mutual infor-
=J(y) — J(y;). 5 ) ’ . - .
) ) 27: (i) ®) mation, the above one-unit contrast function can be simply

) ) o . ] ) extended to compute the whole matrW in (1). To do
Since mutual information is the information-theoretic meagis recall from (5) that mutual information is minimized

sure of the independence of random variables, it is natufghger the constraint of decorrelation) when the sum of the
to use it as the criterion for finding the ICA transformpeqeniropies of the components in maximized. Maximizing the
Thus we define in this paper, following [7], the ICA ofgym ofy, one-unit contrast functions, and taking into account

a random vectorx as an invertible transformatios = the constraint of decorrelation, one obtains the following
Wx as in (1) where the matriW is determined so that optimization problem:

the mutual information of the transformed componestsis

I(y17 Y2, -

minimized Note that mutual information (or the independence maximize zn: Je(wi)wrt. wi, i=1, -, n

of the components) is not affected by multiplication of the p ‘ v T

components by scalar constants. Therefore, this definition only under constraint  E{(wZx)(wTx)} = 6,1 @)
k J — VIR

defines the independent components up to some multiplicative
constants. Moreover, the constraint of uncorrelatedness of thieere at the maximum, every vectaer;, i = 1, ---, n gives
s; is adopted in this paper. This constraint is not strictlpne of the rows of the matri¥¥, and the ICA transformation
necessary, but simplifies the computations considerably. is then given bys = Wx. Thus we have defined our ICA
Because negentropy is invariant for invertible linear trangstimator by an optimization problem. Below we analyze the
formations [7], it is now obvious from (5) that finding anproperties of the estimators, giving guidelines for the choice
invertible transformatiorW that minimizes the mutual infor- of &, and propose algorithms for solving the optimization
mation is roughly equivalent tfinding directions in which the problems in practice.
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lll. ANALYSIS OF ESTIMATORS AND bounded influence function [14]. Again, we can adapt the

CHOICE OF CONTRAST FUNCTION results in [18]. It turns out to be impossible to have a

completely bounded influence function, but we do have a

A. Behavior Under the ICA Data Model simpler form of robustness, as stated in the following theorem.

Theorem 3: Assume that the data is whitened (sphered)

In this section, we analyze the behavior of the estimators ; .
a robust manner (see Section IV for this form of pre-

iven above when the data follows the ICA data model (2), . : . .
v ve w W ( rocessing). Then the influence function of the estimator

with a square mixing matrix. For simplicity, we consider onl . .
the estimation of a single independent component, and negliScf€Ver Pounded for atk. However, if hu) = ug(u) is

the effects of decorrelation. Let us denote #y a vector ouchied, the influence function is bounded in sets of the form
obtained by maximizing/¢ in (7). The vectorw is thus an {x|Wx/|x]| > e} for everye > 0, whereg is the derivative
estimator of a row of the matriA 1. of &

1) Consistency:First of all, we prove thatv is a (locally)
consistent estimator for one component in the ICA data mod
To prove this, we have the following theorem.

Theorem 1: Assume that the input data follows the ICAt
data model in (2), and that is a sufficiently smooth even
function. Then the set of local maxima dt:(w) under the
constraint E{(w?x)?} = 1, includes theith row of the 1) Performance in the Exponential Power Familj{ow we
inverse of the mixing matrixA such that the correspondingshall treat the question of choosing the contrast functibn
independent componest fulfills in practice. It is useful to analyze the implications of the

