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Abstract

Independent component analysis (ICA) is a statistical method for transforming an observed multidimen-
sional random vector into components that are statistically as independent from each other as possible. In
this paper, we use a combination of two different approachesfor linear ICA: Comon’s information-theoretic
approach and the projection pursuit approach. Using maximum entropy approximations of differential en-
tropy, we introduce a family of new contrast (objective) functions for ICA. These contrast functions enable
both the estimation of the whole decomposition by minimizing mutual information, and estimation of indi-
vidual independent components as projection pursuit directions. The statistical properties of the estimators
based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is
shown how to choose contrast functions that are robust and/or of minimum variance. Finally, we intro-
duce simple fixed-point algorithms for practical optimization of the contrast functions. These algorithms
optimize the contrast functions very fast and reliably.

1 Introduction

A central problem in neural network research, as well as in statistics and signal processing, is finding a
suitable representation or transformation of the data. Forcomputational and conceptual simplicity, the repre-
sentation is often sought as alinear transformation of the original data. Let us denote byx = (x1,x2, ...,xm)T a
zero-meanm-dimensional random variable that can be observed, and bys = (s1,s2, ...,sn)

T its n-dimensional
transform. Then the problem is to determine a constant (weight) matrixW so that the linear transformation
of the observed variables

s = Wx (1)

has some suitable properties. Several principles and methods have been developed to find such a linear rep-
resentation, including principal component analysis [30], factor analysis [15], projection pursuit [12, 16],
independent component analysis [27], etc. The transformation may be defined using such criteria as optimal
dimension reduction, statistical ’interestingness’ of the resulting componentssi , simplicity of the transforma-
tion, or other criteria, including application-oriented ones.

We treat in this paper the problem of estimating the transformation given by (linear) independent compo-
nent analysis (ICA) [7, 27]. As the name implies, the basic goal in determining the transformation is to find
a representation in which the transformed componentssi are statistically as independent from each other as
possible. Thus this method is a special case of redundancy reduction [2].

Two promising applications of ICA are blind source separation and feature extraction. Inblind source
separation[27], the observed values ofx correspond to a realization of anm-dimensional discrete-time signal
x(t), t = 1,2, .... Then the componentssi(t) are called source signals, which are usually original, uncorrupted
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signals or noise sources. Often such sources are statistically independent from each other, and thus the signals
can be recovered from linear mixturesxi by finding a transformation in which the transformed signalsare
as independent as possible, as in ICA. Infeature extraction[4, 25], si is the coefficient of thei-th feature in
the observed data vectorx. The use of ICA for feature extraction is motivated by results in neurosciences
that suggest that the similar principle of redundancy reduction [2, 32] explains some aspects of the early
processing of sensory data by the brain. ICA has also applications inexploratory data analysisin the same
way as the closely related method of projection pursuit [16,12].

In this paper, new objective (contrast) functions and algorithms for ICA are introduced. Starting from
an information-theoretic viewpoint, the ICA problem is formulated as minimization of mutual information
between the transformed variablessi , and a new family of contrast functions for ICA is introduced(Section
2). These contrast functions can also be interpreted from the viewpoint of projection pursuit, and enable
the sequential (one-by-one) extraction of independent components. The behavior of the resulting estimators
is then evaluated in the framework of the linear mixture model, obtaining guidelines for choosing among
the many contrast functions contained in the introduced family. Practical choice of the contrast function
is discussed as well, based on the statistical criteria together with some numerical and pragmatic criteria
(Section 3). For practical maximization of the contrast functions, we introduce a novel family of fixed-
point algorithms (Section 4). These algorithms are shown tohave very appealing convergence properties.
Simulations confirming the usefulness of the novel contrastfunctions and algorithms are reported in Section
5, together with references to real-life experiments usingthese methods. Some conclusions are drawn in
Section 6.

2 Contrast Functions for ICA

2.1 ICA data model, minimization of mutual information, and projection pursuit

One popular way of formulating the ICA problem is to considerthe estimation of the following generative
model for the data [1, 3, 5, 6, 23, 24, 27, 28, 31]:

x = As (2)

wherex is an observedm-dimensional vector,s is ann-dimensional (latent) random vector whose components
are assumed mutually independent, andA is a constantm× n matrix to be estimated. It is usually further
assumed that the dimensions ofx ands are equal, i.e.,m= n; we make this assumption in the rest of the paper.
A noise vector may also be present. The matrixW defining the transformation as in (1) is then obtained as
the (pseudo)inverse of the estimate of the matrixA. Non-Gaussianity of the independent components is
necessary for the identifiability of the model (2), see [7].

