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Fast and Robust Fixed-Point Algorithms
for Independent Component Analysis

Aapo Hyv̈arinen

Abstract—Independent component analysis (ICA) is a statistical
method for transforming an observed multidimensional random
vector into components that are statistically as independent from
each other as possible. In this paper, we use a combination of
two different approaches for linear ICA: Comon’s information-
theoretic approach and the projection pursuit approach. Using
maximum entropy approximations of differential entropy, we
introduce a family of new contrast (objective) functions for ICA.
These contrast functions enable both the estimation of the whole
decomposition by minimizing mutual information, and estima-
tion of individual independent components as projection pursuit
directions. The statistical properties of the estimators based on
such contrast functions are analyzed under the assumption of
the linear mixture model, and it is shown how to choose contrast
functions that are robust and/or of minimum variance. Finally, we
introduce simple fixed-point algorithms for practical optimization
of the contrast functions. These algorithms optimize the contrast
functions very fast and reliably.

I. INTRODUCTION

A CENTRAL problem in neural-network research, as well
as in statistics and signal processing, is finding a suitable

representation or transformation of the data. For computational
and conceptual simplicity, the representation is often sought as
a linear transformation of the original data. Let us denote by

a zero-mean -dimensional random
variable that can be observed, and by
its -dimensional transform. Then the problem is to determine
a constant (weight) matrix so that the linear transformation
of the observed variables

(1)

has some suitable properties. Several principles and methods
have been developed to find such a linear representation,
including principal component analysis [30], factor analysis
[15], projection pursuit [12], [16], independent component
analysis [27], etc. The transformation may be defined using
such criteria as optimal dimension reduction, statistical “inter-
estingness” of the resulting components, simplicity of the
transformation, or other criteria, including application-oriented
ones.

We treat in this paper the problem of estimating the trans-
formation given by (linear) independent component analysis
(ICA) [7], [27]. As the name implies, the basic goal in
determining the transformation is to find a representation
in which the transformed components are statistically as
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independent from each other as possible. Thus this method is
a special case of redundancy reduction [2].

Two promising applications of ICA are blind source sepa-
ration and feature extraction. Inblind source separation[27],
the observed values of correspond to a realization of an

-dimensional discrete-time signal , . Then
the components are called source signals, which are
usually original, uncorrupted signals or noise sources. Often
such sources are statistically independent from each other, and
thus the signals can be recovered from linear mixturesby
finding a transformation in which the transformed signals are
as independent as possible, as in ICA. Infeature extraction[4],
[25], is the coefficient of theth feature in the observed data
vector . The use of ICA for feature extraction is motivated by
results in neurosciences that suggest that the similar principle
of redundancy reduction [2], [32] explains some aspects of
the early processing of sensory data by the brain. ICA has
also applications inexploratory data analysisin the same way
as the closely related method of projection pursuit [12], [16].

In this paper, new objective (contrast) functions and algo-
rithms for ICA are introduced. Starting from an information-
theoretic viewpoint, the ICA problem is formulated as min-
imization of mutual information between the transformed
variables , and a new family of contrast functions for ICA
is introduced (Section II). These contrast functions can also
be interpreted from the viewpoint of projection pursuit, and
enable the sequential (one-by-one) extraction of independent
components. The behavior of the resulting estimators is then
evaluated in the framework of the linear mixture model,
obtaining guidelines for choosing among the many contrast
functions contained in the introduced family. Practical choice
of the contrast function is discussed as well, based on the
statistical criteria together with some numerical and pragmatic
criteria (Section III). For practical maximization of the contrast
functions, we introduce a novel family of fixed-point algo-
rithms (Section IV). These algorithms are shown to have very
appealing convergence properties. Simulations confirming the
usefulness of the novel contrast functions and algorithms are
reported in Section V, together with references to real-life
experiments using these methods. Some conclusions are drawn
in Section VI.