, theoretical results of the preceding sections by considering the
E{sig(si) — g'(si) HEAG(si)} — E{G()}] > 0 (9) following exponential power family of density functions

whereg(.) is t.he derivative ofGG(.), and» is a standardized fals) = k1 exp (ka|s|®) (11)
Gaussian variable.
This theorem can be considered a corollary of the theoréithere« is a positive parameter, arid, ko are normalization
in [24]. The condition in Theorem 1 seems to be true fatonstants that ensure thAt is a probability density of unit
most reasonable choices 6f and distributions of the;. In  variance. For different values of alpha, the densities in this
particular, if G(v) = w*, the condition is fulfilled for any family exhibit different shapes. Fdr < « < 2, one obtains
distribution of nonzero kurtosis. In that case, it can also Ifesparse, super-Gaussian density (i.e., a density of positive
proven that there are no spurious optima [9]. kurtosis). Fora = 2, one obtains the Gaussian distribution,
2) Asymptotic Variance:Asymptotic variance is one crite-and for o > 2, a sub-Gaussian density (i.e., a density of
rion for choosing the functio¥ to be used in the contrastnegative kurtosis). Thus the densities in this family can be
function. Comparison of, say, the traces of the asymptotic désed as examples of different non-Gaussian densities.
variance matrices of two estimators enables direct comparisofdsing Theorem 2, one sees that in terms of asymptotic
of the mean-square error of the estimators. In [18], evaluatigariance, an optimal contrast function for estimating an in-
of asymptotic variances was addressed using a related fangigpendent component whose density function eqfialss of
of contrast functions. In fact, it can be seen that the resutke form
in [18] are valid even in this case, and thus we have the
following theorem.
Theorem 2: The trace of the asymptotic (co)variancevof where the arbitrary constants have been dropped for simplicity.
is minimized whend is of the form This implies roughly that for super-Gaussian (respectively,
sub-Gaussian) densities, the optimal contrast function is a
Gopt () = by log filu) + kou” + ks (10 fynction that growsslower than quadraticallyrespectively,
where £;(.) is the density function of;, and k1, ks, ks are faster than quadratically Next, recall from Section Ill-A-3
arbitrary constants. that if G(u) grows fast with|«|, the estimator becomes highly
For simplicity, one can choos&,,.(u) = log f;(u). nonrobust against outliers. Taking also into account the fact

Thus the optimal contrast function is the same as the oHit most independent components encountered in practice
obtained by the maximum likelihood approach [34], or th@® super-Gaussian [3], [25], one reaches the conclusion that
infomax approach [3]. Almost identical results have also be@$ @ general-purpose contrast function, one should choose a
obtained in [5] for another algorithm. The theorem abovinction G that resembles rather

treats, however, the one-unit case instead of the multiunit case Gope(w) = 0], wherea < 2. (13)
treated by the other authors.

3) RobustnessAnother very attractive property of an es-The problem with such contrast functions is, however, that
timator is robustness against outliers [14]. This means thaey are not differentiable at zero far< 1. Thus it is better to
single, highly erroneous observations do not have much influse approximating differentiable functions that have the same
ence on the estimator. To obtain a simple form of robustnddad of qualitative behavior. Considering= 1, in which case
called B-robustness, we would like the estimator to haveasme has a double exponential density, one could use instead the

In particular, if one choosesfunctionG(u) that is bounded
érllis also bounded, and is rather robust against outliers. If
this is not possible, one should at least choose a fun¢ii@r
hat does not grow very fast when| grows.

B. Practical Choice of Contrast Function

Gopt(u) = |ul” (12)
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function G (u) = log cosh a;u wherea; > 1 is a constant. ¢ using kurtosis, orGGs, is justified on statistical grounds
Note that the derivative af; is then the familiar tanh function only for estimating sub-Gaussian independent compo-
(for a; = 1). In the case ofx < 1, i.e., highly super-Gaussian nents when there are no outliers.

independent components, one could approximate the behaviorinally, we emphasize in contrast to many other ICA

of G, for largew using a Gaussian function (with a minusmethods, our framework provides estimators that work for
sign): Ga(u) = — exp(—agu?/2), wherea, is a constant. The (practically) any distributions of the independent components
derivative of this function is like a sigmoid for small valuesand for any choice of the contrast function. The choice of the

but goes to zero for larger values. Note that this functiagbntrast function is only important if one wants to optimize
also fulfills the condition in Theorem 3, thus providing amhe performance of the method.

estimator that is as robust as possible in the framework of

estimators of type (8). As regards the constants, we have found IV. FIXED-POINT ALGORITHMS FOR ICA
experimentallyl < a; < 2 anda; = 1 to provide good
approximations.

