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Abstract

Independent component analysis (ICA) is a statistical ntkfbr transforming an observed multidimen-
sional random vector into components that are statisfieallindependent from each other as possible. In
this paper, we use a combination of two different approatdrdmear ICA: Comon’s information-theoretic
approach and the projection pursuit approach. Using maximntropy approximations of differential en-
tropy, we introduce a family of new contrast (objective)dtians for ICA. These contrast functions enable
both the estimation of the whole decomposition by miningainutual information, and estimation of indi-
vidual independent components as projection pursuit tilineg. The statistical properties of the estimators
based on such contrast functions are analyzed under thenpsisn of the linear mixture model, and it is
shown how to choose contrast functions that are robust aod/iminimum variance. Finally, we intro-
duce simple fixed-point algorithms for practical optimipatof the contrast functions. These algorithms
optimize the contrast functions very fast and reliably.

1 Introduction

A central problem in neural network research, as well asatistics and signal processing, is finding a
suitable representation or transformation of the datacBomputational and conceptual simplicity, the repre-
sentation is often sought adimear transformation of the original data. Let us denotexlsy (x1, X2, ...,xm)T a
zero-meam-dimensional random variable that can be observed, asdis:, S, ...,sn)T its n-dimensional
transform. Then the problem is to determine a constant (veigatrix W so that the linear transformation
of the observed variables

s=Wx Q)

has some suitable properties. Several principles and methave been developed to find such a linear rep-
resentation, including principal component analysis [38ttor analysis [15], projection pursuit [12, 16],
independent component analysis [27], etc. The transfoomatay be defined using such criteria as optimal
dimension reduction, statistical 'interestingness’ & thsulting componenss, simplicity of the transforma-
tion, or other criteria, including application-orientedes.

We treat in this paper the problem of estimating the tramsé&tion given by (linear) independent compo-
nent analysis (ICA) [7, 27]. As the name implies, the basial go determining the transformation is to find
a representation in which the transformed compongrase statistically as independent from each other as
possible. Thus this method is a special case of redundadagtien [2].

Two promising applications of ICA are blind source separatind feature extraction. Ilind source
separatior[27], the observed values gfcorrespond to a realization of amdimensional discrete-time signal
x(t),t =1,2,.... Thenthe componensgt) are called source signals, which are usually original, onged



signals or noise sources. Often such sources are stdtistitependent from each other, and thus the signals
can be recovered from linear mixturgsby finding a transformation in which the transformed sigraats

as independent as possible, as in ICAfdature extractio4, 25], 5 is the coefficient of thé-th feature in
the observed data vectar The use of ICA for feature extraction is motivated by resuit neurosciences
that suggest that the similar principle of redundancy rédod2, 32] explains some aspects of the early
processing of sensory data by the brain. ICA has also apiglitsain exploratory data analysis the same
way as the closely related method of projection pursuit {14,

In this paper, new objective (contrast) functions and atgors for ICA are introduced. Starting from
an information-theoretic viewpoint, the ICA problem isfmulated as minimization of mutual information
between the transformed variabkesand a new family of contrast functions for ICA is introdud&ection
2). These contrast functions can also be interpreted fravigwpoint of projection pursuit, and enable
the sequential (one-by-one) extraction of independenpoomants. The behavior of the resulting estimators
is then evaluated in the framework of the linear mixture nhodbetaining guidelines for choosing among
the many contrast functions contained in the introducedljanPractical choice of the contrast function
is discussed as well, based on the statistical criteriatihegevith some numerical and pragmatic criteria
(Section 3). For practical maximization of the contrastdiions, we introduce a novel family of fixed-
point algorithms (Section 4). These algorithms are showhatge very appealing convergence properties.
Simulations confirming the usefulness of the novel confrasttions and algorithms are reported in Section
5, together with references to real-life experiments usirege methods. Some conclusions are drawn in
Section 6.

2 Contrast Functionsfor ICA

2.1 ICA data model, minimization of mutual information, and projection pursuit

One popular way of formulating the ICA problem is to consitter estimation of the following generative
model for the data [1, 3, 5, 6, 23, 24, 27, 28, 31]:

X =As ()

wherex is an observeth-dimensional vectogis ann-dimensional (latent) random vector whose components
are assumed mutually independent, &d a constantn x n matrix to be estimated. It is usually further
assumed that the dimensionsxands are equal, i.e m= n; we make this assumption in the rest of the paper.
A noise vector may also be present. The maikbdefining the transformation as in (1) is then obtained as
the (pseudo)inverse of the estimate of the ma#ix Non-Gaussianity of the independent components is
necessary for the identifiability of the model (2), see [7].

