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Abstract

We derive a first-order approximation of the density of maximum entropy for a
continuous 1-D random variable, given a number of simple constraints. This results
in a density expansion which is somewhat similar to the classical polynomial density
expansions by Gram-Charlier and Edgeworth. Using this approximation of density, an
approximation of 1-D differential entropy is derived. The approximation of entropy is
both more exact and more robust against outliers than the classical approximation based
on the polynomial density expansions, without being computationally more expensive.
The approximation has applications, for example, in independent component analysis
and projection pursuit.



1 Introduction

The basic information-theoretic quantity for continuous one-dimensional random variables
is differential entropy. The differential entropy H of a scalar random variable X with density
f(x) is defined as

H(X) =~ [ f(@)log f(x)ds. (1

The 1-D differential entropy, henceforth called simply entropy, has important applications in
areas that have attracted considerable interest in the neural network community lately, such
as independent component analysis (Comon 1994) and projection pursuit (Huber 1985).

Unfortunately, the estimation of entropy is quite difficult in practice. Using definition
(1) requires estimation of the density of X, which is recognized to be both theoretically
difficult and computationally demanding. Simpler approximations of entropy have been
proposed both in the context of projection pursuit (Jones and Sibson 1987) and independent
component analysis (Amari, Cichocki, and Yang 1996; Comon 1994). These approximations
are usually based on approximating the density f(z) using the polynomial expansions of
Gram-Charlier or Edgeworth (Kendall and Stuart 1958). This construction leads to the
use of higher-order cumulants, like kurtosis. However, such cumulant-based methods often
provide a rather poor approximation of entropy. There are two main reasons for this. Firstly,
finite-sample estimators of higher-order cumulants are highly sensitive to outliers: their
values may depend on only a few, possibly erroneous, observations with large values (Huber
1985). This means that outliers may completely determine the estimates of cumulants,
thus making them useless. Secondly, even if the cumulants were estimated perfectly, they
measure mainly the tails of the distribution, and are largely unaffected by structure near
the centre of the distribution (Friedman 1987).

Therefore, better approximations of entropy are needed. To this end, we introduce in this
paper approximations of entropy that are both more exact in the expectation and have better
finite-sample statistical properties, when compared to the cumulant-based approximations.
Nevertheless, they retain the computational and conceptual simplicity of the cumulant-
based approach. Our approximations are based on an approximative maximum entropy
method. This means that we approximate the mazimum entropy that is compatible with our
measurements of the random variable X. This maximum entropy, or further approximations
thereof, can then be used as a meaningful approximation of the entropy of X. To accomplish
this, we derive a first-order approximation of the density that has the maximum entropy
given a set of constraints, and then use it to derive approximations of the differential entropy
of X.

This paper is organized as follows. First, some applications of 1-D differential entropy are
reviewed in Section 2. The maximum entropy approach is motivated in Section 3. An
approximation of the density of maximum entropy is derived in Section 4, and is then
used to approximate the entropy in Section 5. The choice of the 'measuring’ functions
used is treated in Section 6, and some practical examples of the approximations are given
in Section 7. Simulation results backing up our theoretical arguments are presented in
Section 8, and a discussion is given in Section 9.

2 Applications of Differential Entropy

First, we discuss some applications of the approximations introduced in this paper. Two
important applications of differential entropy are independent component analysis (ICA)
and projection pursuit. In the general formulation of ICA (Comon 1994), the purpose is



to transform an observed random vector x = (z1,...,zy,)7 linearly into a random vector
s = (s1,...,5m)’ whose components are statistically as independent from each other as
possible. The mutual dependence of the s; is classically measured by mutual information.
Assuming that the linear transformation is invertible, the mutual information I(s1, ..., Sm)
can be expressed as

I(s1y.y8m) = ZH(sl) — H(z1,...,xm) — log |det M| (2)

where M is the matrix defining the transformation s = Mx. The second term on the right-
hand side does not depend on M, and the minimization of the last term is a simple matter
of differential calculus. Therefore, the critical part is the estimation of the 1-D entropies
H(s;): finding an efficient and reliable estimator or approximation of entropy enables an
efficient and reliable estimation of the ICA decomposition.