II. CONTRAST FUNCTIONS FOR ICA

A. ICA Data Model, Minimization of Mutual
Information, and Projection Pursuit

One popular way of formulating the ICA problem is to
consider the estimation of the following generative model for
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the data [1], [3], [5], [6], [23], [24], [27], [28], [31]:

(2)

where is an observed -dimensional vector, is an -
dimensional (latent) random vector whose components are
assumed mutually independent, andis a constant
matrix to be estimated. It is usually further assumed that the
dimensions of and are equal, i.e., ; we make this
assumption in the rest of the paper. A noise vector may also
be present. The matrix defining the transformation as in (1)
is then obtained as the (pseudo)inverse of the estimate of the
matrix . Non-Gaussianity of the independent components is
necessary for the identifiability of the model (2), see [7].

Comon [7] showed how to obtain a more general formu-
lation for ICA that does not need to assume an underlying
data model. This definition is based on the concept of mutual
information. First, we define the differential entropy of a
random vector with density as follows
[33]:

d (3)

Differential entropy can be normalized to give raise to the
definition of negentropy, which has the appealing property of
being invariant for linear transformations. The definition of
negentropy is given by

(4)

where is a Gaussian random variable of the same
covariance matrix as . Negentropy can also be interpreted
as a measure of nongaussianity [7]. Using the concept of
differential entropy, one can define the mutual information
between the (scalar) random variables [7],
[8]. Mutual information is a natural measure of the dependence
between random variables. It is particularly interesting to
express mutual information using negentropy, constraining the
variables to beuncorrelated. In this case, we have [7]

(5)

Since mutual information is the information-theoretic mea-
sure of the independence of random variables, it is natural
to use it as the criterion for finding the ICA transform.
Thus we define in this paper, following [7], the ICA of
a random vector as an invertible transformation

as in (1) where the matrix is determined so that
the mutual information of the transformed componentsis
minimized. Note that mutual information (or the independence
of the components) is not affected by multiplication of the
components by scalar constants. Therefore, this definition only
defines the independent components up to some multiplicative
constants. Moreover, the constraint of uncorrelatedness of the

is adopted in this paper. This constraint is not strictly
necessary, but simplifies the computations considerably.

Because negentropy is invariant for invertible linear trans-
formations [7], it is now obvious from (5) that finding an
invertible transformation that minimizes the mutual infor-
mation is roughly equivalent tofinding directions in which the

negentropy is maximized. This formulation of ICA also shows
explicitly the connection between ICA and projection pursuit
[11], [12], [16], [26]. In fact, finding a single direction that
maximizes negentropy is a form of projection pursuit, and
could also be interpreted as estimation of a single independent
component [24].

B. Contrast Functions through Approximations of Negentropy

To use the definition of ICA given above, a simple estimate
of the negentropy (or of differential entropy) is needed. We use
here the new approximations developed in [19], based on the
maximum entropy principle. In [19] it was shown that these
approximations are often considerably more accurate than the
conventional, cumulant-based approximations in [1], [7], and
[26]. In the simplest case, these new approximations are of
the form

(6)

where is practically any nonquadratic function, is an
irrelevant constant, and is a Gaussian variable of zero mean
and unit variance (i.e., standardized). The random variable

is assumed to be of zero mean and unit variance. For
symmetric variables, this is a generalization of the cumulant-
based approximation in [7], which is obtained by taking

. The choice of the function is deferred to
Section III.

The approximation of negentropy given above in (6) gives
readily a new objective function for estimating the ICA
transform in our framework. First, to findone independent
component, or projection pursuit direction as , we
maximize the function given by

(7)

where is an -dimensional (weight) vector constrained so
that (we can fix the scale arbitrarily). Several
independent components can then be estimated one-by-one
using a deflation scheme, see Section IV.

