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New Approximations of Di�erential Entropy for IndependentComponent Analysisand Projection PursuitAapo HyvärinenHelsinki University of TechnologyLaboratory of Computer and Information ScienceP.O. Box 2200, FIN-02015 HUT, FinlandEmail: aapo.hyvarinen@hut.fiAbstractWe derive a �rst-order approximation of the density of maximum entropy for acontinuous 1-D random variable, given a number of simple constraints. This resultsin a density expansion which is somewhat similar to the classical polynomial densityexpansions by Gram-Charlier and Edgeworth. Using this approximation of density, anapproximation of 1-D di�erential entropy is derived. The approximation of entropy isboth more exact and more robust against outliers than the classical approximation basedon the polynomial density expansions, without being computationally more expensive.The approximation has applications, for example, in independent component analysisand projection pursuit.
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1 IntroductionThe basic information-theoretic quantity for continuous one-dimensional random variablesis di�erential entropy. The di�erential entropy H of a scalar random variable X with densityf(x) is de�ned as H(X) = � Z f(x) log f(x)dx: (1)The 1-D di�erential entropy, henceforth called simply entropy, has important applications inareas that have attracted considerable interest in the neural network community lately, suchas independent component analysis (Comon 1994) and projection pursuit (Huber 1985).Unfortunately, the estimation of entropy is quite di�cult in practice. Using de�nition(1) requires estimation of the density of X, which is recognized to be both theoreticallydi�cult and computationally demanding. Simpler approximations of entropy have beenproposed both in the context of projection pursuit (Jones and Sibson 1987) and independentcomponent analysis (Amari, Cichocki, and Yang 1996; Comon 1994). These approximationsare usually based on approximating the density f(x) using the polynomial expansions ofGram-Charlier or Edgeworth (Kendall and Stuart 1958). This construction leads to theuse of higher-order cumulants, like kurtosis. However, such cumulant-based methods oftenprovide a rather poor approximation of entropy. There are two main reasons for this. Firstly,�nite-sample estimators of higher-order cumulants are highly sensitive to outliers: theirvalues may depend on only a few, possibly erroneous, observations with large values (Huber1985). This means that outliers may completely determine the estimates of cumulants,thus making them useless. Secondly, even if the cumulants were estimated perfectly, theymeasure mainly the tails of the distribution, and are largely una�ected by structure nearthe centre of the distribution (Friedman 1987).Therefore, better approximations of entropy are needed. To this end, we introduce in thispaper approximations of entropy that are both more exact in the expectation and have better�nite-sample statistical properties, when compared to the cumulant-based approximations.Nevertheless, they retain the computational and conceptual simplicity of the cumulant-based approach. Our approximations are based on an approximative maximum entropymethod. This means that we approximate the maximum entropy that is compatible with ourmeasurements of the random variable X. This maximum entropy, or further approximationsthereof, can then be used as a meaningful approximation of the entropy of X. To accomplishthis, we derive a �rst-order approximation of the density that has the maximum entropygiven a set of constraints, and then use it to derive approximations of the di�erential entropyof X.This paper is organized as follows. First, some applications of 1-D di�erential entropy arereviewed in Section 2. The maximum entropy approach is motivated in Section 3. Anapproximation of the density of maximum entropy is derived in Section 4, and is thenused to approximate the entropy in Section 5. The choice of the 'measuring' functionsused is treated in Section 6, and some practical examples of the approximations are givenin Section 7. Simulation results backing up our theoretical arguments are presented inSection 8, and a discussion is given in Section 9.2 Applications of Di�erential EntropyFirst, we discuss some applications of the approximations introduced in this paper. Twoimportant applications of di�erential entropy are independent component analysis (ICA)and projection pursuit. In the general formulation of ICA (Comon 1994), the purpose is2