Comon [7] showed how to obtain a more general formulation forICA that does not need to assume an
underlying data model. This definition is based on the concept of mutual information. First, we define the
differential entropyH of a random vectory = (y1, ...,yn)

T with density f (.) as follows [33]:

H(y) = −

∫

f (y) log f (y)dy (3)

Differential entropy can be normalized to give rise to the definition of negentropy, which has the appealing
property of being invariant for linear transformations. The definition of negentropyJ is given by

J(y) = H(ygauss)−H(y) (4)

whereygauss is a Gaussian random vector of the same covariance matrix asy. Negentropy can also be
interpreted as a measure of nongaussianity [7]. Using the concept of differential entropy, one can define the
mutual informationI between then (scalar) random variablesyi , i = 1...n [8, 7]. Mutual information is a
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natural measure of the dependence between random variables. It is particularly interesting to express mutual
information using negentropy, constraining the variablesto beuncorrelated. In this case, we have [7]

I(y1,y2, ...,yn) = J(y)−∑
i

J(yi). (5)

Since mutual information is the information-theoretic measure of the independence of random variables,
it is natural to use it as the criterion for finding the ICA transform. Thus we define in this paper, following
[7], the ICA of a random vectorx as an invertible transformations = Wx as in (1) where the matrixW is
determined so that themutual information of the transformed components si is minimized. Note that mutual
information (or the independence of the components) is not affected by multiplication of the components by
scalar constants. Therefore, this definition only defines the independent components up to some multiplica-
tive constants. Moreover, the constraint of uncorrelatedness of thesi is adopted in this paper. This constraint
is not strictly necessary, but simplifies the computations considerably.

Because negentropy is invariant for invertible linear transformations [7], it is now obvious from (5) that
finding an invertible transformationW that minimizes the mutual information is roughly equivalent to finding
directions in which the negentropy is maximized. This formulation of ICA also shows explicitly the connec-
tion between ICA and projection pursuit [11, 12, 16, 26]. In fact, finding a single direction that maximizes
negentropy is a form of projection pursuit, and could also beinterpreted as estimation of a single independent
component [24].

2.2 Contrast Functions through Approximations of Negentropy

To use the definition of ICA given above, a simple estimate of the negentropy (or of differential entropy) is
needed. We use here the new approximations developed in [19], based on the maximum entropy principle.
In [19] it was shown that these approximations are often considerably more accurate than the conventional,
cumulant-based approximations in [7, 1, 26]. In the simplest case, these new approximations are of the form:

J(yi) ≈ c[E{G(yi)}−E{G(ν)}]2 (6)

whereG is practically any non-quadratic function,c is an irrelevant constant, andν is a Gaussian variable of
zero mean and unit variance (i.e., standardized). The random variableyi is assumed to be of zero mean and
unit variance. For symmetric variables, this is a generalization of the cumulant-based approximation in [7],
which is obtained by takingG(yi) = y4

i . The choice of the functionG is deferred to Section 3.

The approximation of negentropy given above in (6) gives readily a new objective function for estimating
the ICA transform in our framework. First, to findoneindependent component, or projection pursuit direction
asyi = wTx, we maximize the functionJG given by

JG(w) = [E{G(wTx)}−E{G(ν)}]2 (7)

wherew is an m-dimensional (weight) vector constrained so thatE{(wTx)2} = 1 (we can fix the scale
arbitrarily). Several independent components can then be estimated one-by-one using a deflation scheme,
see Section 4.

Second, using the approach of minimizing mutual information, the above one-unit contrast function can
be simply extended to compute the whole matrixW in (1). To do this, recall from (5) that mutual information
is minimized (under the constraint of decorrelation) when the sum of the negentropies of the components in
maximized. Maximizing the sum ofn one-unit contrast functions, and taking into account the constraint of
decorrelation, one obtains the following optimization problem:

maximize
n

∑
i=1

JG(wi) wrt. wi , i = 1, ...,n (8)

under constraintE{(wT
k x)(wT

j x)} = δ jk
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where at the maximum, every vectorwi , i = 1, ..,n gives one of the rows of the matrixW, and the ICA
transformation is then given bys = Wx. Thus we have defined our ICA estimator by an optimization prob-
lem. Below we analyze the properties of the estimators, giving guidelines for the choice ofG, and propose
algorithms for solving the optimization problems in practice.

3 Analysis of estimators and choice of contrast function

3.1 Behavior under the ICA data model

In this subsection, we analyze the behavior of the estimators given above when the data follows the ICA
data model (2), with a square mixing matrix. For simplicity,we consider only the estimation of a single
independent component, and neglect the effects of decorrelation. Let us denote bŷw a vector obtained by
maximizingJG in (7). The vectorŵ is thus an estimator of a row of the matrixA−1 .