2) Choosing the Contrast Function in Practic&he theo- In the preceding sections, we introduced new contrast (or
retical analysis given above gives some guidelines as for thigjective) functions for ICA based on minimization of mutual
choice ofG. In practice, however, there are also other criteriaformation (and projection pursuit), analyzed some of their
that are important, in particular the following two. properties, and gave guidelines for the practical choice of the

First, we have computational simplicity: The contrast fundunction G used in the contrast functions. In practice, one also
tion should be fast to compute. It must be noted that polpeeds an algorithm for maximizing the contrast functions in
nomial functions tend to be faster to compute than, say, tti® or (8).
hyperbolic tangent. However, nonpolynomial contrast func- A simple method to maximize the contrast function would
tions could be replaced by piecewise linear approximatiobg to use stochastic gradient descent; the constraint could be
without losing the benefits of nonpolynomial functions. taken into account by a bigradient feedback. This leads to

The second point to consider is the order in which theeural (adaptive) algorithms that are closely related to those
components are estimated, if one-by-one estimation is usadroduced in [24]. We show in the Appendix B how to modify
We can influence this order because the basins of attractiortioé algorithms in [24] to minimize the contrast functions used
the maxima of the contrast function have different sizes. Ang this paper.
ordinary method of optimization tends to first find maxima that The advantage of neural on-line learning rules is that the
have large basins of attraction. Of course, it is not possililgputsx(¢) can be used in the algorithm at once, thus enabling
to determine with certainty this order, but a suitable choidaster adaptation in a nonstationary environment. A resulting
of the contrast function means that independent componetrtedeoff, however, is that the convergence is slow, and depends
with certain distributions tend to be found first. This point ispn a good choice of the learning rate sequence, i.e., the step
however, so application-dependent that we cannot say mugibe at each iteration. A bad choice of the learning rate can, in
in general. practice, destroy convergence. Therefore, it would important

Thus, taking into account all these criteria, we reach tlie practice to make the learning faster and more reliable.
following general conclusion. We have basically the followinghis can be achieved by the fixed-point iteration algorithms
choices for the contrast function (for future use, we also giteat we introduce here. In the fixed-point algorithms, the
their derivatives): computations are made in batch (or block) mode, i.e., a

large number of data points are used in a single step of

A. Introduction

Gi(u) = log cosh(aiu) the algorithm. In other respects, however, the algorithms
o may be considered neural. In particular, they are parallel,
() = tan}11(a1u) (14) dist);ibuted, computationally simple, and require little memory
Go(u) = — — exp(—agu®/2) space. We will show below that the fixed-point algorithms
a2 ) have very appealing convergence properties, making them
92(u) =u exp(—azu”/2) (15 a very interesting alternative to adaptive learning rules in
Gsa(u) = %Lu4 environments where fast real-time adaptation is not necessary.
g3(u) =u® (16) Note that our basic ICA algorithms require a preliminary

sphering or whitening of the datg though also some versions
wherel < a; < 2,a2 =~ 1 are constants, and piecewiséfor nonsphered data will be given. Sphering means that the
linear approximations of (14) and (15) may also be used. Theiginal observed variable, say is linearly transformed to a
benefits of the different contrast functions may be summarizedriablex = Qv such that the correlation matrix of equals
as follows: unity: E{xx?} = I This transformation is always possible;
e (71 is a good general-purpose contrast function; indeed, it can be accomplished by classical PCA. For details,
« when the independent components are highly supe&ee [7] and [12].
Gaussian, or when robustness is very importéitmay ) ) ) )
be better: B. Fixed-Point Algorithm for One Unit
« if computational overhead must be reduced, piecewiseTo begin with, we shall derive the fixed-point algorithm
linear approximations of7; and Go may be used,; for one unit, with sphered data. First note that the maxima
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of Jo(w) are obtained at certain optima @&{G(w?x)}. ameliorate this, one may add a step size in (19), obtaining
According to the Kuhn—Tucker conditions [29], the optima othe stabilized fixed-point algorithm