Comon [7] showed how to obtain a more general formulatiorl@¥ that does not need to assume an
underlying data model. This definition is based on the coneemutual information. First, we define the
differential entropyH of a random vectoy = (yi,...,yn)" with densityf(.) as follows [33]:

HY) == [ T(log f(y)dy ©)

Differential entropy can be normalized to give rise to thérdéon of negentropy, which has the appealing
property of being invariant for linear transformations eldefinition of negentropy is given by

J(y) =H(Ygauss —H(y) (4)

whereygaussiS @ Gaussian random vector of the same covariance matryx ddegentropy can also be
interpreted as a measure of nongaussianity [7]. Using theegut of differential entropy, one can define the
mutual informationl between then (scalar) random variableg,i = 1...n [8, 7]. Mutual information is a



natural measure of the dependence between random varilihéggarticularly interesting to express mutual
information using negentropy, constraining the variabdeseuncorrelated In this case, we have [7]

L(Y1,Y2, - ¥n) = I(Y) = 3 IWh)- (5)

Since mutual information is the information-theoretic @ of the independence of random variables,
it is natural to use it as the criterion for finding the ICA tsform. Thus we define in this paper, following
[7], the ICA of a random vectox as an invertible transformatia= Wx as in (1) where the matriw is
determined so that thmutual information of the transformed components sninimized Note that mutual
information (or the independence of the components) is fiett@d by multiplication of the components by
scalar constants. Therefore, this definition only definesndependent components up to some multiplica-
tive constants. Moreover, the constraint of uncorrelagsdmof thes is adopted in this paper. This constraint
is not strictly necessary, but simplifies the computaticrssitderably.

Because negentropy is invariant for invertible linear $farmations [7], it is now obvious from (5) that
finding an invertible transformatidfV that minimizes the mutual information is roughly equival@rfinding
directions in which the negentropy is maximizéthis formulation of ICA also shows explicitly the connec-
tion between ICA and projection pursuit [11, 12, 16, 26]. doctf finding a single direction that maximizes
negentropy is a form of projection pursuit, and could alsimberpreted as estimation of a single independent
component [24].

2.2 Contrast Functionsthrough Approximations of Negentropy

To use the definition of ICA given above, a simple estimatéefriegentropy (or of differential entropy) is
needed. We use here the new approximations developed inljd$&d on the maximum entropy principle.
In [19] it was shown that these approximations are often ickemably more accurate than the conventional,
cumulant-based approximationsin [7, 1, 26]. In the simtpdase, these new approximations are of the form:

J(vi) ~ c[E{G(y))} — E{G(v)}]? (6)

whereG is practically any non-quadratic functionis an irrelevant constant, amds a Gaussian variable of
zero mean and unit variance (i.e., standardized). The randwiabley; is assumed to be of zero mean and
unit variance. For symmetric variables, this is a geneatiin of the cumulant-based approximation in [7],
which is obtained by takin@(yi) = y*. The choice of the functio® is deferred to Section 3.

The approximation of negentropy given above in (6) givedifga new objective function for estimating
the ICA transform in our framework. First, to fiheindependent component, or projection pursuit direction
asy; = w'x, we maximize the functiodg given by

Jo(w) = [E{G(W'X)} —E{G(v)}]? (7)

wherew is an m-dimensional (weight) vector constrained so tEdtw'x)?} = 1 (we can fix the scale
arbitrarily). Several independent components can therstimated one-by-one using a deflation scheme,
see Section 4.

Second, using the approach of minimizing mutual informgttbe above one-unit contrast function can
be simply extended to compute the whole ma#hin (1). To do this, recall from (5) that mutual information
is minimized (under the constraint of decorrelation) whemsum of the negentropies of the components in
maximized. Maximizing the sum af one-unit contrast functions, and taking into account thestaint of
decorrelation, one obtains the following optimization geon:

n
maximize ziJG(wi) wrt. wi,i=1,...,n (8)
i=

under constrairE{ (wg X) (W] X)} = djk
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where at the maximum, every vectet,i = 1,..,n gives one of the rows of the matrW/, and the ICA
transformation is then given ky/= Wx. Thus we have defined our ICA estimator by an optimizatiorpro
lem. Below we analyze the properties of the estimatorsngiguidelines for the choice @&, and propose
algorithms for solving the optimization problems in praeti

3 Analysisof estimatorsand choice of contrast function

3.1 Behavior under the ICA data model

In this subsection, we analyze the behavior of the estimajiMen above when the data follows the ICA
data model (2), with a square mixing matrix. For simplicitye consider only the estimation of a single
independent component, and neglect the effects of deatioel Let us denote by a vector obtained by
maximizingJg in (7). The vectoiV is thus an estimator of a row of the matAx® .