Second, using the approach of minimizing mutual infor-
mation, the above one-unit contrast function can be simply
extended to compute the whole matrix in (1). To do
this, recall from (5) that mutual information is minimized
(under the constraint of decorrelation) when the sum of the
negentropies of the components in maximized. Maximizing the
sum of one-unit contrast functions, and taking into account
the constraint of decorrelation, one obtains the following
optimization problem:

maximize wrt.

under constraint (8)

where at the maximum, every vector gives
one of the rows of the matrix , and the ICA transformation
is then given by . Thus we have defined our ICA
estimator by an optimization problem. Below we analyze the
properties of the estimators, giving guidelines for the choice
of , and propose algorithms for solving the optimization
problems in practice.
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III. A NALYSIS OF ESTIMATORS AND

CHOICE OF CONTRAST FUNCTION

A. Behavior Under the ICA Data Model

In this section, we analyze the behavior of the estimators
given above when the data follows the ICA data model (2),
with a square mixing matrix. For simplicity, we consider only
the estimation of a single independent component, and neglect
the effects of decorrelation. Let us denote by a vector
obtained by maximizing in (7). The vector is thus an
estimator of a row of the matrix .

1) Consistency:First of all, we prove that is a (locally)
consistent estimator for one component in the ICA data model.
To prove this, we have the following theorem.

Theorem 1: Assume that the input data follows the ICA
data model in (2), and that is a sufficiently smooth even
function. Then the set of local maxima of under the
constraint , includes the th row of the
inverse of the mixing matrix such that the corresponding
independent component fulfills

(9)

where is the derivative of , and is a standardized
Gaussian variable.

This theorem can be considered a corollary of the theorem
in [24]. The condition in Theorem 1 seems to be true for
most reasonable choices of, and distributions of the . In
particular, if , the condition is fulfilled for any
distribution of nonzero kurtosis. In that case, it can also be
proven that there are no spurious optima [9].

2) Asymptotic Variance:Asymptotic variance is one crite-
rion for choosing the function to be used in the contrast
function. Comparison of, say, the traces of the asymptotic co-
variance matrices of two estimators enables direct comparison
of the mean-square error of the estimators. In [18], evaluation
of asymptotic variances was addressed using a related family
of contrast functions. In fact, it can be seen that the results
in [18] are valid even in this case, and thus we have the
following theorem.

Theorem 2: The trace of the asymptotic (co)variance of
is minimized when is of the form

(10)

where is the density function of , and are
arbitrary constants.

For simplicity, one can choose .
Thus the optimal contrast function is the same as the one
obtained by the maximum likelihood approach [34], or the
infomax approach [3]. Almost identical results have also been
obtained in [5] for another algorithm. The theorem above
treats, however, the one-unit case instead of the multiunit case
treated by the other authors.

3) Robustness:Another very attractive property of an es-
timator is robustness against outliers [14]. This means that
single, highly erroneous observations do not have much influ-
ence on the estimator. To obtain a simple form of robustness
called B-robustness, we would like the estimator to have a

bounded influence function [14]. Again, we can adapt the
results in [18]. It turns out to be impossible to have a
completely bounded influence function, but we do have a
simpler form of robustness, as stated in the following theorem.

Theorem 3: Assume that the data is whitened (sphered)
in a robust manner (see Section IV for this form of pre-
processing). Then the influence function of the estimator
is never bounded for all . However, if is
bounded, the influence function is bounded in sets of the form

for every , where is the derivative
of .

In particular, if one choosesa function that is bounded,
is also bounded, and is rather robust against outliers. If

this is not possible, one should at least choose a function
that does not grow very fast when grows.

B. Practical Choice of Contrast Function

1) Performance in the Exponential Power Family:Now we
shall treat the question of choosing the contrast function
in practice. It is useful to analyze the implications of the
theoretical results of the preceding sections by considering the
following exponential power family of density functions

(11)

where is a positive parameter, and are normalization
constants that ensure that is a probability density of unit
variance. For different values of alpha, the densities in this
family exhibit different shapes. For , one obtains
a sparse, super-Gaussian density (i.e., a density of positive
kurtosis). For , one obtains the Gaussian distribution,
and for , a sub-Gaussian density (i.e., a density of
negative kurtosis). Thus the densities in this family can be
used as examples of different non-Gaussian densities.