FE{G(w*x)} under the constrainE{(w'x)?} = ||w|]* = 1
are obtained at points where wh =w — p[E{xg(w'x)} - pw]/[E{¢'(w''x)} - f]
il

BE{xg(wix)} — pw =0 (17) w'=w/|w

where 8 is a constant that can be easily evaluated to give (21)

B = E{wlxg(w}x)}, wherewy is the value ofw at
the optimum. Let us try to solve this equation by Newton’
method. Denoting the function on the left-hand side of (1
by F', we obtain its Jacobian matrixF(w) as

where 8 = E{wTxg(wTx)} as above, ang is a step size
arameter that may change with the iteration count. Taking a
hat is much smaller than unity (say, 0.1 or 0.01), the algorithm
(21) converges with much more certainty. In particular, it is
often a good strategy to start with = 1, in which case the
algorithm is equivalent to the original fixed-point algorithm
in (20). If convergence seems problematic,may then be

To simplify the inversion of this matrix, we decide to ap ) . :
proximate the first term in (18). Since the data is Sphered’dgcreased gradually until convergence is satisfactory. Note that

reasonable approximation seems to BéxxTg/(wPx)} ~ we thus have a continuum between a Newton optimization
E{xxT}E{¢'(w'x)} = E{¢(w¥x)}L. Thus the Jacobian method, corresponding tg = 1, and a gradient descent
matrix becomes diagonal, and can easily be inverted. We af8§thod, corresponding to a very small

approximate/ using the current value ol instead ofwo. The fixed-point algorithms may also be simply used for the

Thus we obtain the following approximative Newton iteratioQ"19inal, that is, not sphered data. Transforming the data back
to the nonsphered variables, one sees easily that the following

JF(w) = E{xx'¢(w!'x)} — gL (18)

wh =w — [E{xg(w'x)} — pw]/[E{d (W' x)} - 5] modification of the algorithm (20) works for nonsphered data:
w* =wt/||wt]] (29) wt :C_IE{XQ(WT)()} - E{g/(WTX)}W
wherew* denotes the new value of, 3 = F{wlxg(wix)}, w IW+/1 [(wH)TCwt (22)

and the normalization has been added to improve the stability.

This algorithm can be further simplified by multiplying bothwhere C = E{xx”} is the covariance matrix of the data.
sides of the first equation in (19) by — E{¢'(w"x)}. This The stabilized version, algorithm (21), can also be modified
gives the followingfixed-point algorithm as follows to work with nonsphered data:

wt = E{xg(wTx)} — E{g' (wTx)}w wt =w — u[CT E{xg(w'x)} — pw]/[E{d (w'x)} — 3]
W —wt /|| o = ferow. @)

OrHJsing these two algorithms, one obtains directly an indepen-
cf{ent component as the linear combinatiofix, wherex need

Jot be sphered (prewhitened). These modifications presuppose,
f course, that the covariance matrix is not singular. If it is

which was introduced in [17] using a more heuristic derivati
An earlier version (for kurtosis only) was derived as a fixe
point iteration of a neural learning rule in [23], which is wher
its name comes from. We retain this name for the algorithrﬂ_, . . .
although in the light of the above derivation, it is rather gmgular or near-singular, the dimension of the data must be

