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Abstract

A fundamental question in visual neuroscience is: Why are the response properties of visual neu-

rons as they are? A modern approach to this problem emphasizes the importance of adaptation to

ecologically valid input, and it proceeds by modeling statistical regularities in ecologically valid

visual input (natural images). A seminal model was linear sparse coding, which is equivalent to

independent component analysis (ICA), and provided a very good description of the receptive fields

of simple cells. Further models based on modeling residual dependencies of the ‘‘independent’’

components have later been introduced. These models lead to emergence of further properties of

visual neurons: the complex cell receptive fields, the spatial organization of the cells, and some

surround suppression and Gestalt effects. So far, these models have concentrated on the response

properties of neurons, but they hold great potential to model various forms of inference and learning.

Keywords: Natural image statistics; Natural scenes; Computational models; Probabilistic models;

Vision

1. Introduction

Modeling images or image patches using statistical generative models has recently

emerged as an established area of research (Hyvärinen, Hurri, & Hoyer, 2009; Olshausen,

2003; Simoncelli & Olshausen, 2001). This is based on the widespread assumption that

biological visual systems are adapted to process the particular kind of information they

receive (Barlow, 1961; Field, 1994). Natural images have important statistical regularities
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that distinguish them from other kinds of input. For example, the grayscale values or

luminances at different pixels have robust and nontrivial statistical dependencies. Models

of the natural image statistics show what a statistically adapted representation of visual

input is, indicating what the visual system should be like if it followed the assumption of

optimal adaptation. Optimality is here defined in the sense of low-level signal processing

operations (e.g., denoising), and it does not take into account the behavioral relevance of

the signal.

Statistical models of natural images thus enable us to provide (one) answer to the

fundamental question: Why are the response properties of visual neurons as they are?
Previous theories, such as edge detection and space-frequency analysis, are unsatis-

factory because they only give vague qualitative predictions on how the visual neu-

rons should respond to visual stimulation. Statistical models offer exact quantitative

prediction that often turn out to be very much in line with measurements from the

visual cortex.

In the following, I provide a review of some basic models of natural images, and I point

out two obvious topics that have not yet received a lot of attention: inference, and contin-

uous updating of the representation.

2. Linear models of natural images

The starting point in this modeling endeavor is a generative model of natural images, that

is, ecologically valid visual input. Denote by I(x,y) the pixel grayscale values (point lumi-

nances) in an image, or in practice, a small image patch. The models that we consider here

express each image patch as a linear superposition of some features or basis vectors Ai:

Iðx; yÞ ¼
Xn

i¼1
Aiðx; yÞsi ð1Þ

for all x and y. The si are stochastic coefficients, different from patch to patch; they typically

model simple-cell responses (outputs). The linear representation is illustrated in Fig. 1.

For simplicity, it is often assumed that the number of pixels equals the number of

features, in which case the linear system in Eq. 1 can be inverted (but see Olshausen &

Field, 1997). Then, each si can be computed from the image by applying a linear transfor-

mation obtained by inverting the system given by the Ai. Denoting by Wi the obtained

coefficients, we have

Fig. 1. An illustration of the linear superposition in Eq. 1. On the left-hand side of this equation, we have an

image patch I. It is represented as a weighted sum of features Ai, which are themselves plotted as image patches

on the right-hand side of this equation. The weights in the summing are given by the si, which model simple-cell

responses. The features are summed pixel by pixel to produce the image patch I.
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si ¼
X

x;y

Wiðx; yÞIðx; yÞ: ð2Þ

The coefficients Wi can be interpreted as a model of the receptive field of the simple cell

with index i. It can be shown (Hyvärinen & Hoyer, 2001) that the Ai are basically low-pass

filtered versions of the receptive fields Wi. Therefore, most properties of the Wi and Ai are

identical.

Estimation of the model consists of determining the values of Ai, observing a sufficient

number of natural image patches textitI (but without observing the responses si). This is

equivalent to determining the values of Wi, or the values of si for each image patch.

Such an estimation requires that we specify the statistical properties of the si. If we com-

pletely specify their statistical distribution, we have a well-defined statistical model and

established statistical theory can be used to estimate the parameters Ai. Alternatively, in

some cases we specify the statistical distribution of the si only to some extent, and find the

Ai by maximizing some statistical property of the si. Sparseness, which we discuss next, is

one example of such a simplification.

3. Sparseness

A considerable proportion of the models on natural image statistics is based on one par-

ticular statistical property, sparseness, which is closely related to the properties of super-

Gaussianity or leptokurtosis (Field, 1994), and to independent component analysis (ICA)

discussed below. The outputs of linear filters that model simple-cell receptive fields are very

sparse; in fact, they are the receptive fields that maximize a suitable defined measure of

sparseness.