3.1.1 Consistency

First of all, we prove that̂w is a (locally) consistent estimator for one component in theICA data model. To
prove this, we have the following theorem:

Theorem 1 Assume that the input data follows the ICA data model in (2), and that G is a sufficiently smooth
even function. Then the set of local maxima of JG(w) under the constraint E{(wTx)2} = 1, includes the i-th
row of the inverse of the mixing matrixA such that the corresponding independent component si fulfills

E{sig(si)−g′(si)}[E{G(si)}−E{G(ν)}] > 0 (9)

where g(.) is the derivative of G(.), andν is a standardized Gaussian variable.

This theorem can be considered a corollary of the theorem in [24]. The condition in Theorem 1 seems to be
true for most reasonable choices ofG, and distributions of thesi . In particular, ifG(u) = u4, the condition is
fulfilled for any distribution of non-zero kurtosis. In thatcase, it can also be proven that there are no spurious
optima [9].

3.1.2 Asymptotic variance

Asymptotic variance is one criterion for choosing the function G to be used in the contrast function. Com-
parison of, say, the traces of the asymptotic covariance matrices of two estimators enables direct comparison
of the mean-square error of the estimators. In [18], evaluation of asymptotic variances was addressed using
a related family of contrast functions. In fact, it can be seen that the results in [18] are valid even in this case,
and thus we have the following theorem:

Theorem 2 The trace of the asymptotic (co)variance ofŵ is minimized when G is of the form

Gopt(u) = k1 log fi(u)+k2u2 +k3 (10)

where fi(.) is the density function of si , and k1,k2,k3 are arbitrary constants.

For simplicity, one can chooseGopt(u) = log fi(u). Thus the optimal contrast function is the same as the one
obtained by the maximum likelihood approach [34], or the infomax approach [3]. Almost identical results
have also been obtained in [5] for another algorithm. The theorem above treats, however, the one-unit case
instead of the multi-unit case treated by the other authors.
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3.1.3 Robustness

Another very attractive property of an estimator is robustness against outliers [14]. This means that single,
highly erroneous observations do not have much influence on the estimator. To obtain a simple form of
robustness called B-robustness, we would like the estimator to have a bounded influence function [14]. Again,
we can adapt the results in [18]. It turns out to be impossibleto have a completely bounded influence function,
but we do have a simpler form of robustness, as stated in the following theorem:

Theorem 3 Assume that the datax is whitened (sphered) in a robust manner (see Section 4 for this form
of preprocessing). Then the influence function of the estimator ŵ is never bounded for allx. However, if
h(u) = ug(u) is bounded, the influence function is bounded in sets of the form {x | ŵTx/‖x‖ > ε} for every
ε > 0, where g is the derivative of G.

In particular, if one choosesa function G(u) that is bounded, h is also bounded, and̂w is rather robust
against outliers. If this is not possible, one should at least choose a functionG(u) that does not grow very
fast when|u| grows.

3.2 Practical choice of contrast function

3.2.1 Performance in the exponential power family

Now we shall treat the question of choosing the contrast function G in practice. It is useful to analyze
the implications of the theoretical results of the preceding section by considering the following exponential
power family of density functions:

fα(s) = k1exp(k2|s|
α) (11)

whereα is a positive parameter, andk1,k2 are normalization constants that ensure thatfα is a probability
density of unit variance. For different values of alpha, thedensities in this family exhibit different shapes.
For 0< α < 2, one obtains a sparse, super-Gaussian density (i.e., a density of positive kurtosis). Forα = 2,
one obtains the Gaussian distribution, and forα > 2, a sub-Gaussian density (i.e., a density of negative
kurtosis). Thus the densities in this family can be used as examples of different non-Gaussian densities.

Using Theorem 2, one sees that in terms of asymptotic variance, an optimal contrast function for estimat-
ing an independent component whose density function equalsfα, is of the form:

Gopt(u) = |u|α (12)

where the arbitrary constants have been dropped for simplicity. This implies roughly that for super-Gaussian
(resp. sub-Gaussian) densities, the optimal contrast function is a function that growsslower than quadrati-
cally (resp.faster than quadratically). Next, recall from Section 3.1.3 that ifG(u) grows fast with|u|, the
estimator becomes highly non-robust against outliers. Taking also into account the fact that most indepen-
dent components encountered in practice are super-Gaussian [3, 25], one reaches the conclusion that as a
general-purpose contrast function, one should choose a functionG that resembles rather

Gopt(u) = |u|α,whereα < 2. (13)