Newton method than a fixed-point iteration. reduced, fpr example with _PCA_[?], [28.]' . .
Due to the approximations used in the derivation of the In practice, the expectations in the fixed-point algorithms

fixed-point algorithm, one may wonder if it really convergeQwSt be replaced by their estimates. The natural estimates are

to the right points. First of all, since only the Jacobian matrix i f course the corresponding sample means. Ideally, all the

approximated, any convergence point of the algorithm must gta avaﬂ:;:ble shoul? ?e used, blkj)t this is (t)fter:j not ag_ood erhea
a solution of the Kuhn—Tucker condition in (17). In Appendix ccaus€ the computations may become oo demanding. 1hen

A it is further proven that the algorithm does converge to thtge averages can estimated using a smaller sample, whose size

right extrema (those corresponding to maxima of the contra8fy have a considerable effect on the accuracy of the final

function), under the assumption of the ICA data mode(?_stlmqtes. _The sample points sho_uld be chosen separately at
Moreover, it is proven that the convergence is quadrati very iteration. If the convergence is not ;atlsfactory, one may
as usual with Newton methods. In fact, if the densities ofc" Ncrease the sa_mple SIze- .A _reduct|on of t_he step;size
the s; are symmetric, the convergence is even cubic. Tﬁ%the stabl!lzed version has a similar effect, as is well-known
convergence proven in the Appendix is local. However, i stochastic approximation methods [24], [28].
the special case where kurtosis is used as a contrast function, . ) )
i.e., if G(u) = u*, the convergence is proven globally. C. Fixed-Point Algorithm for Several Units

The above derivation also enables a useful modification of The one-unit algorithm of the preceding section can be used
the fixed-point algorithm. It is well known that the converio construct a system af neurons to estimate the whole ICA
gence of the Newton method may be rather uncertain. T@nsformation using the multiunit contrast function in (8). To
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prevent different neurons from converging to the same maxima convergence proof in the Appendix). This is in contrast

we mustdecorrelatethe outputswix, - --, wlx after every

to gradient descent methods, where the convergence is

iteration. We present here three methods for achieving this. only linear. This means a very fast convergence, as has
These methods do not assume that the data is sphered. If been confirmed by simulations and experiments on real

it is, the covariance matriXC can simply be omitted in the
following formulas.
A simple way of achieving decorrelation is a deflation

data (see Section V).

e Contrary to gradient-based algorithms, there are no step

size parameters to choose (in the original fixed-point

scheme based on a Gram-Schmidt-like decorrelation. This algorithm). This means that the algorithm is easy to use.
means that we estimate the independent components one by Even in the stabilized version, reasonable values for the

one. When we have estimatgdndependent components, or
vectorswy, - - -, w,,, We run the one-unit fixed-point algorithm
for w1, and after every iteration step subtract from
the “projections™w?, ,w;w;, j =1, - - -, p of the previously
estimatedp vectors, and then renormalize;

P
T
1. Letwpp1 =Wyt — Z w1 Cw,w;

j=1
2. Letwyii =wyp /\/WEh Cwpp. (29)

In certain applications, however, it may be desired to use a,

symmetric decorrelation, in which no vectors are “privileged”

over others [28]. This can be accomplished, e.g., by the

classical method involving matrix square roots
Let W = (WCWT)~1/2w (25)

where W is the matrix(wy, ---, w,)? of the vectors, and
the inverse square roofWCW7)~1/2 is obtained from

step size parameter are very easy to choose.

The algorithm finds directly independent components of
(practically) any non-Gaussian distribution using any non-
linearity g. This is in contrast to many algorithms, where
some estimate of the probability distribution function has
to be first available, and the nonlinearity must be chosen
accordingly.

The performance of the method can be optimized by
choosing a suitable nonlinearigy In particular, one can
obtain algorithms that are robust and/or of minimum
variance.

The independent components can be estimated one by
one, which is roughly equivalent to doing projection
pursuit.