Sparseness means that a random variable takes very small absolute values and very large

values more often than a Gaussian random variable of the same variance; to compensate, it

takes values in between relatively more rarely. (We assume here and in what follows that

the variable has zero mean.) Thus, the random variable is ‘‘activated,’’ that is, significantly

non-zero, only rarely. This is illustrated in Fig. 2.

The probability density function (histogram) of a sparse variable is characterized by a

large value (peak) at zero and relatively large values far from zero (heavy tails); see Fig. 3.

Here, ‘‘relatively’’ means compared with a Gaussian distribution of the same variance.

Sparseness is not dependent on the variance (scale) of the random variable. To measure

the sparseness of a random variable s with zero mean, let us first normalize its scale so that

the variance E{s2} equals some given constant. Then the sparseness can be measured as the

expectation E{G(s2)} of a suitable nonlinear function of the square. Typically, G is chosen

to be convex, which means that the graph of G has a convex shape (its derivative is increas-

ing). Convexity implies that this expectation is large when s2 typically takes values that are

either very close to 0 or very large, that is, when s is sparse (Hyvärinen et al., 2009).

For example, if G is the square function (a typical convex function), sparseness is mea-

sured by the fourth moment E{s4}. This is closely related to using the classical fourth-order
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cumulant called kurtosis, defined as kurt(s)¼E{s4})3(E{s2})2. However, kurtosis suffers

from some adverse statistical properties (Hyvärinen, Karhunen, & Oja, 2001), which is why

in practice other functions may have to be used. Estimation-theoretic considerations show

that in some ways the ideal function would be such that G(s2) is equal to the logarithm of a

sparse probability density function, optimally of s itself. A widely used choice is

Gðs2Þ ¼ log cosh
ffiffiffiffi
s2
p
¼ log cosh s.

4. Independent component analysis

Maximization of sparseness is, in fact, very closely related to estimation of the model

called independent component analysis (Comon, 1994; Hyvärinen et al., 2001). The central

point in ICA is the interpretation of the linear mixing in Eq. 1 as a statistical generative

Fig. 3. Illustration of a sparse probability density. Vertical axis: probability density. Horizontal axis: (absolute)

value of random variable s. The sparse density function, which has the Laplacian distribution (Hyvärinen et al.,

2001), is given by the solid curve. For comparison, the density of the absolute value of a Gaussian random

variable of the same variance is given by the dash-dotted curve.
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Fig. 2. Illustration of sparseness. Random samples of a Gaussian variable (top) and a sparse variable (bottom).

The sparse variable is practically zero most of the time, occasionally taking very large values. Note that the vari-

ables have the same variance, and that the time structure is irrelevant in the definition of sparseness.
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model, that is, we assume that the image data I is really generated according to such a linear

superposition. The vectors Ai are considered parameters in this statistical model, and the si

are latent random variables. Then, once we define what the joint probability distribution of

the si is, we have defined a statistical model of the observed data.

As its name says, the key idea is to define the distribution of the si by assuming that the si

are mutually statistically independent. A fundamental theorem in the theory of ICA says that

if the components si are not only independent, but also non-Gaussian, then the model can

actually be estimated (Comon, 1994). In other words, we can recover the vectors Ai if the

data were actually generated by the model. Note that the model cannot be estimated for

Gaussian data.

It is important to understand the difference between independence and uncorrelatedness.

Two random variables y1 and y2 are independent if information on the value of y1 does not

give any information on the value of y2, and vice versa. If the two random variables are

independent, they are necessarily uncorrelated as well. However, it is quite possible to have

random variables that are uncorrelated, yet strongly dependent. This is illustrated in Fig. 4.

In fact, if two random variables yi and yj were independent, any nonlinear transformations

of them would be uncorrelated as well, which clearly shows that independence is a stronger

property.

As a first step towards independence, many ICA algorithms constrain the estimated com-

ponents to be exactly uncorrelated, which is a computationally simple operation. However,

there is always an infinity of different representations which have uncorrelated components;

Fig. 4. Illustration of the difference between uncorrelatedness and independence. The two variables in the scatter

plot are uncorrelated, but not independent. The lack of independence is due to the fact that if the variable on the

horizontal axis has a large absolute value, the variable on the vertical axis has very probably a value that is far

from zero. Thus, the variables provide information about each other. However, the correlation coefficient

between the variables is zero because there is no linear trend or dependency. The dependency can be measured

by taking a nonlinear transformation: in fact, the two variables have a strong correlation of their squares, which

is discussed in Section 5.1.
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thus, uncorrelatedness is not enough to determine the representation. In the classic literature

of factor analysis, this is called the factor rotation problem.