In projection pursuit, the purpose is to search for projections of multivariate data which have
'interesting’ distributions (Friedman 1987; Huber 1985; Jones and Sibson 1987). Typically,
interestingness is considered equivalent with non-Gaussianity. A natural criterion of non-
Gaussianity is entropy (Huber 1985; Jones and Sibson 1987), which attains its maximum
(for constant variance) when the distribution is Gaussian, and all other distributions have
smaller entropies. Because of the difficulties encountered in the estimation of entropy, many
authors have considered other measures of non-Gaussianity (Cook, Buja, and Cabrera 1993;
Friedman 1987; Hall 1989), but entropy remains, in our view, the best choice of a projection
pursuit index, especially because it provides a simple connection to ICA. Indeed, Eq. (2)
can be manipulated to show (Comon 1994) that in ICA as well as in projection pursuit, the
basic problem is to find directions in which entropy is minimized for constant variance.

3 Why maximum entropy?

Assume that the information available on the density f(z) of the scalar random variable X
is of the form

/f(l")GZ(ZE)dZE =g, fori=1,...,n, (3)

which means in practice that we have estimated the expectations E{G;(X)} of n different
functions of X. Since we are not assuming any model for the random variable X, the
estimation of the entropy of X using this information is not a well-defined problem: there
exist an infinite number of distributions for which the constraints in (3) are fulfilled, but
whose entropies are very different from each other. In particular, the differential entropy
reaches —oo in the limit where X takes only a finite number of values.

A simple solution to this dilemma is the maximum entropy method. This means that we
compute the mazimum entropy that is compatible with our constraints or measurements
in (3), which is a well-defined problem. This maximum entropy, or further approximations
thereof, can then be used as an approximation of the entropy of X.

Our approach thus is very different from the asymptotic approach often used in projection
pursuit (Cook, Buja, and Cabrera 1993; Friedman 1987; Hall 1989). In the asymptotic
approach, one establishes a sequence of functions G; so that when n goes to infinity, the
information in (3) gives an asymptotically convergent approximation of some theoretical
projection pursuit index. We avoid in this paper any asymptotic considerations, and consider
directly the case of finite information, i.e., finite n. This non-asymptotic approach is justified
by the fact that often in practice, only a small number of measurements of the form (3) are
used, for computational or other reasons.



4 Approximating the maximum entropy density

In this section, we shall derive an approximation of the density of maximum entropy com-
patible with the measurements in (3). The basic results of the maximum entropy method
tell us (Cover and Thomas 1991) that under some regularity conditions, the density fo(x)
which satisfies the constraints (3) and has maximum entropy among all such densities, is of
the form

folz) = Aexp(z a;Gi(z)), (4)

where A and a; are constants that are determined from the ¢;, using the constraints in (3)
(i.e., by substituting the right-hand side of (4) for f in (3)), and the constraint [ fo(z)dz =
1. This leads in general to a system of n 4+ 1 non-linear equations which is difficult to
solve. Therefore, we decide to make a simple approximation of fy. This is based on the
assumption that the density f(z) is not very far from a Gaussian distribution of the same
mean and variance. In addition, we can make the technical assumption that f(z) is near
the standardized Gaussian density o(z) = exp(—z2/2)/v/27, since this amounts simply to
making X zero-mean and of unit variance. Therefore we put two additional constraints in
(3), defined by Gpi1(z) = z,cpe1 = 0 and Gpi2(z) = 22, cpie = 1. To further simplify the
calculations, let us make another, purely technical assumption: The functions G;,7 =1, ..., n,
form an orthonormal system according to the metric defined by ¢, and are orthogonal to
all polynomials of second degree. In other words, for all 4,7 =1,...,n

/tp(az)Gi(zE)Gj(fE)dm _ { (1) gz ;? [ o(2)Gi(x)ahds = 0,k = 0,1,2. (5)

For any linearly independent functions G;, this assumption can always be made true by
ordinary Gram-Schmidt orthonormalization.

Now, note that the assumption of near-Gaussianity implies that all the other a; in (4)
are very small compared to api2 &~ —1/2, since the exponential in (4) is not far from
exp(—z2/2). Thus we can make a first-order approximation of the exponential function
(detailed derivations can be found in the Appendix). This allows for simple solutions for
the constants in (4), and we obtain the approximative mazimum entropy density, which we
denote by f(z):

f(z) = p(@)(1+ Y ¢Gilx) (6)
=1

where ¢; = E{G;(X)}. To estimate this density in practice, the ¢; are estimated, for
example, as the corresponding sample averages of the G;(X). The density expansion in (6)
is somewhat similar to the Gram-Charlier and Edgeworth expansions (Kendall and Stuart
1958).