The fixed-point algorithm inherits most of the advan-
tages of neural algorithms: It is parallel, distributed,
computationally simple, and requires little memory space.
Stochastic gradient methods seem to be preferable only
if fast adaptivity in a changing environment is required.

the eigenvalue decompositon BWCW? = EDE” as
(WCWT)~1/2 = ED~'/2ET. A simpler alternative is the
following iterative algorithm:

1. LetW= W/1/||WCWT||

Repeat 2. until convergence:
2. LetW=3W-IiWCW'W.

V. SIMULATION AND EXPERIMENTAL RESULTS

First, we investigated the robustness of the contrast func-
tions. We generated four artificial source signals, two of
which were sub-Gaussian, and two were super-Gaussian. The
source signals were mixed using several different random
matrices, whose elements were drawn from a standardized

aussian distribution. To test the robustness of our algorithms,

(26)

The norm in step 1 can be almost any ordinary matrix normr, i h | @10 dded i d
e.g., the 2-norm or the largest absolute row (or colum ur outliers whose values wer Were added In random

sum (but not the Frobenius norm). The convergence of t ations. The fixed-point algorithm for sphered data was used

orthonormalization method in (26), which may be c:onsideré’fﬂ'th the three different contrast functions in (14)—(16), and
a variation of Potter's formula (s:ee [5]), is proven in théymmetric orthogonalization. Since the robust estimation of
Appendix ’ the covariance matrix is a classical problem independent of

Finally, let us note that explicit inversion of the matrix€ _robustness of our contrast fu_nctmns, we use_d in this sim-
C in (22) or (23) can be avoided by using the identit lation a hypothetical robust estimator of covariance, which
C~! = WTW which is valid for any decorrelatin§v. This V35 simulated by estimating the covariance matrix from the

gives raise to a fixed-point algorithm in which neither spherin iginal datg without outliers. In aI_I the runs, it was o_bserved
nor inversion of the covariance matrix is needed. In fact, su at the estimates b ased.on kurt03|§ (1.6) were essentllally worse
an algorithm can be considered as a fixed-point algorithm fg}an the others, and estimates usig in (15) were slightly

maximum likelihood estimation of the ICA data model, se etter than those using, in (14). These results confirm the
" " “theoretical predictions on robustness in Section IlI.
[21] b

To investigate thasymptotic variancé.e., efficiency, of the
estimators, we performed simulations in which the three differ-
ent contrast functions were used to estimate one independent

The fixed-point algorithm and the underlying contrast funGomponent from a mixture of four identically distributed inde-
tions have a number of desirable properties when compaigghdent components. We also used three different distributions
with existing methods for ICA. of the independent components: uniform, double exponential

« The convergence is cubic (or at least quadratic), under tf@ Laplace), and the distribution of the third power of a

assumption of the ICA data model (for a proof, see th8aussian variable. The asymptotic mean absolute deviations

D. Properties of the Fixed-Point Algorithm
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Fig. 1. Finite-sample estimation errors plotted for different contrast functiof$g. 2. The noisy case. Finite-sample estimation errors plotted for different
and distributions of the independent components, in the noiseless casmtrast functions and distributions of the independent components. Asterisk:
Asterisk: uniform distribution. Plus sign: Double exponential. Circle: cubeniform distribution. Plus sign: Double exponential. Circle: cube of Gaussian.
of Gaussian.

Experiments on different kinds of real life data have also
(which is a robustified measure of error) between the compeeen performed using the contrast functions and algorithms
nents of the obtained vectors and the correct solutions wénéroduced above. These applications include artifact
estimated and averaged over 1000 runs for each combinatoamcellation in EEG and MEG [36], [37], decomposition of
of nonlinearity and distribution of independent componengvoked fields in MEG [38], and feature extraction of image
The results in the basic, noiseless case are depicted in Figddta [25], [35]. These experiments further validate the ICA
As one can see, the estimates using kurtosis were essentigithods introduced in this paper. A Matlab implementation
worse for super-Gaussian independent components. Especiaflythe fixed-algorithm is available on the World Wide
the strongly super-Gaussian independent component (cuba\sfb free of charge [10].
Gaussian) was estimated considerably worse using kurtosis.
Only for the sub-Gaussian independent component, kurtosis VI. CONCLUSIONS
was better than the other contrast functions. There was no cleafpe problem of linear ICA, which is a form of redun-