The problem with such contrast functions is, however, that they are not differentiable at 0 forα ≤ 1. Thus
it is better to use approximating differentiable functionsthat have the same kind of qualitative behavior.
Consideringα = 1, in which case one has a double exponential density, one could use instead the func-
tion G1(u) = logcosha1u wherea1 ≥ 1 is a constant. Note that the derivative ofG1 is then the familiar
tanh function (fora1 = 1). In the case ofα < 1, i.e., highly super-Gaussian independent components,
one could approximate the behavior ofGopt for large u using a Gaussian function (with a minus sign):
G2(u) = −exp(−a2u2/2), wherea2 is a constant. The derivative of this function is like a sigmoid for small
values, but goes to 0 for larger values. Note that this function also fulfills the condition in Theorem 3, thus
providing an estimator that is as robust as possible in the framework of estimators of type (8). As regards the
constants, we have found experimentally 1≤ a1 ≤ 2 anda2 = 1 to provide good approximations.
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3.2.2 Choosing the Contrast Function in Practice

The theoretical analysis given above gives some guidelinesas for the choice ofG. In practice, however, there
are also other criteria that are important, in particular the following two.

First, we have computational simplicity: The contrast function should be fast to compute. It must be
noted that polynomial functions tend to be faster to computethan, say, the hyperbolic tangent. However,
non-polynomial contrast functions could be replaced by piecewise linear approximations without losing the
benefits of non-polynomial functions.

The second point to consider is the order in which the components are estimated, if one-by-one estimation
is used. We can influence this order because the basins of attraction of the maxima of the contrast function
have different sizes. Any ordinary method of optimization tends to first find maxima that have large basins
of attraction. Of course, it is not possible to determine with certainty this order, but a suitable choice of the
contrast function means that independent components with certain distributions tend to be found first. This
point is, however, so application-dependent that we cannotsay much in general.

Thus, we reach the following general conclusion. We have basically the following choices for the contrast
function (for future use, we also give their derivatives):

G1(u) =
1
a1

logcosh(a1u), g1(u) = tanh(a1u) (14)

G2(u) = −
1
a2

exp(−a2u2/2), g2(u) = uexp(−a2u2/2) (15)

G3(u) =
1
4

u4, g3(u) = u3 (16)

where 1≤ a1 ≤ 2,a2 ≈ 1 are constants, and piecewise linear approximations of (14) and (15) may also be
used. The benefits of the different contrast functions may besummarized as follows:

• G1 is a good general-purpose contrast function.

• when the independent components are highly super-Gaussian, or when robustness is very important,
G2 may be better.

• if computational overhead must be reduced, piecewise linear approximations ofG1 andG2 may be
used.

• using kurtosis, orG3, is justified on statistical grounds only for estimating sub-Gaussian independent
components when there are no outliers.

Finally, we emphasize in contrast to many other ICA methods,our framework provides estimators that
work for (practically) any distributions of the independent components and for any choice of the contrast
function. The choice of the contrast function is only important if one wants to optimize the performance of
the method.

4 Fixed-point algorithms for ICA

4.1 Introduction

In the preceding sections, we introduced new contrast (or objective) functions for ICA based on minimization
of mutual information (and projection pursuit), analyzed some of their properties, and gave guidelines for the
practical choice of the functionG used in the contrast functions. In practice, one also needs an algorithm for
maximizing the contrast functions in (7) or (8).

A simple method to maximize the contrast function would be touse stochastic gradient descent; the
constraint could be taken into account by a bigradient feedback. This leads to neural (adaptive) algorithms
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that are closely related related to those introduced in [24]. We show in the Appendix B how to modify the
algorithms in [24] to minimize the contrast functions used in this paper.

The advantage of neural on-line learning rules is that the inputs x(t) can be used in the algorithm at
once, thus enabling faster adaptation in a non-stationary environment. A resulting trade-off, however, is that
the convergence is slow, and depends on a good choice of the learning rate sequence, i.e. the step size at
each iteration. A bad choice of the learning rate can, in practice, destroy convergence. Therefore, it would
important in practice to make the learning faster and more reliable. This can be achieved by the fixed-point
iteration algorithms that we introduce here. In the fixed-point algorithms, the computations are made in
batch (or block) mode, i.e., a large number of data points areused in a single step of the algorithm. In
other respects, however, the algorithms may be considered neural. In particular, they are parallel, distributed,
computationally simple, and require little memory space. We will show below that the fixed-point algorithms
have very appealing convergence properties, making them a very interesting alternative to adaptive learning
rules in environments where fast real-time adaptation is not necessary.

Note that our basic ICA algorithms require a preliminary sphering or whitening of the datax, though also
some versions for non-sphered data will be given. Sphering means that the original observed variable, sayv
is linearly transformed to a variablex = Qv such that the correlation matrix ofx equals unity:E{xxT} = I.
This transformation is always possible; indeed, it can be accomplished by classical PCA. For details, see
[7, 12].