Using Theorem 2, one sees that in terms of asymptotic
variance, an optimal contrast function for estimating an in-
dependent component whose density function equals, is of
the form

(12)

where the arbitrary constants have been dropped for simplicity.
This implies roughly that for super-Gaussian (respectively,
sub-Gaussian) densities, the optimal contrast function is a
function that growsslower than quadratically(respectively,
faster than quadratically). Next, recall from Section III-A-3
that if grows fast with , the estimator becomes highly
nonrobust against outliers. Taking also into account the fact
that most independent components encountered in practice
are super-Gaussian [3], [25], one reaches the conclusion that
as a general-purpose contrast function, one should choose a
function that resembles rather

where (13)

The problem with such contrast functions is, however, that
they are not differentiable at zero for . Thus it is better to
use approximating differentiable functions that have the same
kind of qualitative behavior. Considering , in which case
one has a double exponential density, one could use instead the
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function where is a constant.
Note that the derivative of is then the familiar tanh function
(for ). In the case of , i.e., highly super-Gaussian
independent components, one could approximate the behavior
of for large using a Gaussian function (with a minus
sign): , where is a constant. The
derivative of this function is like a sigmoid for small values,
but goes to zero for larger values. Note that this function
also fulfills the condition in Theorem 3, thus providing an
estimator that is as robust as possible in the framework of
estimators of type (8). As regards the constants, we have found
experimentally and to provide good
approximations.

2) Choosing the Contrast Function in Practice:The theo-
retical analysis given above gives some guidelines as for the
choice of . In practice, however, there are also other criteria
that are important, in particular the following two.

First, we have computational simplicity: The contrast func-
tion should be fast to compute. It must be noted that poly-
nomial functions tend to be faster to compute than, say, the
hyperbolic tangent. However, nonpolynomial contrast func-
tions could be replaced by piecewise linear approximations
without losing the benefits of nonpolynomial functions.

The second point to consider is the order in which the
components are estimated, if one-by-one estimation is used.
We can influence this order because the basins of attraction of
the maxima of the contrast function have different sizes. Any
ordinary method of optimization tends to first find maxima that
have large basins of attraction. Of course, it is not possible
to determine with certainty this order, but a suitable choice
of the contrast function means that independent components
with certain distributions tend to be found first. This point is,
however, so application-dependent that we cannot say much
in general.

Thus, taking into account all these criteria, we reach the
following general conclusion. We have basically the following
choices for the contrast function (for future use, we also give
their derivatives):

(14)

(15)

(16)

where are constants, and piecewise
linear approximations of (14) and (15) may also be used. The
benefits of the different contrast functions may be summarized
as follows:

• is a good general-purpose contrast function;
• when the independent components are highly super-

Gaussian, or when robustness is very important,may
be better;

• if computational overhead must be reduced, piecewise
linear approximations of and may be used;

• using kurtosis, or , is justified on statistical grounds
only for estimating sub-Gaussian independent compo-
nents when there are no outliers.

Finally, we emphasize in contrast to many other ICA
methods, our framework provides estimators that work for
(practically) any distributions of the independent components
and for any choice of the contrast function. The choice of the
contrast function is only important if one wants to optimize
the performance of the method.

IV. FIXED-POINT ALGORITHMS FOR ICA

A. Introduction

In the preceding sections, we introduced new contrast (or
objective) functions for ICA based on minimization of mutual
information (and projection pursuit), analyzed some of their
properties, and gave guidelines for the practical choice of the
function used in the contrast functions. In practice, one also
needs an algorithm for maximizing the contrast functions in
(7) or (8).

A simple method to maximize the contrast function would
be to use stochastic gradient descent; the constraint could be
taken into account by a bigradient feedback. This leads to
neural (adaptive) algorithms that are closely related to those
introduced in [24]. We show in the Appendix B how to modify
the algorithms in [24] to minimize the contrast functions used
in this paper.