difference between the performances of the contrast functi%Cy reduction, was addressed. Following Comon [7], the
Gy andG,. Next, the experiments were repeated with addg§@a problem was formulated as the search for a linear
Gaussian noise whose energy was 10% of the energy of {ighsformation that minimizes the mutual information of the
independent components. The results are shown in Fig. 2. Tﬁei%ulting components. This is roughly equivalent to finding
time, kurtosis did not perform better even in the case of th§ections in which negentropy is maximized and which can
sub-Gaussian density. The robust contrast functions seemyf€o e considered projection pursuit directions [16]. The novel
be somewhat robust against Gaussian noise as well. approximations of negentropy introduced in [19] were then
We also studied thespeed of convergencef the fixed- ysed for constructing novel contrast (objective) functions for
point algorithms. Four independent components of differeptA. This resulted in a generalization of the kurtosis-based
distributions (two sub-Gaussian and two super-Gaussian) Wegroach in [7] and [9], and also enabled estimation of the
artificially generated, and the symmetric version of the fixedhdependent components one by one. The statistical properties
point algorithm for sphered data was used. The data consisi#dhese contrast functions were analyzed in the framework of
of 1000 points, and the whole data was used at every iteratigiie linear mixture model, and it was shown that for suitable
We observed that for all three contrast functions, atisee choices of the contrast functions, the statistical properties were
iterations were necessary, on the average, to achieve the nerior to those of the kurtosis-based approach. Next, a new
imum accuracy allowed by the data. This illustrates the fafgtmily of algorithms for optimizing the contrast functions were
convergence of the fixed-point algorithm. In fact, a comparisantroduced. This was the family of fixed-point algorithms that
of our algorithm with other algorithms was performed in [13]are not neural in the sense that they are nonadaptive, but share
showing that the fixed-point algorithm gives approximatelthe other benefits of neural learning rules. The main advantage
the same statistical efficiency than other algorithms, but witif the fixed-point algorithms is that their convergence can be
a fraction of the computational cost. shown to be very fast (cubic or at least quadratic). Combining
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the good statistical properties (e.g., robustness) of the newanverges, up to the sign, to one of the rows of the inverse of
contrast functions, and the good algorithmic properties of thiee mixing matrix A, which implies thatw”x converges to
fixed-point algorithm, a very appealing method for ICA wasne of thes,;. Moreover, ifE{¢"(s;)} =0, i.e., if thes; has a
obtained. Simulations as well as applications on real-life dadggmmetric distribution, as is usually the case, (33) shows that
have validated the novel contrast functions and algorithrttse convergence is cubic. In other cases, the convergence is
introduced. Some extensions of the methods introduced in thisadratic. In addition, if7(«) = u*, the local approximations
paper are presented in [20], in which the problem of noisgbove are exact, and the convergence is global.

data is addressed, and in [22], which deals with the situation

where there are more independent components than obsem®edroof of Convergence of (26)

variables. Denote byW . the result of applying once the iteration step

2 in (26) onW. Let WCW7T = EDET be the eigenvalue

APPENDIX A decomposition ot WCW7. Then we have
PROOFS
W, CW1 =2EDE" + 2ED’E” + 1ED’E” (35)
A. Proof of Convergence of Algorithm (20) =E(!D - 2D?+ 1D?*)E". (36)

The convergence is proven under the assumptions that fif§hte that due to the normalization, i.e., division W by
the data follows the ICA data model (2) and second, that th [WCWT|, all the eigenvalues oWCW? are in the
expectations are evaluated exactly. We must also make gérval [0, 1]. Now, according to (35), for every eigenvalue of

following technical assumption WCWT, say)\;, W, . CWZ has a corresponding eigenvalue
E{sig(si) — ¢'(51)} #0, for any 27) (X)) whereh(.) is defined as