to transform an observed random vector x = (x1; :::; xm)T linearly into a random vectors = (s1; :::; sm)T whose components are statistically as independent from each other aspossible. The mutual dependence of the si is classically measured by mutual information.Assuming that the linear transformation is invertible, the mutual information I(s1; :::; sm)can be expressed asI(s1; :::; sm) =Xi H(si)�H(x1; :::; xm)� log jdet Mj (2)where M is the matrix de�ning the transformation s =Mx. The second term on the right-hand side does not depend on M, and the minimization of the last term is a simple matterof di�erential calculus. Therefore, the critical part is the estimation of the 1-D entropiesH(si): �nding an e�cient and reliable estimator or approximation of entropy enables ane�cient and reliable estimation of the ICA decomposition.In projection pursuit, the purpose is to search for projections of multivariate data which have'interesting' distributions (Friedman 1987; Huber 1985; Jones and Sibson 1987). Typically,interestingness is considered equivalent with non-Gaussianity. A natural criterion of non-Gaussianity is entropy (Huber 1985; Jones and Sibson 1987), which attains its maximum(for constant variance) when the distribution is Gaussian, and all other distributions havesmaller entropies. Because of the di�culties encountered in the estimation of entropy, manyauthors have considered other measures of non-Gaussianity (Cook, Buja, and Cabrera 1993;Friedman 1987; Hall 1989), but entropy remains, in our view, the best choice of a projectionpursuit index, especially because it provides a simple connection to ICA. Indeed, Eq. (2)can be manipulated to show (Comon 1994) that in ICA as well as in projection pursuit, thebasic problem is to �nd directions in which entropy is minimized for constant variance.3 Why maximum entropy?Assume that the information available on the density f(x) of the scalar random variable Xis of the form Z f(x)Gi(x)dx = ci; for i = 1; :::; n; (3)which means in practice that we have estimated the expectations EfGi(X)g of n di�erentfunctions of X. Since we are not assuming any model for the random variable X, theestimation of the entropy of X using this information is not a well-de�ned problem: thereexist an in�nite number of distributions for which the constraints in (3) are ful�lled, butwhose entropies are very di�erent from each other. In particular, the di�erential entropyreaches �1 in the limit where X takes only a �nite number of values.A simple solution to this dilemma is the maximum entropy method. This means that wecompute the maximum entropy that is compatible with our constraints or measurementsin (3), which is a well-de�ned problem. This maximum entropy, or further approximationsthereof, can then be used as an approximation of the entropy of X.Our approach thus is very di�erent from the asymptotic approach often used in projectionpursuit (Cook, Buja, and Cabrera 1993; Friedman 1987; Hall 1989). In the asymptoticapproach, one establishes a sequence of functions Gi so that when n goes to in�nity, theinformation in (3) gives an asymptotically convergent approximation of some theoreticalprojection pursuit index. We avoid in this paper any asymptotic considerations, and considerdirectly the case of �nite information, i.e., �nite n. This non-asymptotic approach is justi�edby the fact that often in practice, only a small number of measurements of the form (3) areused, for computational or other reasons. 3



4 Approximating the maximum entropy densityIn this section, we shall derive an approximation of the density of maximum entropy com-patible with the measurements in (3). The basic results of the maximum entropy methodtell us (Cover and Thomas 1991) that under some regularity conditions, the density f0(x)which satis�es the constraints (3) and has maximum entropy among all such densities, is ofthe form f0(x) = A exp(Xi aiGi(x)); (4)where A and ai are constants that are determined from the ci, using the constraints in (3)(i.e., by substituting the right-hand side of (4) for f in (3)), and the constraint R f0(x)dx =1. This leads in general to a system of n + 1 non-linear equations which is di�cult tosolve. Therefore, we decide to make a simple approximation of f0. This is based on theassumption that the density f(x) is not very far from a Gaussian distribution of the samemean and variance. In addition, we can make the technical assumption that f(x) is nearthe standardized Gaussian density '(x) = exp(�x2=2)=p2�, since this amounts simply tomaking X zero-mean and of unit variance. Therefore we put two additional constraints in(3), de�ned by Gn+1(x) = x; cn+1 = 0 and Gn+2(x) = x2; cn+2 = 1. To further simplify thecalculations, let us make another, purely technical assumption: The functionsGi; i = 1; :::; n,form an orthonormal