The advantage of neural on-line learning rules is that the
inputs can be used in the algorithm at once, thus enabling
faster adaptation in a nonstationary environment. A resulting
tradeoff, however, is that the convergence is slow, and depends
on a good choice of the learning rate sequence, i.e., the step
size at each iteration. A bad choice of the learning rate can, in
practice, destroy convergence. Therefore, it would important
in practice to make the learning faster and more reliable.
This can be achieved by the fixed-point iteration algorithms
that we introduce here. In the fixed-point algorithms, the
computations are made in batch (or block) mode, i.e., a
large number of data points are used in a single step of
the algorithm. In other respects, however, the algorithms
may be considered neural. In particular, they are parallel,
distributed, computationally simple, and require little memory
space. We will show below that the fixed-point algorithms
have very appealing convergence properties, making them
a very interesting alternative to adaptive learning rules in
environments where fast real-time adaptation is not necessary.

Note that our basic ICA algorithms require a preliminary
sphering or whitening of the data, though also some versions
for nonsphered data will be given. Sphering means that the
original observed variable, say is linearly transformed to a
variable such that the correlation matrix of equals
unity: . This transformation is always possible;
indeed, it can be accomplished by classical PCA. For details,
see [7] and [12].

B. Fixed-Point Algorithm for One Unit

To begin with, we shall derive the fixed-point algorithm
for one unit, with sphered data. First note that the maxima
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of are obtained at certain optima of .
According to the Kuhn–Tucker conditions [29], the optima of

under the constraint
are obtained at points where

(17)

where is a constant that can be easily evaluated to give
, where is the value of at

the optimum. Let us try to solve this equation by Newton’s
method. Denoting the function on the left-hand side of (17)
by , we obtain its Jacobian matrix as

(18)

To simplify the inversion of this matrix, we decide to ap-
proximate the first term in (18). Since the data is sphered, a
reasonable approximation seems to be

. Thus the Jacobian
matrix becomes diagonal, and can easily be inverted. We also
approximate using the current value of instead of .
Thus we obtain the following approximative Newton iteration

(19)

where denotes the new value of, ,
and the normalization has been added to improve the stability.
This algorithm can be further simplified by multiplying both
sides of the first equation in (19) by . This
gives the followingfixed-point algorithm

(20)

which was introduced in [17] using a more heuristic derivation.
An earlier version (for kurtosis only) was derived as a fixed-
point iteration of a neural learning rule in [23], which is where
its name comes from. We retain this name for the algorithm,
although in the light of the above derivation, it is rather a
Newton method than a fixed-point iteration.

Due to the approximations used in the derivation of the
fixed-point algorithm, one may wonder if it really converges
to the right points. First of all, since only the Jacobian matrix is
approximated, any convergence point of the algorithm must be
a solution of the Kuhn–Tucker condition in (17). In Appendix
A it is further proven that the algorithm does converge to the
right extrema (those corresponding to maxima of the contrast
function), under the assumption of the ICA data model.
Moreover, it is proven that the convergence is quadratic,
as usual with Newton methods. In fact, if the densities of
the are symmetric, the convergence is even cubic. The
convergence proven in the Appendix is local. However, in
the special case where kurtosis is used as a contrast function,
i.e., if , the convergence is proven globally.

The above derivation also enables a useful modification of
the fixed-point algorithm. It is well known that the conver-
gence of the Newton method may be rather uncertain. To

ameliorate this, one may add a step size in (19), obtaining
the stabilized fixed-point algorithm

(21)

where as above, and is a step size
parameter that may change with the iteration count. Taking a
that is much smaller than unity (say, 0.1 or 0.01), the algorithm
(21) converges with much more certainty. In particular, it is
often a good strategy to start with , in which case the
algorithm is equivalent to the original fixed-point algorithm
in (20). If convergence seems problematic,may then be
decreased gradually until convergence is satisfactory. Note that
we thus have a continuum between a Newton optimization
method, corresponding to , and a gradient descent
method, corresponding to a very small.

The fixed-point algorithms may also be simply used for the
original, that is, not sphered data. Transforming the data back
to the nonsphered variables, one sees easily that the following
modification of the algorithm (20) works for nonsphered data:

(22)

where is the covariance matrix of the data.
The stabilized version, algorithm (21), can also be modified
as follows to work with nonsphered data:

(23)

Using these two algorithms, one obtains directly an indepen-
dent component as the linear combination , where need
not be sphered (prewhitened). These modifications presuppose,
of course, that the covariance matrix is not singular. If it is
singular or near-singular, the dimension of the data must be
reduced, for example with PCA [7], [28].