3.1.1 Consistency

First of all, we prove thalv is a (locally) consistent estimator for one component inl@# data model. To
prove this, we have the following theorem:

Theorem 1 Assume that the input data follows the ICA data model in (), that G is a sufficiently smooth
even function. Then the set of local maximag(fad) under the constraint Ew'x)?} = 1, includes the i-th
row of the inverse of the mixing matixsuch that the corresponding independent componédaultfgls

E{sg(s) —g'(s)}E{G(s)} —~E{G(v)}] >0 (9)
where d.) is the derivative of G), andv is a standardized Gaussian variable.

This theorem can be considered a corollary of the theore®4h [The condition in Theorem 1 seems to be
true for most reasonable choices@fand distributions of the. In particular, ifG(u) = u®, the condition is
fulfilled for any distribution of non-zero kurtosis. In thedse, it can also be proven that there are no spurious
optima [9].

3.1.2 Asymptoticvariance

Asymptotic variance is one criterion for choosing the fimeiG to be used in the contrast function. Com-
parison of, say, the traces of the asymptotic covarianceeratof two estimators enables direct comparison
of the mean-square error of the estimators. In [18], evadnaif asymptotic variances was addressed using
a related family of contrast functions. In fact, it can berséhat the results in [18] are valid even in this case,
and thus we have the following theorem:

Theorem 2 The trace of the asymptotic (co)varianceifs minimized when G is of the form
Gopt(U) = kqlog fi(u) + koU? + ks (10)
where f(.) is the density function of sand k¢, ko, ks are arbitrary constants.

For simplicity, one can choosg,pt(u) = log fi(u). Thus the optimal contrast function is the same as the one
obtained by the maximum likelihood approach [34], or th@méx approach [3]. Almost identical results
have also been obtained in [5] for another algorithm. Therds® above treats, however, the one-unit case
instead of the multi-unit case treated by the other authors.



3.1.3 Robustness

Another very attractive property of an estimator is robastagainst outliers [14]. This means that single,
highly erroneous observations do not have much influencénerestimator. To obtain a simple form of
robustness called B-robustness, we would like the estinmatwave a bounded influence function [14]. Again,
we can adapt the results in [18]. It turns out to be impossibleve a completely bounded influence function,
but we do have a simpler form of robustness, as stated in tloevfng theorem:

Theorem 3 Assume that the datais whitened (sphered) in a robust manner (see Section 4 feifdm
of preprocessing). Then the influence function of the esbima is never bounded for ak. However, if
h(u) = ug(u) is bounded, the influence function is bounded in sets of tine fa | W'x/||x|| > €} for every
€ > 0, where g is the derivative of G.

In particular, if one chooses function Gu) that is boundedh is also bounded, and is rather robust
against outliers. If this is not possible, one should attlehsose a functios(u) that does not grow very
fast whenju| grows.

3.2 Practical choice of contrast function
3.2.1 Performancein the exponential power family

Now we shall treat the question of choosing the contrasttfands in practice. It is useful to analyze
the implications of the theoretical results of the precgdiaction by considering the following exponential
power family of density functions:

fa(s) = kiexp(kz|s|®) (11)

wherea is a positive parameter, ard, ky are normalization constants that ensure thats a probability
density of unit variance. For different values of alpha, deasities in this family exhibit different shapes.
For O0< a < 2, one obtains a sparse, super-Gaussian density (i.e. s#ydehpositive kurtosis). Foa = 2,

one obtains the Gaussian distribution, and dor 2, a sub-Gaussian density (i.e., a density of negative
kurtosis). Thus the densities in this family can be used ases of different non-Gaussian densities.

Using Theorem 2, one sees that in terms of asymptotic vaejamcoptimal contrast function for estimat-
ing an independent component whose density function edyais of the form:

Gopt(u) = |ul® (12)

where the arbitrary constants have been dropped for siityplithis implies roughly that for super-Gaussian
(resp. sub-Gaussian) densities, the optimal contrastiimis a function that growslower than quadrati-
cally (resp.faster than quadratically Next, recall from Section 3.1.3 that@(u) grows fast with|u|, the
estimator becomes highly non-robust against outliersinbalso into account the fact that most indepen-
dent components encountered in practice are super-Gay8sia5], one reaches the conclusion that as a
general-purpose contrast function, one should choosectidur that resembles rather

Gopt(U) = |u|*,wherea < 2. (13)