4.2 Fixed-point algorithm for one unit

To begin with, we shall derive the fixed-point algorithm for one unit, with sphered data. First note that the
maxima ofJG(w) are obtained at certain optima ofE{G(wTx)}. According to the Kuhn-Tucker conditions
[29], the optima ofE{G(wTx)} under the constraintE{(wTx)2} = ‖w‖2 = 1 are obtained at points where

E{xg(wTx)}−βw = 0 (17)

whereβ is a constant that can be easily evaluated to giveβ = E{wT
0 xg(wT

0 x)}, wherew0 is the value ofw at
the optimum. Let us try to solve this equation by Newton’s method. Denoting the function on the left-hand
side of (17) byF, we obtain its Jacobian matrixJF(w) as

JF(w) = E{xxTg′(wT x)}−βI (18)

To simplify the inversion of this matrix, we decide to approximate the first term in (18). Since the data is
sphered, a reasonable approximation seems to beE{xxTg′(wTx)} ≈ E{xxT}E{g′(wTx)} = E{g′(wT x)}I.
Thus the Jacobian matrix becomes diagonal, and can easily beinverted. We also approximateβ using the
current value ofw instead ofw0. Thus we obtain the following approximative Newton iteration:

w+ = w− [E{xg(wTx)}−βw]/[E{g′(wTx)}−β]

w∗ = w+/‖w+‖
(19)

wherew∗ denotes the new value ofw, β = E{wTxg(wTx)}, and the normalization has been added to improve
the stability. This algorithm can be further simplified by multiplying both sides of the first equation in (19)
by β−E{g′(wT x)}. This gives the followingfixed-point algorithm

w+ = E{xg(wTx)}−E{g′(wTx)}w

w∗ = w+/‖w+‖
(20)

which was introduced in [17] using a more heuristic derivation. An earlier version (for kurtosis only) was
derived as a fixed-point iteration of a neural learning rule in [23], which is where its name comes from. We
retain this name for the algorithm, although in the light of the above derivation, it is rather a Newton method
than a fixed-point iteration.
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Due to the approximations used in the derivation of the fixed-point algorithm, one may wonder if it really
converges to the right points. First of all, since only the Jacobian matrix is approximated, any convergence
point of the algorithm must be a solution of the Kuhn-Tucker condition in (17). In Appendix A it is further
proven that the algorithm does converge to the right extrema(those corresponding to maxima of the contrast
function), under the assumption of the ICA data model. Moreover, it is proven that the convergence is
quadratic, as usual with Newton methods. In fact, if the densities of thesi are symmetric, the convergence is
even cubic. The convergence proven in the Appendix is local.However, in the special case where kurtosis is
used as a contrast function, i.e., ifG(u) = u4, the convergence is proven globally.

The above derivation also enables a useful modification of the fixed-point algorithm. It is well-known
that the convergence of the Newton method may be rather uncertain. To ameliorate this, one may add a step
size in (19), obtaining thestabilized fixed-point algorithm

w+ = w−µ[E{xg(wTx)}−βw]/[E{g′(wT x)}−β]

w∗ = w+/‖w+‖
(21)

whereβ = E{wTxg(wTx)} as above, andµ is a step size parameter that may change with the iteration
count. Taking aµ that is much smaller than unity (say, 0.1 or 0.01), the algorithm (21) converges with much
more certainty. In particular, it is often a good strategy tostart withµ = 1, in which case the algorithm is
equivalent to the original fixed-point algorithm in (20). Ifconvergence seems problematic,µ may then be
decreased gradually until convergence is satisfactory. Note that we thus have a continuum between a Newton
optimization method, corresponding toµ= 1, and a gradient descent method, corresponding to a very small
µ.

The fixed-point algorithms may also be simply used for the original, that is, not sphered data. Trans-
forming the data back to the non-sphered variables, one seeseasily that the following modification of the
algorithm (20) works for non-sphered data:

w+ = C−1E{xg(wTx)}−E{g′(wTx)}w

w∗ = w+/
√

(w+)TCw+ (22)

whereC = E{xxT} is the covariance matrix of the data. The stabilized version, algorithm (21), can also be
modified as follows to work with non-sphered data:

w+ = w−µ[C−1E{xg(wTx)}−βw]/[E{g′(wTx)}−β]

w∗ = w+/
√

(w+)TCw+ (23)

Using these two algorithms, one obtains directly an independent component as the linear combinationwTx,
wherex need not be sphered (prewhitened). These modifications presuppose, of course, that the covariance
matrix is not singular. If it is singular or near-singular, the dimension of the data must be reduced, for example
with PCA [7, 28].