system according to the metric de�ned by ', and are orthogonal toall polynomials of second degree. In other words, for all i; j = 1; :::; nZ '(x)Gi(x)Gj(x)dx = ( 1; if i = j0; if i 6= j ; R '(x)Gi(x)xkdx = 0; k = 0; 1; 2: (5)For any linearly independent functions Gi, this assumption can always be made true byordinary Gram-Schmidt orthonormalization.Now, note that the assumption of near-Gaussianity implies that all the other ai in (4)are very small compared to an+2 � �1=2, since the exponential in (4) is not far fromexp(�x2=2). Thus we can make a �rst-order approximation of the exponential function(detailed derivations can be found in the Appendix). This allows for simple solutions forthe constants in (4), and we obtain the approximative maximum entropy density, which wedenote by f̂(x): f̂(x) = '(x)(1 + nXi=1 ciGi(x)) (6)where ci = EfGi(X)g. To estimate this density in practice, the ci are estimated, forexample, as the corresponding sample averages of the Gi(X). The density expansion in (6)is somewhat similar to the Gram-Charlier and Edgeworth expansions (Kendall and Stuart1958).5 Approximating the di�erential entropyAn important application of the approximation of density shown in (6) is in approximation ofentropy. A simple approximation of entropy can be found by approximating both occurencesof f in (1) by f̂ as de�ned in Eq. (6), and using a Taylor approximation of the logarithmicfunction, which yields (1 + �) log(1 + �) � �+ �2=2. Thus one obtains after some algebraicmanipulations (see Appendix)H(X) � � Z f̂(x) log f̂(x)dx � H(�)� 12 nXi=1 c2i (7)4



where H(�) = 12 (1 + log(2�)) means the entropy of a standardized Gaussian variable, andci = EfGi(X)g as above. Note that even in cases where this approximation is not veryaccurate, (7) can be used to construct a projection pursuit index (or a measure of non-Gaussianity) that is consistent in the sense that (7) obtains its maximum value, H(�),when X has a Gaussian distribution.6 Choosing the measuring functionsNow it remains to choose the 'measuring' functions Gi that de�ne the information given in(3). As noted in Section 4, one can take practically any set of linearly independent functions,say �Gi; i = 1; :::; n, and then apply Gram-Schmidt orthonormalization on the set containingthose functions and the monomials xk; k = 0; 1; 2, so as to obtain the set Gi that ful�lls theorthogonality assumptions in (5). This can be done, in general, by numerical integration.In the practical choice of the functions �Gi, the following criteria must be emphasized:1. The practical estimation ofEf �Gi(x)g should not be statistically di�cult. In particular,this estimation should not be too sensitive to outliers.2. The maximum entropy method assumes that the function f0 in (4) is integrable.Therefore, to ensure that the maximum entropy distribution exists in the �rst place,the �Gi(x) must not grow faster than quadratically as a function of jxj, because afunction growing faster might lead to non-integrability of f0 (Cover and Thomas 1991).3. The �Gi must capture aspects of the distribution of X that are pertinent in the compu-tation of entropy. In particular, if the density f(x) were known, the optimal function�Gopt would clearly be � log f(x), because �Eflog f(X)g gives directly the entropy.Thus, one might use the log-densities of some known important densities as �Gi.The �rst two criteria are met if the �Gi(x) are functions that do not grow too fast (not fasterthan quadratically) when jxj grows. This excludes, for example, the use of higher-orderpolynomials, as are used in the Gram-Charlier and Edgeworth expansions. One might thensearch, according to point 3, for log-densities of some well-known distributions that alsoful�ll the �rst two conditions. Examples will be given in the next section.It should be noted, however, that the criteria above only delimit the space of functionthat can be used. Our framework enables the use of very di�erent functions (or just one)as �Gi. The choice is not restricted to some well-known basis of a functional space, as inmost approaches (Amari, Cichocki, and Yang 1996; Comon 1994; Jones and Sibson 1987).However, if prior knowledge is available on the distributions whose entropy is to estimated,point 3 above shows how to choose the optimal function.7 A simple special caseA simple special case of (6) is obtained if one uses two functions �G1 and �G2, which arechosen so that �G1 is odd and �G2 is even. Such a system of two functions can measure thetwo most important features of non-Gaussian 1-D distributions. The odd function measuresthe asymmetry, and the even function measures the bimodality/sparsity dimension (calledcentral hole/central mass concentration in (Cook, Buja, and Cabrera 1993)). After extensiveexperiments, Cook et al (1993) also came to the conclusion that two such measures (or twoterms in their projection pursuit index) are enough for projection pursuit in most cases.Classically, these features have been measured by skewness and kurtosis, which correspond5