The problem with such contrast functions is, however, thaytare not differentiable at 0 far < 1. Thus

it is better to use approximating differentiable functidhat have the same kind of qualitative behavior.
Consideringa = 1, in which case one has a double exponential density, onlel cse instead the func-
tion G1(u) = logcoshaju wherea; > 1 is a constant. Note that the derivative®f is then the familiar
tanh function (fora; = 1). In the case ofx < 1, i.e., highly super-Gaussian independent components,
one could approximate the behavior G for largeu using a Gaussian function (with a minus sign):
Go(u) = —exp(—apu?/2), wherea; is a constant. The derivative of this function is like a siganfor small
values, but goes to 0 for larger values. Note that this fomcdilso fulfills the condition in Theorem 3, thus
providing an estimator that is as robust as possible in tradéwork of estimators of type (8). As regards the
constants, we have found experimentallg &; < 2 andaz = 1 to provide good approximations.



3.2.2 Choosing the Contrast Function in Practice

The theoretical analysis given above gives some guidetindar the choice o&. In practice, however, there
are also other criteria that are important, in particularftillowing two.

First, we have computational simplicity: The contrast fiimr should be fast to compute. It must be
noted that polynomial functions tend to be faster to comphéa, say, the hyperbolic tangent. However,
non-polynomial contrast functions could be replaced bg@igse linear approximations without losing the
benefits of non-polynomial functions.

The second point to consider is the order in which the compisraze estimated, if one-by-one estimation
is used. We can influence this order because the basins atétr of the maxima of the contrast function
have different sizes. Any ordinary method of optimizatiends to first find maxima that have large basins
of attraction. Of course, it is not possible to determinénveiertainty this order, but a suitable choice of the
contrast function means that independent components wfthin distributions tend to be found first. This
point is, however, so application-dependent that we caseyptnuch in general.

Thus, we reach the following general conclusion. We havichgthe following choices for the contrast
function (for future use, we also give their derivatives):

Gi(u) = ail logcoshasu), g1(u) = tanh(aju) (14)
Ga(u) = —a—12 exp(—axu?/2), go(u) = uexp—axu?/2) (15)
Gs(u) = %u‘l, ga(u) = u® (16)

where 1< a3 < 2,ap ~ 1 are constants, and piecewise linear approximations gfaid (15) may also be
used. The benefits of the different contrast functions masupemarized as follows:

e G; is a good general-purpose contrast function.

¢ when the independent components are highly super-Gaussiarhen robustness is very important,
Gz may be better.

e if computational overhead must be reduced, piecewiserliapproximations of3; and G, may be
used.

e using kurtosis, 0f33, is justified on statistical grounds only for estimating €<Bhussian independent
components when there are no outliers.

Finally, we emphasize in contrast to many other ICA methods,framework provides estimators that
work for (practically) any distributions of the independieomponents and for any choice of the contrast
function. The choice of the contrast function is only impmitif one wants to optimize the performance of
the method.

4 Fixed-point algorithmsfor ICA

4.1 Introduction

In the preceding sections, we introduced new contrast (jectiee) functions for ICA based on minimization
of mutual information (and projection pursuit), analyzed® of their properties, and gave guidelines for the
practical choice of the functio® used in the contrast functions. In practice, one also needfgarithm for
maximizing the contrast functions in (7) or (8).

A simple method to maximize the contrast function would beise stochastic gradient descent; the
constraint could be taken into account by a bigradient faekibThis leads to neural (adaptive) algorithms



that are closely related related to those introduced in.[243 show in the Appendix B how to modify the
algorithms in [24] to minimize the contrast functions usedhis paper.

The advantage of neural on-line learning rules is that tipatsx(t) can be used in the algorithm at
once, thus enabling faster adaptation in a non-statiormaryament. A resulting trade-off, however, is that
the convergence is slow, and depends on a good choice ofdhdrg rate sequence, i.e. the step size at
each iteration. A bad choice of the learning rate can, intim@cdestroy convergence. Therefore, it would
important in practice to make the learning faster and mdrahbie. This can be achieved by the fixed-point
iteration algorithms that we introduce here. In the fixedhpalgorithms, the computations are made in
batch (or block) mode, i.e., a large number of data pointsuaeal in a single step of the algorithm. In
other respects, however, the algorithms may be considenah In particular, they are parallel, distributed,
computationally simple, and require little memory space.Will show below that the fixed-point algorithms
have very appealing convergence properties, making theenyameresting alternative to adaptive learning
rules in environments where fast real-time adaptation is\eoessary.