In practice, the expectations in the fixed-point algorithms
must be replaced by their estimates. The natural estimates are
of course the corresponding sample means. Ideally, all the
data available should be used, but this is often not a good idea
because the computations may become too demanding. Then
the averages can estimated using a smaller sample, whose size
may have a considerable effect on the accuracy of the final
estimates. The sample points should be chosen separately at
every iteration. If the convergence is not satisfactory, one may
then increase the sample size. A reduction of the step size
in the stabilized version has a similar effect, as is well-known
in stochastic approximation methods [24], [28].

C. Fixed-Point Algorithm for Several Units

The one-unit algorithm of the preceding section can be used
to construct a system of neurons to estimate the whole ICA
transformation using the multiunit contrast function in (8). To
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prevent different neurons from converging to the same maxima
we mustdecorrelatethe outputs after every
iteration. We present here three methods for achieving this.
These methods do not assume that the data is sphered. If
it is, the covariance matrix can simply be omitted in the
following formulas.

A simple way of achieving decorrelation is a deflation
scheme based on a Gram–Schmidt-like decorrelation. This
means that we estimate the independent components one by
one. When we have estimatedindependent components, or
vectors , we run the one-unit fixed-point algorithm
for , and after every iteration step subtract from
the “projections” of the previously
estimated vectors, and then renormalize

1. Let

2. Let (24)

In certain applications, however, it may be desired to use a
symmetric decorrelation, in which no vectors are “privileged”
over others [28]. This can be accomplished, e.g., by the
classical method involving matrix square roots

Let (25)

where is the matrix of the vectors, and
the inverse square root is obtained from
the eigenvalue decomposition of as

. A simpler alternative is the
following iterative algorithm:

1. Let

Repeat 2. until convergence:

2. Let (26)

The norm in step 1 can be almost any ordinary matrix norm,
e.g., the 2-norm or the largest absolute row (or column)
sum (but not the Frobenius norm). The convergence of the
orthonormalization method in (26), which may be considered
a variation of Potter’s formula (see [5]), is proven in the
Appendix.

Finally, let us note that explicit inversion of the matrix
in (22) or (23) can be avoided by using the identity

which is valid for any decorrelating . This
gives raise to a fixed-point algorithm in which neither sphering
nor inversion of the covariance matrix is needed. In fact, such
an algorithm can be considered as a fixed-point algorithm for
maximum likelihood estimation of the ICA data model, see
[21].

D. Properties of the Fixed-Point Algorithm

The fixed-point algorithm and the underlying contrast func-
tions have a number of desirable properties when compared
with existing methods for ICA.

• The convergence is cubic (or at least quadratic), under the
assumption of the ICA data model (for a proof, see the

convergence proof in the Appendix). This is in contrast
to gradient descent methods, where the convergence is
only linear. This means a very fast convergence, as has
been confirmed by simulations and experiments on real
data (see Section V).

• Contrary to gradient-based algorithms, there are no step
size parameters to choose (in the original fixed-point
algorithm). This means that the algorithm is easy to use.
Even in the stabilized version, reasonable values for the
step size parameter are very easy to choose.

• The algorithm finds directly independent components of
(practically) any non-Gaussian distribution using any non-
linearity . This is in contrast to many algorithms, where
some estimate of the probability distribution function has
to be first available, and the nonlinearity must be chosen
accordingly.

• The performance of the method can be optimized by
choosing a suitable nonlinearity. In particular, one can
obtain algorithms that are robust and/or of minimum
variance.

• The independent components can be estimated one by
one, which is roughly equivalent to doing projection
pursuit.

• The fixed-point algorithm inherits most of the advan-
tages of neural algorithms: It is parallel, distributed,
computationally simple, and requires little memory space.
Stochastic gradient methods seem to be preferable only
if fast adaptivity in a changing environment is required.