A very deep theoretical result in ICA says that if the data are generated by the ICA model

with sparse components, then the features Ai can be found by searching over all different

representations and taking the one that maximizes the sparseness of the components

(Comon, 1994; Hyvärinen, 1999a). Thus, sparse coding and ICA are intimately related.

The results obtained when an ICA or sparse coding model is estimated for image patches

(Bell & Sejnowski, 1997; Olshausen & Field, 1996) are shown in Fig. 5. A comparison with

simple-cell measurements shows quite a good match with respect to almost all parameters

(van Hateren & Ruderman, 1998; van Hateren & van der Schaaf, 1998).

5. Dependencies between components

5.1. Dependency as correlation of squares

The third important statistical property used in natural image models considers the rela-

tionships between the different coefficients si (i.e., responses of simple cells) in Eq. 1.

In the theory of ICA and sparse coding, the si are usually assumed independent. How-

ever, when the models are estimated for natural images, the obtained components are not

Fig. 5. Feature vectors Ai estimated by ICA/sparse coding. A set of 10,000 image patches of 16·16 pixels were

randomly sampled from natural images and input to the FastICA algorithm (Hyvärinen, 1999a). Each small

square gives one feature Ai, represented in the original image space so that gray pixels mean zero values (i.e.,

mean luminance) of Ai(x,y), whereas black and white pixels mean negative and positive values, respectively.

The features are shown in no particular order. See Fig. 1 for an illustrations of how these features are combined

to represent an image. Before ICA estimation, the dimension of the data was reduced by principal component

analysis (van Hateren & van der Schaaf, 1998; Hyvärinen et al., 2009).
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independent. Basically, there are not enough parameters in the model to render the estimated

linear components completely independent, as independence is a very complex phenome-

non. What ICA is capable of doing is to find the linear transformation that makes the com-

ponents as independent as possible by a linear transformation, but some residual

dependencies still remain.

This indicates the need to model the statistical dependencies of the linear filter outputs

with natural image input. Remaining dependencies actually offer a great opportunity

because it means that we can hope to model further properties of visual neurons by building

more sophisticated statistical models of natural images.

Note that the new models must consider nonlinear correlations between the components

si. Linear correlations are not interesting in this respect because, in ICA estimation, the com-

ponents are often constrained to be exactly uncorrelated. When probing the dependence of si

and sj, a simple approach would be to consider the correlations of some nonlinear functions.

In image data, the principal form of dependency between two simple-cell responses seems

to be captured by the correlation of their ‘‘energies,’’ or squares s2i . This means that

covðs2i ; s2j Þ ¼ Efs2i s2j g � Efs2i gEfs2j g 6¼ 0: ð3Þ

This covariance is usually positive. Intuitively, correlation of energies means that the cells

tend to be active, that is, have non-zero outputs, at the same time, but the actual values of si

and sj are not easily predictable from each other. In Fig. 4 we already saw a scatterplot of

two variables with such a dependency.

5.2. Complex cell models

The correlation of energies can be embedded in a model of natural image statistics in

many ways. A very simple way would be to divide the components (simple cells) into

groups, so that the si in the same group have correlation of energies, whereas si in different

groups are independent.

In such a model (Hyvärinen & Hoyer, 2000), it was found that the groups (called ‘‘inde-

pendent subspaces’’) show emergence of complex cells properties (see Figs. 6 and 7). The

idea is to interpret the sum of squares of the si inside one group as a nonlinear, complex fea-

ture. After estimation of the features, these sums of squares are largely insensitive to

changes in the phase of the input stimulus, that is, they give the same response to an edge

feature and a bar feature, for example. Still, the sums of squares are very selective to orien-

tation and frequency. This can be understood by noticing that the features in the same sub-

space have very similar orientations and frequencies (and rather similar locations), whereas

their phases are quite different from each other. A complex feature (complex cell output) is

thus computed by summing up responses of lower order features (simple-cell or linear filter

outputs) over the dimension to which it is insensitive. It turns out that the connection to

sparse coding is still there: The new model can be estimated by maximizing the sparseness

of the nonlinearly pooled responses, which can be considered as models of complex cell

responses.
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The resulting responses are not unlike those in classical energy models of complex cell

responses (Pollen & Ronner, 1983). Note, however, that here the model was not specified to

be insensitive to phase: Natural image statistics dictated that phase is the parameter to be

insensitive for.