Note that our basic ICA algorithms require a preliminaryesjiing or whitening of the date though also
some versions for non-sphered data will be given. Spheriegn® that the original observed variable, gay
is linearly transformed to a variable= Qv such that the correlation matrix afequals unity:E{xx"} = I.
This transformation is always possible; indeed, it can lmaplished by classical PCA. For details, see
[7,12].

4.2 Fixed-point algorithm for one unit

To begin with, we shall derive the fixed-point algorithm fareounit, with sphered data. First note that the
maxima ofJs(w) are obtained at certain optima B{ G(w'x)}. According to the Kuhn-Tucker conditions
[29], the optima oE{G(Ww"x)} under the constrairE{(w'x)?} = ||w||?> = 1 are obtained at points where

E{xgw'x)} —Bw=0 (17)

wheref is a constant that can be easily evaluated to BiveE {w] xg(w)x)}, wherewg is the value ofv at
the optimum. Let us try to solve this equation by Newton’simet Denoting the function on the left-hand
side of (17) byF, we obtain its Jacobian matrdé(w) as

JF(w) =E{xx"g'(w'x)} — Bl (18)

To simplify the inversion of this matrix, we decide to appiroate the first term in (18). Since the data is
sphered, a reasonable approximation seems ®B{b&'g'(W'x)} ~ E{xx" }E{g/(Wx)} = E{g/(W"x)}I.
Thus the Jacobian matrix becomes diagonal, and can easihwéded. We also approximafeusing the
current value ofv instead ofwg. Thus we obtain the following approximative Newton iteoati

wh =w—[E{xg(w'x)} — Bw]/[E{g/(W'x)} — B] (19)

w=w"/[[w’
wherew* denotes the new value of, B = E{w xg(w"x)}, and the normalization has been added to improve
the stability. This algorithm can be further simplified by ltiplying both sides of the first equation in (19)
by B— E{g'(w'x)}. This gives the followindixed-point algorithm

W = E{xg(wTx)} — E{g/(w"x)}w

W=/ | 0

which was introduced in [17] using a more heuristic derimati An earlier version (for kurtosis only) was
derived as a fixed-point iteration of a neural learning ralgi3], which is where its name comes from. We
retain this name for the algorithm, although in the lighttod ebove derivation, it is rather a Newton method
than a fixed-point iteration.



Due to the approximations used in the derivation of the figetht algorithm, one may wonder if it really
converges to the right points. First of all, since only thealsan matrix is approximated, any convergence
point of the algorithm must be a solution of the Kuhn-Tuckamdition in (17). In Appendix A it is further
proven that the algorithm does converge to the right extr@ghuse corresponding to maxima of the contrast
function), under the assumption of the ICA data model. Muweepit is proven that the convergence is
guadratic, as usual with Newton methods. In fact, if the dierssof thes are symmetric, the convergence is
even cubic. The convergence proven in the Appendix is |dtalvever, in the special case where kurtosis is
used as a contrast function, i.e.@fu) = u, the convergence is proven globally.

The above derivation also enables a useful modification efited-point algorithm. It is well-known
that the convergence of the Newton method may be rather tateto ameliorate this, one may add a step
size in (19), obtaining thetabilized fixed-point algorithm

w' =w —pE{xgw'x)} — Bw]/[E{g (W x)} — B]
wr=w"/[lw"]

(21)

where = E{w'xg(w'x)} as above, angi is a step size parameter that may change with the iteration
count. Taking au that is much smaller than unity (say, 0.1 or 0.01), the athori(21) converges with much
more certainty. In particular, it is often a good strategwtart withp = 1, in which case the algorithm is
equivalent to the original fixed-point algorithm in (20). dbnvergence seems problematianay then be
decreased gradually until convergence is satisfactorie Mat we thus have a continuum between a Newton
optimization method, correspondingjie= 1, and a gradient descent method, corresponding to a vetyy sma
L

The fixed-point algorithms may also be simply used for thgio&l, that is, not sphered data. Trans-
forming the data back to the non-sphered variables, oneesesily that the following modification of the
algorithm (20) works for non-sphered data:

w =ClE{xgw"x)} —E{g'(W'x)}w

w=w"/y/(wH)TCwt (22)

whereC = E{xx"} is the covariance matrix of the data. The stabilized versagorithm (21), can also be
modified as follows to work with non-sphered data:

W =w - WCE{xg(w'x)} — Bwl/[E{g W x)} ~ B]

w*=wt/y/(wH)TCw (23)

Using these two algorithms, one obtains directly an inddpahcomponent as the linear combinatihx,
wherex need not be sphered (prewhitened). These modificationsgpese, of course, that the covariance
matrix is not singular. Ifitis singular or near-singuldretdimension of the data must be reduced, for example
with PCA [7, 28].