In practice, the expectations in the fixed-point algorithmsmust be replaced by their estimates. The natural
estimates are of course the corresponding sample means. Ideally, all the data available should be used, but
this is sometimes not a good idea because the computations may become too demanding. Then the averages
can be estimated using a smaller sample, whose size may have aconsiderable effect on the accuracy of the
final estimates. The sample points should be chosen separately at every iteration. If the convergence is not
satisfactory, one may then increase the sample size. A reduction of the step sizeµ in the stabilized version
has a similar effect, as is well-known in stochastic approximation methods [24, 28].

4.3 Fixed-point algorithm for several units

The one-unit algorithm of the preceding subsection can be used to construct a system ofn neurons to estimate
the whole ICA transformation using the multi-unit contrastfunction in (8). To prevent different neurons

8



from converging to the same maxima we mustdecorrelatethe outputswT
1 x, ...,wT

n x after every iteration. We
present here three methods for achieving this. These methods do not assume that the data is sphered. If it is,
the covariance matrixC can simply be omitted in the following formulas.

A simple way of achieving decorrelation is a deflation schemebased on a Gram-Schmidt-like decorre-
lation. This means that we estimate the independent components one by one. When we have estimatedp
independent components, orp vectorsw1, ...,wp, we run the one-unit fixed-point algorithm forwp+1, and
after every iteration step subtract fromwp+1 the ’projections’wT

p+1w jw j , j = 1, ..., p of the previously esti-
matedp vectors, and then renormalizewp+1:

1. Letwp+1 = wp+1−∑p
j=1 wT

p+1Cw jw j

2. Letwp+1 = wp+1/
√

wT
p+1Cwp+1

(24)

In certain applications, however, it may be desired to use a symmetric decorrelation, in which no vectors
are ’privileged’ over others [28]. This can be accomplished, e.g., by the classical method involving matrix
square roots,

Let W = (WCWT)−1/2W (25)

whereW is the matrix(w1, ...,wn)
T of the vectors, and the inverse square root(WCWT)−1/2 is obtained from

the eigenvalue decomposition ofWCWT = EDET as(WCWT)−1/2 = ED−1/2ET . A simpler alternative is
the following iterative algorithm,

1. LetW = W/
√

‖WCWT‖
Repeat 2. until convergence:
2. LetW = 3

2W− 1
2WCWTW

(26)

The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the largest absolute row
(or column) sum (but not the Frobenius norm). The convergence of the orthonormalization method in (26),
which may be considered a variation of Potter’s formula (see[5]), is proven in the Appendix.

Finally, let us note that explicit inversion of the matrixC in (22) or (23) can be avoided by using the
identity C−1 = WTW which is valid for any decorrelatingW. This gives raise to a fixed-point algorithm in
which neither sphering nor inversion of the covariance matrix is needed. In fact, such an algorithm can be
considered as a fixed-point algorithm for maximum likelihood estimation of the ICA data model, see [21].

4.4 Properties of the Fixed-Point Algorithm

The fixed-point algorithm and the underlying contrast functions have a number of desirable properties when
compared with existing methods for ICA.

• The convergence is cubic (or at least quadratic), under the assumption of the ICA data model (for a
proof, see the convergence proof in the Appendix). This is incontrast to gradient descent methods,
where the convergence is only linear. This means a very fast convergence, as has been confirmed by
simulations and experiments on real data (see Section 5).

• Contrary to gradient-based algorithms, there are no step size parameters to choose (in the original
fixed-point algorithm). This means that the algorithm is easy to use. Even in the stabilized version,
reasonable values for the step size parameter are very easy to choose.

• The algorithm finds directly independent components of (practically) any non-Gaussian distribution
using any nonlinearityg. This is in contrast to many algorithms, where some estimateof the probability
distribution function has to be first available, and the nonlinearity must be chosen accordingly.

• The performance of the method can be optimized by choosing a suitable nonlinearityg. In particular,
one can obtain algorithms that are robust and/or of minimum variance.
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• The independent components can be estimated one by one, which is roughly equivalent to doing pro-
jection pursuit.

• The fixed-point algorithm inherits most of the advantages ofneural algorithms: It is parallel, dis-
tributed, computationally simple, and requires little memory space. Stochastic gradient methods seem
to be preferable only if fast adaptivity in a changing environment is required.

5 Simulation and experimental results

First, we investigated the robustness of the contrast functions. We generated four artificial source signals,
two of which were sub-Gaussian, and two were super-Gaussian. The source signals were mixed using several
different random matrices, whose elements were drawn from astandardized Gaussian distribution. To test
the robustness of our algorithms,four outlierswhose values were±10 were added in random locations. The
fixed-point algorithm for sphered data was used with the three different contrast functions in eq. (14–16),
and symmetric orthogonalization. Since the robust estimation of the covariance matrix is a classical problem
independent of the robustness of our contrast functions, weused in this simulation a hypothetical robust
estimator of covariance, which was simulated by estimatingthe covariance matrix from the original data
without outliers. In all the runs, it was observed that the estimates based on kurtosis (16) were essentially
worse than the others, and estimates usingG2 in (15) were slightly better than those usingG1 in (14). These
results confirm the theoretical predictions on robustness in Section 3.