_ 9 3132 143
which can be considered a generalization of the condition, h(A) = 3A = 327+ 1A (37)
valid when we use kurtosis as contrast, that the kurtosis of Hﬁﬁus, after & iterations, the eigenvalues OWCW? are

independent components must be nonzero. If (27) is true fopgtained asu(h(h(- - - h(\;)))), whereh is appliedk times on
subset of independent components, we can estimate just thggey. which are the eigenvalues WCW? for the original
independent components. . . matrix before the iterations. Now, we have alwdys\) > A

To begin with, make the change of variabde= A"w, as for o < A < 1. It is therefore clear that all the eigenvalues of
above, and assume thais in the neighborhood of a solutionywy w7 converge to one, which means tHatCW? — T,
(say,z1 ~ 1 as above). As shown in proof of Theorem 1, they £ p. Moreover, it is not difficult to see that the convergence
change inz, is then of a lower order than the change in thgy guadratic.
other coordinates, due to the constrdjafl = 1. Then we can
expand the terms in (20) using a Taylor approximation gor

. o APPENDIX B
and ¢’, first obtaining

ADAPTIVE NEURAL ALGORITHMS

g(z"s) Let us consider sphered data only. Taking the instantaneous
=g(z151) + ¢ (z181)2 (s 1 + %g”(zlsl)(zflsfl)Q (28) gradient of the approximation of negentropy in (7) with respect
. L 5 .
LM, T o V3L Ozt ogy to w, and taking the normalizatiofjw||* = 1 into account,
597 (Fs)(Ems )7+ Oz ) (29) one obtains the following Hebbian-like learning rule:
and then Aw o rxg(wlx), normalizew (38)
d'(z"s) =g (z151) + ¢"(ms1)2 151 (30)

o . ) . wherer = E{G(w!x)} — E{G(v)}. This is equivalent to the
+ 39" (z151)(2215-1)" + O(|lz—1[|°)  (31) learning rule in [24], except that the self-adaptation constant

where z_; ands_; are the vectors; and s without their " 'S different.

first components. Thus we obtain, using the independence 01]—0 find the wholen-dimensional transforms = Wx,

the s;, and doing some tedious but straightforward algebr. fre can then use a network of neurons, each of which
ma:ipulationsl 9 ous bu 9 W g alearns according to (38). Of course, some kind of feedback

is then necessary. In [24], it was shown how to add a
2z =E{s19(z151) — ¢'(z151)} + O(||2=1]]*) (32) bigradient feedback to the learning rule. Denoting Wy =
zt =1 skew(s;)E{g"(s1)}27 + & kurt (s;) (w1, -+, w,, )T the weight matrix whose rows are the weight

B{g"(s1)}2 + Oz (|I%), fori>1. (33) vectorsw; of the neurons, we obtain

, W(t+ 1) = W(t) + p(t) diag(r; () g(W (£)x())x(t)*

We obtain also (t41) = WO + () diaglrs(0)a( W (tx(t) (0

+5(I-W(HW(t)" )W(1) (39)

zt=z1/||z7|. (34) ) ) .
where p(t) is the learning rate sequence, and the function

This shows clearly that under the assumption (27), the algg-) = G’(.) is applied separately on every component of the

rithm converges (locally) to such a vecterthat z; = +1 vectorW(¢)x(¢). In this most general version of the learning

and z; = 0 for ¢ > 1. This means thaw = (A?)~!z rule, ther;,i = 1, ---, n are estimated separately for each
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neuron, as given above (see also [24]). They may also f2e] A.Hyvarinen, R. Cristescu, and E. Oja, “A fast algorithm for estimating
fixed using prior knowledge.
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