In practice, the expectations in the fixed-point algorithmust be replaced by their estimates. The natural
estimates are of course the corresponding sample mearadly)@d the data available should be used, but
this is sometimes not a good idea because the computationbesame too demanding. Then the averages
can be estimated using a smaller sample, whose size may ltavesialerable effect on the accuracy of the
final estimates. The sample points should be chosen selyaatiyery iteration. If the convergence is not
satisfactory, one may then increase the sample size. Atiedudf the step siz¢l in the stabilized version
has a similar effect, as is well-known in stochastic appration methods [24, 28].

4.3 Fixed-point algorithm for several units

The one-unit algorithm of the preceding subsection can bd tesconstruct a system nheurons to estimate
the whole ICA transformation using the multi-unit contréstction in (8). To prevent different neurons



from converging to the same maxima we mdstorrelatethe outputsrv{x, ...,w] x after every iteration. We
present here three methods for achieving this. These mettmdot assume that the data is sphered. Ifit s,
the covariance matri€ can simply be omitted in the following formulas.

A simple way of achieving decorrelation is a deflation schéraged on a Gram-Schmidt-like decorre-
lation. This means that we estimate the independent conmp®ioee by one. When we have estimaged
independent components, pvectorswy,...,wp, we run the one-unit fixed-point algorithm far,, 1, and
after every iteration step subtract fr_om,+1 the 'projectionswgﬂijj,j =1,..., p of the previously esti-
matedp vectors, and then renormaling 1:

1. Letwpi1 =Wpy1— 3 Wi, CWjw;
_ T (24)
2. Letwp 1 =Wp,1/ Wp+1CWp+1

In certain applications, however, it may be desired to usgragetric decorrelation, in which no vectors
are 'privileged’ over others [28]. This can be accomplished., by the classical method involving matrix
square roots,

LetW = (WCWT)~¥2w (25)

whereW is the matrix(wy, ...,wn)T of the vectors, and the inverse square MCW T )~Y/2 s obtained from
the eigenvalue decomposition WfCWT = EDE" as(WCW )12 = ED~Y2ET. A simpler alternative is
the following iterative algorithm,

1. LetW = W//[WCWT]|

Repeat 2. until convergence: (26)
2. Letw = 3w — JwcwTw

The norm in step 1 can be almost any ordinary matrix norm, #g.2-norm or the largest absolute row
(or column) sum (but not the Frobenius norm). The convergefthe orthonormalization method in (26),
which may be considered a variation of Potter’s formula (58eis proven in the Appendix.

Finally, let us note that explicit inversion of the matxin (22) or (23) can be avoided by using the
identity C-1 = WTW which is valid for any decorrelating/. This gives raise to a fixed-point algorithm in
which neither sphering nor inversion of the covariance madrneeded. In fact, such an algorithm can be
considered as a fixed-point algorithm for maximum likelid@stimation of the ICA data model, see [21].

4.4 Properties of the Fixed-Point Algorithm

The fixed-point algorithm and the underlying contrast fiorts have a number of desirable properties when
compared with existing methods for ICA.

e The convergence is cubic (or at least quadratic), undergbenaption of the ICA data model (for a
proof, see the convergence proof in the Appendix). This isontrast to gradient descent methods,
where the convergence is only linear. This means a very tastergence, as has been confirmed by
simulations and experiments on real data (see Section 5).

e Contrary to gradient-based algorithms, there are no stepErameters to choose (in the original
fixed-point algorithm). This means that the algorithm isyesuse. Even in the stabilized version,
reasonable values for the step size parameter are veryeeakpase.

e The algorithm finds directly independent components ofdjpeally) any non-Gaussian distribution
using any nonlinearitg. This is in contrast to many algorithms, where some estimiatee probability
distribution function has to be first available, and the mw@drity must be chosen accordingly.

e The performance of the method can be optimized by choosingabse nonlinearityy. In particular,
one can obtain algorithms that are robust and/or of minimariance.



e The independent components can be estimated one by ondy ishimughly equivalent to doing pro-
jection pursuit.

e The fixed-point algorithm inherits most of the advantagesi@iral algorithms: It is parallel, dis-
tributed, computationally simple, and requires little noeynspace. Stochastic gradient methods seem
to be preferable only if fast adaptivity in a changing enmireent is required.