To investigate theasymptotic variance, i.e., efficiency, of the estimators, we performed simulations in
which the 3 different contrast functions were used to estimate one independent component from a mixture of 4
identically distributed independent components. We also used three different distributions of the independent
components: uniform, double exponential (or Laplace), andthe distribution of the third power of a Gaussian
variable. The asymptotic mean absolute deviations (which is a robustified measure of error) between the
components of the obtained vectors and the correct solutions were estimated and averaged over 1000 runs
for each combination of non-linearity and distribution of independent component. The results in the basic,
noiseless case are depicted in Fig. 1. As one can see, the estimates using kurtosis were essentially worse for
super-Gaussian independent components. Especially the strongly super-Gaussian independent component
(cube of Gaussian) was estimated considerably worse using kurtosis. Only for the sub-Gaussian independent
component, kurtosis was better than the other contrast functions. There was no clear difference between the
performances of the contrast functionsG1 andG2. Next, the experiments were repeated with added Gaussian
noise whose energy was 10% of the energy of the independent components. The results are shown in Fig. 2.
This time, kurtosis did not perform better even in the case ofthe sub-Gaussian density. The robust contrast
functions seem to be somewhat robust against Gaussian noiseas well.

We also studied thespeed of convergenceof the fixed-point algorithms. Four independent componentsof
different distributions (two subgaussian and two supergaussian) were artificially generated, and the symmet-
ric version of the fixed-point algorithm for sphered data wasused. The data consisted of 1000 points, and the
whole data was used at every iteration. We observed that for all three contrast functions, onlythreeiterations
were necessary, on the average, to achieve the maximum accuracy allowed by the data. This illustrates the fast
convergence of the fixed-point algorithm. In fact, a comparison of our algorithm with other algorithms was
performed in [13], showing that the fixed-point algorithm gives approximately the same statistical efficiency
as other algorithms, but with a fraction of the computational cost.

Experiments on different kinds of real life data have also been performed using the contrast functions
and algorithms introduced above. These applications include artifact cancellation in EEG and MEG [36,
37], decomposition of evoked fields in MEG [38], and feature extraction of image data [35, 25]. These
experiments further validate the ICA methods introduced inthis paper. A MatlabTM implementation of the
fixed-algorithm is available on the World Wide Web free of charge [10].
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Figure 1: Finite-sample estimation errors plotted for different contrast functions and distributions of the in-
dependent components, in the noiseless case. Asterisk: uniform distribution. Plus sign: Double exponential.
Circle: cube of Gaussian.
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Figure 2: The noisy case. Finite-sample estimation errors plotted for different contrast functions and dis-
tributions of the independent components. Asterisk: uniform distribution. Plus sign: Double exponential.
Circle: cube of Gaussian.
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6 Conclusions

The problem of linear independent component analysis (ICA), which is a form of redundancy reduction, was
addressed. Following Comon [7], the ICA problem was formulated as the search for a linear transformation
that minimizes the mutual information of the resulting components. This is roughly equivalent to finding
directions in which negentropy is maximized and which can also be considered projection pursuit directions
[16]. The novel approximations of negentropy introduced in[19] were then used for constructing novel
contrast (objective) functions for ICA. This resulted in a generalization of the kurtosis-based approach in
[7, 9], and also enabled estimation of the independent components one by one. The statistical properties of
these contrast functions were analyzed in the framework of the linear mixture model, and it was shown that
for suitable choices of the contrast functions, the statistical properties were superior to those of the kurtosis-
based approach. Next, a new family of algorithms for optimizing the contrast functions were introduced.
This was the family of fixed-point algorithms that are not neural in the sense that they are non-adaptive, but
share the other benefits of neural learning rules. The main advantage of the fixed-point algorithms is that
their convergence can be shown to be very fast (cubic or at least quadratic). Combining the good statistical
properties (e.g. robustness) of the new contrast functions, and the good algorithmic properties of the fixed-
point algorithm, a very appealing method for ICA was obtained. Simulations as well as applications on
real-life data have validated the novel contrast functionsand algorithms introduced. Some extensions of the
methods introduced in this paper are presented in [20], in which the problem of noisy data is addressed, and in
[22], which deals with the situation where there are more independent components than observed variables.
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A Appendix: Proofs

A.1 Proof of convergence of algorithm (20)

The convergence is proven under the assumptions that first, the data follows the ICA data model (2) and
second, that the expectations are evaluated exactly. We must also make the following technical assumption:

E{sig(si)−g′(si)} 6= 0, for any i (27)

which can be considered a generalization of the condition, valid when we use kurtosis as contrast, that
the kurtosis of the independent components must be non-zero. If (27) is true for a subset of independent
components, we can estimate just those independent components.