5 Approximating the differential entropy

An important application of the approximation of density shown in (6) is in approximation of
entropy. A simple approximation of entropy can be found by approximating both occurences
of fin (1) by f as defined in Eq. (6), and using a Taylor approximation of the logarithmic
function, which yields (1 + €)log(1 + €) ~ € + €2/2. Thus one obtains after some algebraic
manipulations (see Appendix)

H(X)z—/fA(:z;)logL)?(:I:)d:I:zH(y)—%Zcz2 (7)

=1



where H(v) = 1(1 + log(27)) means the entropy of a standardized Gaussian variable, and
¢i = E{G;(X)} as above. Note that even in cases where this approximation is not very
accurate, (7) can be used to construct a projection pursuit index (or a measure of non-
Gaussianity) that is consistent in the sense that (7) obtains its maximum value, H(v),
when X has a Gaussian distribution.

6 Choosing the measuring functions

Now it remains to choose the 'measuring’ functions GG; that define the information given in
(3). Asnoted in Section 4, one can take practically any set of linearly independent functions,
say G;,i =1,...,n, and then apply Gram-Schmidt orthonormalization on the set containing
those functions and the monomials z*, k = 0, 1,2, so as to obtain the set G; that fulfills the
orthogonality assumptions in (5). This can be done, in general, by numerical integration.
In the practical choice of the functions Gj, the following criteria must be emphasized:

1. The practical estimation of E{G;(z)} should not be statistically difficult. In particular,
this estimation should not be too sensitive to outliers.

2. The maximum entropy method assumes that the function fy in (4) is integrable.
Therefore, to ensure that the maximum entropy distribution exists in the first place,
the G;(z) must not grow faster than quadratically as a function of |z|, because a
function growing faster might lead to non-integrability of fo (Cover and Thomas 1991).

3. The G; must capture aspects of the distribution of X that are pertinent in the compu-
tation of entropy. In particular, if the density f(x) were known, the optimal function

Gopt would clearly be —log f(z), because —E{log f(X)} gives directly the entropy.
Thus, one might use the log-densities of some known important densities as G;.

The first two criteria are met if the G; () are functions that do not grow too fast (not faster
than quadratically) when |z| grows. This excludes, for example, the use of higher-order
polynomials, as are used in the Gram-Charlier and Edgeworth expansions. One might then
search, according to point 3, for log-densities of some well-known distributions that also
fulfill the first two conditions. Examples will be given in the next section.

It should be noted, however, that the criteria above only delimit the space of function
that can be used. Our framework enables the use of very different functions (or just one)
as G;. The choice is not restricted to some well-known basis of a functional space, as in
most approaches (Amari, Cichocki, and Yang 1996; Comon 1994; Jones and Sibson 1987).
However, if prior knowledge is available on the distributions whose entropy is to estimated,
point 3 above shows how to choose the optimal function.

7 A simple special case

A simple special case of (6) is obtained if one uses two functions Gy and Gg, which are
chosen so that Gy is odd and G is even. Such a system of two functions can measure the
two most important features of non-Gaussian 1-D distributions. The odd function measures
the asymmetry, and the even function measures the bimodality /sparsity dimension (called
central hole/central mass concentration in (Cook, Buja, and Cabrera 1993)). After extensive
experiments, Cook et al (1993) also came to the conclusion that two such measures (or two
terms in their projection pursuit index) are enough for projection pursuit in most cases.
Classically, these features have been measured by skewness and kurtosis, which correspond



to G1(z) = 23 and Ga(z) = z*, but we do not use these functions for the reasons explained
in Section 6.

In this special case, the approximation in (7) simplifies to
H(X) = H(v) — [k1(B{G1(X)})* + k2 (B{G2(X)} — E{G2(v)})?] (8)

where k1 and ko are positive constants (see Appendix), and v is a Gaussian random variable
of zero mean and unit variance. Practical examples of choices of G; that are consistent with
the requirements in Section 6 are the following. First, for measuring bimodality/sparsity,
one might use, according to the recommendations of Section 6, the log-density of the double
exponential (or Laplace) distribution:

Ga() = |- (9)

For computational reasons, a smoother version of G, might also be used. Another choice
would be the Gaussian function, which may be considered as the log-density of a distribution
with infinitely heavy tails:

Gon() = exp(—52/2). (10)

For measuring asymmetry, one might use, on more heuristic grounds, the following function:
G1(z) = zexp(—2?/2). (11)

which corresponds to the second term in the projection pursuit index of Cook et al (1993).