to �G1(x) = x3 and �G2(x) = x4, but we do not use these functions for the reasons explainedin Section 6.In this special case, the approximation in (7) simpli�es toH(X) � H(�)� [k1(Ef �G1(X)g)2 + k2(Ef �G2(X)g �Ef �G2(�)g)2] (8)where k1 and k2 are positive constants (see Appendix), and � is a Gaussian random variableof zero mean and unit variance. Practical examples of choices of �Gi that are consistent withthe requirements in Section 6 are the following. First, for measuring bimodality/sparsity,one might use, according to the recommendations of Section 6, the log-density of the doubleexponential (or Laplace) distribution: �G2a(x) = jxj: (9)For computational reasons, a smoother version of �G2a might also be used. Another choicewould be the Gaussian function, which may be considered as the log-density of a distributionwith in�nitely heavy tails: �G2b(x) = exp(�x2=2): (10)For measuring asymmetry, one might use, on more heuristic grounds, the following function:�G1(x) = x exp(�x2=2): (11)which corresponds to the second term in the projection pursuit index of Cook et al (1993).Using the above examples one obtains two practical examples of (8):Ha(X) = H(�)� [k1(EfX exp(�X2=2)g)2 + ka2(EfjXjg �q2=�)2]; (12)Hb(X) = H(�)� [k1(EfX exp(�X2=2)g)2 + kb2(Efexp(�X2=2)g �q1=2)2]; (13)with k1 = 36=(8p3 � 9), ka2 = 1=(2 � 6=�), and kb2 = 24=(16p3 � 27). As above,H(�) = 12(1 + log(2�)) means the entropy of a standardized Gaussian variable. Theseapproximations Ha(X) and Hb(X) can be considered more robust and accurate generaliza-tions of the approximation derived using the Gram-Charlier expansion in (Jones and Sibson1987). Indeed, using the polynomials �G1(x) = x3 and �G2(x) = x4 one obtains the approx-imation of entropy in (Jones and Sibson 1987), which is in practice almost identical to theone proposed in (Comon 1994). Finally, note that the approximation in (13) is very similarto the �rst two terms of the projection pursuit index by (Cook, Buja, and Cabrera 1993).8 Simulation ResultsTo show the validity of our approximations of di�erential entropy we compared the approx-imations Ha and Hb in Eqs (12) and (13) in Section 7, with the one o�ered by higher-ordercumulants as given in (Jones and Sibson 1987). The expectations were here evaluatedexactly, ignoring �nite-sample e�ects.First, we used a family of Gaussian mixture densities, de�ned byf(x) = �'(x) + (1� �)2'(2(x � 1)) (14)where � is a parameter that takes all the values in the interval 0 � � � 1. This familyincludes asymmetric densities of both negative and positive kurtosis. The results are de-picted in Fig. 1. Note that the plots show approximations of negentropies: the negentropy6
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� Z '(x) log '(x)� Z '(x)X ciGi(x) log'(x) (24)� Z '(x)[X ciGi(x) + 12(X ciGi(x))2 + o((X ciGi(x))2)] (25)= H(�)� 0� 0� 12X c2i + o((X ci)2) (26)due to the orthogonality relationships in (5).C Derivation of (8), (12) and (13)First, we must orthonormalize the two functions �G1 and �G2 according to (5). To do this,it is enough to determine constants �1; �1; �2; 
2; �2 so that the functions G1(x) = ( �G1(x) +�1x)=�1 andG2(x) = ( �G2(x)+�2x2+
2)=�2 are orthogonal to any second degree polynomialsas in (5), and have unit norm in the metric de�ned by '. In fact, as will be seen below,this modi�cation gives a G1 that is odd and a G2 that is even, and therefore the Gi areautomatically orthogonal with respect to each other. Thus, �rst we solve the followingequations: Z '(x)x( �G1(x) + �1x)dx = 0 (27)Z '(x)xk( �G2(x) + �2x2 + 
2)dx = 0; for k = 0; 2 (28)A straight-forward solution gives: �1 = � Z '(x) �G1(x)xdx; (29)�2 = 12(Z '(x) �G2(x)dx� Z '(x) �G2(x)x2dx); (30)
2 = 12(Z '(x) �G2(x)x2dx� 3 Z '(x) �G2(x)dx): (31)Next note that R '(x)( �G2(x) + �2x2 + 
2)dx = 0 implies together with the standardizationci = EfGi(X)g = [Ef �Gi(X)g �Ef �Gi(�)g]=�i: (32)This implies (8), with k2i = 1=(2�2i ). Thus we only need to determine explicitly the �i foreach function. We solve the two equationsZ '(x)( �G1(x) + �1x)2=�1dx = 1; (33)Z '(x)( �G2(x) + �2x2 + 
2)2=�2dx = 1; (34)which yield after some tedious manipulations:�21 = Z '(x) �G1(x)2dx� (Z '(x) �G1(x)x dx)2 (35)�22 = Z '(x) �G2(x)2dx� (Z '(x) �G2(x)dx)2�12(Z '(x) �G2(x)dx� Z '(x) �G2(x)x2dx)2: (36)Evaluating the �i for the given functions �Gi, one obtains (12) and (13) by the relationk2i = 1=(2�2i ). 10