5 Simulation and experimental results

First, we investigated the robustness of the contrast fnmet We generated four artificial source signals,
two of which were sub-Gaussian, and two were super-GausEi@nsource signals were mixed using several
different random matrices, whose elements were drawn fretardardized Gaussian distribution. To test
the robustness of our algorithmisur outlierswhose values weré 10 were added in random locations. The
fixed-point algorithm for sphered data was used with theetlti§erent contrast functions in eq. (14-16),
and symmetric orthogonalization. Since the robust esionaitf the covariance matrix is a classical problem
independent of the robustness of our contrast functionsyseel in this simulation a hypothetical robust
estimator of covariance, which was simulated by estimatiiregcovariance matrix from the original data
without outliers. In all the runs, it was observed that thénestes based on kurtosis (16) were essentially
worse than the others, and estimates uS€gagn (15) were slightly better than those usi@g in (14). These
results confirm the theoretical predictions on robustneSeiction 3.

To investigate thesymptotic variancei.e., efficiency, of the estimators, we performed simolasgiin
which the 3 different contrast functions were used to egéroae independent component from a mixture of 4
identically distributed independent components. We assmluhree different distributions of the independent
components: uniform, double exponential (or Laplace),thedlistribution of the third power of a Gaussian
variable. The asymptotic mean absolute deviations (wtsch liobustified measure of error) between the
components of the obtained vectors and the correct sohiti@re estimated and averaged over 1000 runs
for each combination of non-linearity and distribution nflependent component. The results in the basic,
noiseless case are depicted in Fig. 1. As one can see, theteiusing kurtosis were essentially worse for
super-Gaussian independent components. Especially ribregt super-Gaussian independent component
(cube of Gaussian) was estimated considerably worse usimgdis. Only for the sub-Gaussian independent
component, kurtosis was better than the other contrastiursc There was no clear difference between the
performances of the contrast functidBsandG,. Next, the experiments were repeated with added Gaussian
noise whose energy was 10% of the energy of the independemtatents. The results are shown in Fig. 2.
This time, kurtosis did not perform better even in the casthefsub-Gaussian density. The robust contrast
functions seem to be somewhat robust against Gaussianasovsell.

We also studied thepeed of convergenoéthe fixed-point algorithms. Four independent componehts
different distributions (two subgaussian and two supesgiam) were artificially generated, and the symmet-
ric version of the fixed-point algorithm for sphered data wssd. The data consisted of 1000 points, and the
whole data was used at every iteration. We observed thatl filwr@e contrast functions, ontireeiterations
were necessary, on the average, to achieve the maximunaag@llowed by the data. This illustrates the fast
convergence of the fixed-point algorithm. In fact, a comgamiof our algorithm with other algorithms was
performed in [13], showing that the fixed-point algorithmaeg approximately the same statistical efficiency
as other algorithms, but with a fraction of the computatiaoat.

Experiments on different kinds of real life data have alserbperformed using the contrast functions
and algorithms introduced above. These applications declutifact cancellation in EEG and MEG [36,
37], decomposition of evoked fields in MEG [38], and featux&raction of image data [35, 25]. These
experiments further validate the ICA methods introducethis paper. A Matlab" implementation of the
fixed-algorithm is available on the World Wide Web free of ijea[10].
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dependent components, in the noiseless case. Asterighrmdistribution. Plus sign: Double exponential.
Circle: cube of Gaussian.
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6 Conclusions

The problem of linear independent component analysis (J@A)ch is a form of redundancy reduction, was
addressed. Following Comon [7], the ICA problem was forradaas the search for a linear transformation
that minimizes the mutual information of the resulting caments. This is roughly equivalent to finding
directions in which negentropy is maximized and which c&o &le considered projection pursuit directions
[16]. The novel approximations of negentropy introducedlifi] were then used for constructing novel
contrast (objective) functions for ICA. This resulted in engralization of the kurtosis-based approach in
[7, 9], and also enabled estimation of the independent coimpis one by one. The statistical properties of
these contrast functions were analyzed in the frameworkefibhear mixture model, and it was shown that
for suitable choices of the contrast functions, the staisproperties were superior to those of the kurtosis-
based approach. Next, a new family of algorithms for optingzhe contrast functions were introduced.
This was the family of fixed-point algorithms that are notrain the sense that they are non-adaptive, but
share the other benefits of neural learning rules. The maiarddge of the fixed-point algorithms is that
their convergence can be shown to be very fast (cubic or at ¢pedratic). Combining the good statistical
properties (e.g. robustness) of the new contrast functiemmd the good algorithmic properties of the fixed-
point algorithm, a very appealing method for ICA was obtdin&imulations as well as applications on
real-life data have validated the novel contrast functiamg algorithms introduced. Some extensions of the
methods introduced in this paper are presented in [20], inlnthe problem of noisy data is addressed, and in
[22], which deals with the situation where there are morepehdent components than observed variables.
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A Appendix: Proofs