V. SIMULATION AND EXPERIMENTAL RESULTS

First, we investigated the robustness of the contrast func-
tions. We generated four artificial source signals, two of
which were sub-Gaussian, and two were super-Gaussian. The
source signals were mixed using several different random
matrices, whose elements were drawn from a standardized
Gaussian distribution. To test the robustness of our algorithms,
four outliers whose values were 10 were added in random
locations. The fixed-point algorithm for sphered data was used
with the three different contrast functions in (14)–(16), and
symmetric orthogonalization. Since the robust estimation of
the covariance matrix is a classical problem independent of
the robustness of our contrast functions, we used in this sim-
ulation a hypothetical robust estimator of covariance, which
was simulated by estimating the covariance matrix from the
original data without outliers. In all the runs, it was observed
that the estimates based on kurtosis (16) were essentially worse
than the others, and estimates using in (15) were slightly
better than those using in (14). These results confirm the
theoretical predictions on robustness in Section III.

To investigate theasymptotic variance, i.e., efficiency, of the
estimators, we performed simulations in which the three differ-
ent contrast functions were used to estimate one independent
component from a mixture of four identically distributed inde-
pendent components. We also used three different distributions
of the independent components: uniform, double exponential
(or Laplace), and the distribution of the third power of a
Gaussian variable. The asymptotic mean absolute deviations
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Fig. 1. Finite-sample estimation errors plotted for different contrast functions
and distributions of the independent components, in the noiseless case.
Asterisk: uniform distribution. Plus sign: Double exponential. Circle: cube
of Gaussian.

(which is a robustified measure of error) between the compo-
nents of the obtained vectors and the correct solutions were
estimated and averaged over 1000 runs for each combination
of nonlinearity and distribution of independent component.
The results in the basic, noiseless case are depicted in Fig. 1.
As one can see, the estimates using kurtosis were essentially
worse for super-Gaussian independent components. Especially
the strongly super-Gaussian independent component (cube of
Gaussian) was estimated considerably worse using kurtosis.
Only for the sub-Gaussian independent component, kurtosis
was better than the other contrast functions. There was no clear
difference between the performances of the contrast functions

and . Next, the experiments were repeated with added
Gaussian noise whose energy was 10% of the energy of the
independent components. The results are shown in Fig. 2. This
time, kurtosis did not perform better even in the case of the
sub-Gaussian density. The robust contrast functions seem to
be somewhat robust against Gaussian noise as well.

We also studied thespeed of convergenceof the fixed-
point algorithms. Four independent components of different
distributions (two sub-Gaussian and two super-Gaussian) were
artificially generated, and the symmetric version of the fixed-
point algorithm for sphered data was used. The data consisted
of 1000 points, and the whole data was used at every iteration.
We observed that for all three contrast functions, onlythree
iterations were necessary, on the average, to achieve the max-
imum accuracy allowed by the data. This illustrates the fast
convergence of the fixed-point algorithm. In fact, a comparison
of our algorithm with other algorithms was performed in [13],
showing that the fixed-point algorithm gives approximately
the same statistical efficiency than other algorithms, but with
a fraction of the computational cost.

Fig. 2. The noisy case. Finite-sample estimation errors plotted for different
contrast functions and distributions of the independent components. Asterisk:
uniform distribution. Plus sign: Double exponential. Circle: cube of Gaussian.

Experiments on different kinds of real life data have also
been performed using the contrast functions and algorithms
introduced above. These applications include artifact
cancellation in EEG and MEG [36], [37], decomposition of
evoked fields in MEG [38], and feature extraction of image
data [25], [35]. These experiments further validate the ICA
methods introduced in this paper. A Matlab implementation
of the fixed-algorithm is available on the World Wide
Web free of charge [10].