Using the above examples one obtains two practical examples of (8):
_ 2 2 | 1a 2
Ho(X) = H(v) — [k (E{X exp(=X"/2)})” + k3 (E{|X|} — y/2/7)7], (12)

Hy(X) = H(v) — [k (B{X exp(-X2/2)})* + K3 (B{exp(-X2/2)} —\/1/2)%],  (13)

with k& = 36/(8v3 —9), k§ = 1/(2 — 6/x), and k5 = 24/(16v/3 — 27). As above,
H(v) = %(1 + log(27)) means the entropy of a standardized Gaussian variable. These
approximations H,(X) and Hp(X) can be considered more robust and accurate generaliza-
tions of the approximation derived using the Gram-Charlier expansion in (Jones and Sibson
1987). Indeed, using the polynomials G(z) = 2® and Ga(z) = z* one obtains the approx-
imation of entropy in (Jones and Sibson 1987), which is in practice almost identical to the
one proposed in (Comon 1994). Finally, note that the approximation in (13) is very similar
to the first two terms of the projection pursuit index by (Cook, Buja, and Cabrera 1993).

8 Simulation Results

To show the validity of our approximations of differential entropy we compared the approx-
imations H, and Hj in Eqgs (12) and (13) in Section 7, with the one offered by higher-order
cumulants as given in (Jones and Sibson 1987). The expectations were here evaluated
exactly, ignoring finite-sample effects.

First, we used a family of Gaussian mixture densities, defined by

f(@) = peo(z) + (1 = p)20(2(z — 1)) (14)

where p is a parameter that takes all the values in the interval 0 < p < 1. This family
includes asymmetric densities of both negative and positive kurtosis. The results are de-
picted in Fig. 1. Note that the plots show approximations of negentropies: the negentropy
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of X equals H(v) — H(X), where v is again a standardized Gaussian variable. One can see
that both of the approximations H, and Hj introduced in Section 7 were considerably more
accurate than the cumulant-based approximation.

Second, we considered the following family of density functions:
fal(z) = C1 exp(Ca|z|™) (15)

where « is a positive constant, and Cq,Cs are normalization constants that make f, a
probability density of unit variance. For different values of «, the densities in this family
exhibit different shapes. For .5 < a < 2, one obtains (sparse) densities of positive kurtosis.
For a = 2, one obtains the Gaussian density, and for a > 2, a density of negative kurtosis.
Thus the densities in this family can be used as examples of different symmetric non-
Gaussian densities. In Figure 2, the different approximations are plotted for this family,
using parameter values .5 < a < 3. Since the densities used are all symmetric, the first terms
in the approximations were neglected. Again, it is clear that both of the approximations
H, and H, introduced in Section 7 were considerably more accurate than the cumulant-
based approximation in (Comon 1994; Jones and Sibson 1987). (In the case of symmetric
densities, these two cumulant-based approximations are identical). Especially in the case
of sparse densities (or densities of positive kurtosis), the cumulant-based approximations
performed very poorly; this is probably because it gives too much weight to the tails of the
distribution.

9 Discussion

Novel methods of approximating the density and the differential entropy of a 1-D ran-
dom variable were introduced. The approximations were based on the maximum entropy
principle, i.e., we approximated the (density of) maximum entropy compatible with given
measurements. The approximations used a linear approximation of the maximum entropy
equations to obtain a computationally simple approximation of the density of maximum
entropy for given constraints. Using the Taylor expansion of the logarithmic function, a
simple approximation of differential entropy was then obtained. The resulting approxima-
tion of differential entropy was shown to be considerably more accurate and statistically
well-behaving than existing methods of low computational complexity. The methods can be
viewed as generalizations of the polynomial density approximations, based on truncations of
the Gram-Charlier and Edgeworth expansions. These novel approximations can be used, for
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Figure 2: Comparison of different approximations of negentropy, for the family of densities
(15) parametrized by a. On the left, approximations for densities of positive kurtosis (.5 <
a < 2) are depicted, and on the right, approximations for densities of negative kurtosis
(2 < a@ < 3). Solid line: true negentropy. Dotted line: cumulant-based approximation.
Dashed line: approximation H, in (12). Dot-dashed line: approximation Hj in (13). Clearly,
our two approximations were much better than the cumulant-based one, especially in the
case of densities of positive kurtosis.

example, in the estimation of mutual information, as in indepedendent component analysis,
and as measures of non-normality in projection pursuit.