To begin with, make the change of variablez = ATw, as above, and assume thatz is in the neighbourhood
of a solution (say,z1 ≈ 1 as above). As shown in proof of Theorem 1 (see [24]), the change inz1 is then of a
lower order than the change in the other coordinates, due to the constraint‖z‖ = 1. Then we can expand the
terms in (20) using a Taylor approximation forg andg′, first obtaining

g(zTs) = g(z1s1)+g′(z1s1)zT
−1s−1 +

1
2

g′′(z1s1)(zT
−1s−1)

2 (28)

+
1
6

g′′′(z1s1)(zT
−1s−1)

3 +O(‖z−1‖
4) (29)

and then

g′(zTs) = g′(z1s1)+g′′(z1s1)zT
−1s−1 (30)

+
1
2

g′′′(z1s1)(zT
−1s−1)

2 +O(‖z−1‖
3) (31)

wherez−1 ands−1 are the vectorsz ands without their first components. Thus we obtain, using the indepen-
dence of thesi , and doing some tedious but straight-forward algebraic manipulations,

z+
1 = E{s1g(z1s1)−g′(z1s1)}+O(‖z−1‖

2) (32)

z+
i =

1
2

skew(si)E{g′′(s1)}z2
i

+
1
6

kurt(si)E{g′′′(s1)}z3
i +O(‖z−1(‖

4), for i > 1 (33)
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We obtain also
z∗ = z+/‖z+‖ (34)

This shows clearly that under the assumption (27), the algorithm converges (locally) to such a vectorz
that z1 = ±1 andzi = 0 for i > 1. This means thatw = (AT)−1z converges, up to the sign, to one of the
rows of the inverse of the mixing matrixA, which implies thatwTx converges to one of thesi . Moreover,
if E{g′′(s1)} = 0, i.e. if thesi has a symmetric distribution, as is usually the case, (33) shows that the
convergence is cubic. In other cases, the convergence is quadratic. In addition, ifG(u) = u4, the local
approximations above are exact, and the convergence is global.

A.2 Proof of convergence of (26)

Denote byW+ the result of applying once the iteration step 2 in (26) onW. Let WCWT = EDET be the
eigenvalue decomposition ofWCWT . Then we have

W+CWT
+ =

9
4

EDET −
3
2

ED2ET +
1
4

ED3ET (35)

= E(
9
4

D−
3
2

D2 +
1
4

D3)ET (36)

Note that due to the normalization, i.e. division ofW by
√

‖WCWT‖, all the eigenvalues ofWCWT are
in the interval[0,1]. Now, according to (35), for every eigenvalue ofWCWT , say λi , W+CWT

+ has a
corresponding eigenvalueh(λi) whereh(.) is defined as:

h(λ) =
9
4

λ−
3
2

λ2 +
1
4

λ3 (37)

Thus, afterk iterations, the eigenvalues ofWCWT are obtained ash(h(h(...h(λi)))), whereh is appliedk
times on theλi , which are the eigenvalues ofWCWT for the original matrix before the iterations. Now, we
have alwaysh(λ) > λ for 0 < λ < 1. It is therefore clear that all the eigenvalues ofWCWT converge to 1,
which means thatWCWT → I, Q.E.D. Moreover, it is not difficult to see that the convergence is quadratic.

B Appendix: Adaptive neural algorithms

Let us consider sphered data only. Taking the instantaneousgradient of the approximation of negentropy
in (7) with respect tow, and taking the normalization‖w‖2 = 1 into account, one obtains the following
Hebbian-like learning rule

∆w ∝ rxg(wTx), normalizew (38)

wherer = E{G(wTx)}−E{G(ν)}. This is equivalent to the learning rule in [24], except thatthe self-
adaptation constantr is different.

To find the wholen-dimensional transforms = Wx, one can then use a network ofn neurons, each of
which learns according to eq. (38). Of course, some kind of feedback is then necessary. In [24], it was shown
how to add a bigradient feedback to the learning rule. Denoting by W = (w1, ...,wn)

T the weight matrix
whose rows are the weight vectorswi of the neurons, we obtain:

W(t +1) = W(t)+µ(t)diag(r i(t))g(W(t)x(t))x(t)T

+
1
2
(I−W(t)W(t)T)W(t)

(39)

whereµ(t) is the learning rate sequence, and the functiong(.) = G′(.) is applied separately on every compo-
nent of the vectorW(t)x(t). In this most general version of the learning rule, ther i , i = 1...n are estimated
separately for each neuron, as given above (see also [24]). They may also be fixed using prior knowledge.
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