VI. CONCLUSIONS

The problem of linear ICA, which is a form of redun-
dancy reduction, was addressed. Following Comon [7], the
ICA problem was formulated as the search for a linear
transformation that minimizes the mutual information of the
resulting components. This is roughly equivalent to finding
directions in which negentropy is maximized and which can
also be considered projection pursuit directions [16]. The novel
approximations of negentropy introduced in [19] were then
used for constructing novel contrast (objective) functions for
ICA. This resulted in a generalization of the kurtosis-based
approach in [7] and [9], and also enabled estimation of the
independent components one by one. The statistical properties
of these contrast functions were analyzed in the framework of
the linear mixture model, and it was shown that for suitable
choices of the contrast functions, the statistical properties were
superior to those of the kurtosis-based approach. Next, a new
family of algorithms for optimizing the contrast functions were
introduced. This was the family of fixed-point algorithms that
are not neural in the sense that they are nonadaptive, but share
the other benefits of neural learning rules. The main advantage
of the fixed-point algorithms is that their convergence can be
shown to be very fast (cubic or at least quadratic). Combining
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the good statistical properties (e.g., robustness) of the new
contrast functions, and the good algorithmic properties of the
fixed-point algorithm, a very appealing method for ICA was
obtained. Simulations as well as applications on real-life data
have validated the novel contrast functions and algorithms
introduced. Some extensions of the methods introduced in this
paper are presented in [20], in which the problem of noisy
data is addressed, and in [22], which deals with the situation
where there are more independent components than observed
variables.

APPENDIX A

PROOFS

A. Proof of Convergence of Algorithm (20)

The convergence is proven under the assumptions that first,
the data follows the ICA data model (2) and second, that the
expectations are evaluated exactly. We must also make the
following technical assumption

for any (27)

which can be considered a generalization of the condition,
valid when we use kurtosis as contrast, that the kurtosis of the
independent components must be nonzero. If (27) is true for a
subset of independent components, we can estimate just those
independent components.

To begin with, make the change of variable , as
above, and assume thatis in the neighborhood of a solution
(say, as above). As shown in proof of Theorem 1, the
change in is then of a lower order than the change in the
other coordinates, due to the constraint . Then we can
expand the terms in (20) using a Taylor approximation for
and , first obtaining

(28)

(29)

and then

(30)

(31)

where and are the vectors and without their
first components. Thus we obtain, using the independence of
the , and doing some tedious but straightforward algebraic
manipulations

(32)

skew kurt

for (33)

We obtain also

(34)

This shows clearly that under the assumption (27), the algo-
rithm converges (locally) to such a vectorthat
and for . This means that

converges, up to the sign, to one of the rows of the inverse of
the mixing matrix , which implies that converges to
one of the . Moreover, if , i.e., if the has a
symmetric distribution, as is usually the case, (33) shows that
the convergence is cubic. In other cases, the convergence is
quadratic. In addition, if , the local approximations
above are exact, and the convergence is global.

B. Proof of Convergence of (26)

Denote by the result of applying once the iteration step
2 in (26) on . Let be the eigenvalue
decomposition of . Then we have

(35)

(36)

Note that due to the normalization, i.e., division of by
, all the eigenvalues of are in the

interval . Now, according to (35), for every eigenvalue of
, say , has a corresponding eigenvalue

where is defined as

(37)

Thus, after iterations, the eigenvalues of are
obtained as )))), where is applied times on
the , which are the eigenvalues of for the original
matrix before the iterations. Now, we have always
for . It is therefore clear that all the eigenvalues of

converge to one, which means that ,
Q.E.D. Moreover, it is not difficult to see that the convergence
is quadratic.

APPENDIX B
ADAPTIVE NEURAL ALGORITHMS

Let us consider sphered data only. Taking the instantaneous
gradient of the approximation of negentropy in (7) with respect
to , and taking the normalization into account,
one obtains the following Hebbian-like learning rule:

normalize (38)

where . This is equivalent to the
learning rule in [24], except that the self-adaptation constant

is different.
To find the whole -dimensional transform ,

one can then use a network of neurons, each of which
learns according to (38). Of course, some kind of feedback
is then necessary. In [24], it was shown how to add a
bigradient feedback to the learning rule. Denoting by

the weight matrix whose rows are the weight
vectors of the neurons, we obtain

diag

(39)

where is the learning rate sequence, and the function
is applied separately on every component of the

vector . In this most general version of the learning
rule, the are estimated separately for each
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neuron, as given above (see also [24]). They may also be
fixed using prior knowledge.
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