In particular, this framework took explicitly into account the fact that we have only a finite
number of information of f(.). Thus our approach was very different from the one usually
taken in projection pursuit (Friedman 1987; Cook, Buja, and Cabrera 1993; Hall 1989),
where one tries to obtain a sequence of indexes that converges to a theoretical measure when
the number n of measurements of type (3) goes to infinity. Such asymptotic considerations
may have limited validity in practical situations where one uses only a very small number
of information in addition to the mean and the covariance. Indeed, in many applications,
it is necessary for computational reasons to use only a minimum number of measurements
of the form (3). Their number n may be only one or two.

The principle introduced in this paper is a very general one, and thus possible extensions
are numerous. For example, the first-order approximations made in Sections 4 and 5 might
be extended to include higher-order terms, though this may lead to computationally more
complex approximations. Furthermore, extensions to random variables of more than one
dimension seem straightforward.
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A Derivation of (6)

Due to the assumption of near-Gaussianity, we can write fo(z) as

n

fo(z) = Aexp(=2?/2 + ani12 + (ant2 + 1/2)2% + ) aiGi(z)), (16)
i=1

where in the exponential, all other terms are very small with respect to the first one. Thus,
using the first-order approximation exp(e) & 1 + €, we obtain

fo(z) =~ Acp(w)(l + apni17 + (any2 + 1/2)(172 + ZaiGi(fE)), (17)
i=1
where ¢(z) = (27) /2 exp(—22/2) is the standardized Gaussian density, and A = v/27A.

Due to the orthogonality constraints in (5), the equations for solving A and a; become linear
and almost diagonal:

[ fo(@)ds = A1 + (anso +1/2)) = 1 (18)

/fg(as)xdaz = Aay 1 =0 (19)

/fg (2)z%dr = A(1 4 3(anso +1/2)) = 1 (20)

/fo z)dx = AaZ =g, fori=1,. (21)

and can be easily solved to yield A = 1,ap41 = 0, apny2 = —1/2 and a; = ¢;,i = 1,..,n

This gives (6).

B Derivation of (7)

Using the Taylor expansion (1 4 €)log(1 + €) = € + €2/2 + o(€?), one obtains
- [ fla)tog f @)z = (22

/ 1+Zcz z 10g1+ZCz z +10g90( ))d = (23)



/w ) log (z /so )Y eiGi(x) log p(x) (24)
[P aGita) + i(zcmx»? +ol(Y el 29
= H) ~0-0- 3 3 +ol(¥e)?) (26)

due to the orthogonality relationships in (5).

C Derivation of (8), (12) and (13)

First, we must orthonormalize the two functions G; and G5 according to (5). To do this,
it is enough to determine constants 1, 61, aa, Y2, d2 so that the functions G (z) = (G1(z) +
B17)/61 and Ga(z) = (Go(z)+aaz?+72) /8, are orthogonal to any second degree polynomials
as in (5), and have unit norm in the metric defined by ¢. In fact, as will be seen below,
this modification gives a G that is odd and a G5 that is even, and therefore the G; are
automatically orthogonal with respect to each other. Thus, first we solve the following
equations:

/ p(z ) + Biz)dr =0 (27)
/90 2) + apa® + yo)dz = 0, for k = 0,2 (28)
A straight-forward solution gives:
/ ()G (z)zde, (29)
= 5[ el@)Gala)ds - / o) Ga) ), (30)
= 5[ el)Gatw)tds =3 [ o()Ga(a)de). (31)
Next note that [ ¢(z)(Ga(z) + asz? + v2)dz = 0 implies together with the standardization
ci = B{Gi(X)} = [E{Gi(X)} — E{Gi(v)}]/d:. (32)

This implies (8), with k? = 1/(20?). Thus we only need to determine explicitly the §; for
each function. We solve the two equations

/ o(2)(G1 (2) + frz)?/61dw = 1, (33)
[ 6@ Gol) + ara® + 1) foadz = 1, (34)

which yield after some tedious manipulations:

3 = [ @l)Gr(w)%dz ~ ([ @) (w)s dr)? (3)

5 = [ @(@)Galw)dz ~ ([ o(@)G(w)do)?
([ o) Gat) — [ ola)Gala)a?dr). (30)

Evaluating the §; for the given functions G;, one obtains (12) and (13) by the relation
K2 = 1/(202).
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