A.1 Proof of convergence of algorithm (20)

The convergence is proven under the assumptions that fiestjata follows the ICA data model (2) and
second, that the expectations are evaluated exactly. Weatsosmake the following technical assumption:

E{sg(s)—d'(s)} #0,for anyi (27)

which can be considered a generalization of the conditiafid when we use kurtosis as contrast, that
the kurtosis of the independent components must be non-1&e(a7) is true for a subset of independent
components, we can estimate just those independent comigone

To begin with, make the change of varialale ATw, as above, and assume thié in the neighbourhood
of a solution (sayz; ~ 1 as above). As shown in proof of Theorem 1 (see [24]), thegh&mz; is then of a
lower order than the change in the other coordinates, dueetodnstrainfz|| = 1. Then we can expand the
terms in (20) using a Taylor approximation fpandgd/, first obtaining

1
0(z's) =g(z151) + 9 (z251)2" 15-1 + Eg/’(zlsl)(zllal)z (28)
1

+69’”(2131)(211&1)3 +0(]|z-1]") (29)

and then
d(z's) =d(zs) +9"(zs1)2 151 (30)

1

+§9’”(2151)(211&1)2+0(||Z—1||3) (31)

wherez_j ands_; are the vectorg ands without their first components. Thus we obtain, using thepeh-
dence of thes, and doing some tedious but straight-forward algebraicipudations,

7 =E{si9(zs1) — ¢ (z1s1)} + O([|z-1]?) (32)

AR :—lekew(s)E{g”(Sl)}ziz

+é kurt(s)E{g" (s1)}2 + O(|z_1(|[4),for i > 1 (33)
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We obtain also
zZ'=z"/|z"| (34)

This shows clearly that under the assumption (27), the algorconverges (locally) to such a vector
thatzy = +1 andz = 0 fori > 1. This means that = (AT)~'z converges, up to the sign, to one of the
rows of the inverse of the mixing matrik, which implies thaw'x converges to one of thg. Moreover,

if E{d"(s1)} =0, i.e. if thes has a symmetric distribution, as is usually the case, (38)stthat the
convergence is cubic. In other cases, the convergence dratia In addition, ifG(u) = u?®, the local
approximations above are exact, and the convergence ialglob

A.2 Proof of convergence of (26)

Denote byW . the result of applying once the iteration step 2 in (26Mdn Let WCW' = EDE" be the
eigenvalue decomposition WCWT. Then we have

9 3 1

w,Ccw' = 21EDET - zEDZET + 21ED3ET (35)
9 3 1
:E(ZD—§D2+ZD3)ET (36)

Note that due to the normalization, i.e. divisionWfby /|[WCWT||, all the eigenvalues SNCWT are
in the interval[0,1]. Now, according to (35), for every eigenvalue WICWT, say\i, W,CWI has a
corresponding eigenvallgA;) whereh(.) is defined as:

9. 3., 1
h(A) = 22— EAZ + Z)\3 (37)

Thus, afterk iterations, the eigenvalues WCWT are obtained aB(h(h(...h(A;)))), whereh is appliedk
times on the\;, which are the eigenvalues WWCW for the original matrix before the iterations. Now, we
have alwaysi(A) > A for 0 < A < 1. ltis therefore clear that all the eigenvalues€EWT converge to 1,
which means thatvCWT — |, Q.E.D. Moreover, it is not difficult to see that the convergeis quadratic.

B Appendix: Adaptive neural algorithms

Let us consider sphered data only. Taking the instantang@aient of the approximation of negentropy
in (7) with respect tov, and taking the normalizatiofw||? = 1 into account, one obtains the following
Hebbian-like learning rule

Aw O rxg(w'x), normalizev (38)

wherer = E{G(w"x)} —E{G(v)}. This is equivalent to the learning rule in [24], except ttfa self-
adaptation constantis different.

To find the wholen-dimensional transformrs = Wx, one can then use a network mheurons, each of
which learns according to eq. (38). Of course, some kindediback is then necessary. In [24], it was shown
how to add a bigradient feedback to the learning rule. Dendby W = (w1,...,w,)" the weight matrix
whose rows are the weight vectavsof the neurons, we obtain:

W (t+1) = W(t) + p(t)diagri(t))g(W (£)x(t))x(t)"

1

+5 (1 =WEOWEHTHW(D) )

wherep(t) is the learning rate sequence, and the funagioh= G'(.) is applied separately on every compo-
nent of the vectoW (t)x(t). In this most general version of the learning rule, thé= 1...n are estimated
separately for each neuron, as given above (see also [24) hay also be fixed using prior knowledge.
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