5.3. Models of spatial organization of cells

Correlations of squares of simple-cell outputs can also be related to the spatial organiza-

tion (topography) of the cells in V1 (Hyvärinen & Hoyer, 2001). Inspired by the cortical

organization of cells in V1, we can arrange the components si on a two-dimensional grid or

lattice as is typical in topographic models (Kohonen, 2001; Swindale, 1996). We can then

define a statistical model in which the topographic organization reflects the statistical depen-

dencies between the components: The components (simple cells) are arranged on the grid so

that any two cells that are close to each other have dependent outputs, whereas cells that are

far from each other have independent outputs. As we are using the correlation of energies as

the measure of dependency, the energies are strongly positively correlated for neighboring

cells.

When the model was applied on natural image data (see Fig. 8), the organization of sim-

ple cells was qualitatively very similar to the one found in the visual cortex: There is orderly

arrangement with respect to such parameters as location, orientation, and spatial fre-

quency—and no order with respect to phase (DeAngelis, Ghose, Ohzawa, & Freeman,

1999). This was the first model to show emergence of all these principal properties of corti-

cal topography.

Fig. 6. Features Ai, and their grouping, estimated by independent subspace analysis. Each group of four consecu-

tive linear features defines one nonlinear feature. It turns out that the nonlinear features have the properties of

complex cells, as analyzed in Fig. 7.
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An interesting point in this model is that the topography defined by dependencies is

closely related to complex cells. If we define nonlinear features by summing the squares of

outputs of simple cells nearby on the topographic grid (Blasdel, 1992), we obtain, again,

complex cell properties.

5.4. Further models based on correlations of squares

The dependencies of ‘‘independent’’ components can also be used to model contrast gain

control phenomena. The idea is that a large part of the dependencies is due to a single factor,

possibly related to lighting conditions, which influences the variances of all the linear com-

ponents. Removing this factor leads to a divisive normalization, which is not very different

from models of contrast gain control (Heeger, 1992). Such models can explain some sur-

round suppression effects. They have been mainly developed in the context of wavelet-

based image models (Schwartz & Simoncelli, 2001; for a recent development in the context

of ICA, see Köster, Lindgren, Gutmann, & Hyvärinen, 2009).

A) B) C)

Fig. 7. Emergence of complex cell properties (Hyvärinen & Hoyer, 2000). Complex cell responses were mod-

eled as sums of squares inside each group of four linear filters as in Fig. 6. The responses were computed for

Gabor stimuli and compared with the responses of linear filters (simple cells). First, we determined the Gabor

stimulus that elicited the maximum response. Then, we varied the stimulus according to one of the parameters

(phase, location, or orientation). In all plots, the solid line gives the median response in the population of all

cells, and the dotted lines give the 90% and 10% percentiles of the responses. Responses are normalized relative

to response to preferred stimulus. Top row: responses (in absolute values) of simple cells (linear features). Bot-

tom row: responses of complex cells (sum of squares of linear features). (A) Effect of varying phase. (B) Effect

of varying location (shift). (C) Effect of varying orientation. We see that the complex cell response is insensitive

to change in phase of the stimulus, while selective to the other parameters; by contrast, simple-cell responses are

selective to all the parameters.
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A further line of research has linked the correlations of squares of features in different

spatial locations to contour completion and Gestalt formation. In fact, collinear Gabor

features, which are likely to belong to the same contour and relate to the Gestalt principle

of ‘‘good continuation,’’ have strong square correlations as well (Geisler, Perry, Super, &

Gallogly, 2001; Krüger, 1998; Sigman, Cecchi, Gilbert, & Magnasco, 2001; for a related

review, see Geisler, 2008).

6. Different timescales of learning and inference

In the models discussed above, features were learned (estimated) for natural images. The

models operate on an abstract level where, in particular, it is not specified at what point of

time the learning happens. Thus, the models are completely neutral as to the nature versus

nurture questions: The learning could be accomplished during evolution or during the life-

time of the organism.

Implicitly, the literature seems to assume that the representation should be fixed at least

after maturation of the organism. However, this need not be so, and it is conceivable that the

representation is constantly updated (relearned) so that recent input is emphasized. Online

(neural) algorithms usually lead to such emphasis anyway.

Continuous updating of the representation could explain some phenomena of perceptual
learning. Curiously, hardly any attempts have been made to model such updating based on

statistics of natural images. However, the application of the models reviewed here should be

rather straightforward, at least regarding learning of the representation. If we simply add a

sample of the stimuli used in a perceptual learning experiment to the sample of natural

image patches, the learned representation will be different.

A closely related topic is inference. In statistical models, inference usually means

computing (estimating) the values of latent variables, such as the si in Eq. 1. In most models

Fig. 8. Features Ai, and their topographic organization, estimated by topographic ICA.
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discussed in this review, the transformation from the si to the images is invertible; thus, the

values of the si can be immediately and exactly computed if we know the parameters Ai.

However, this is not the case if, for example, there are more latent variables si than observed

variables I(x,y) (Olshausen & Field, 1997), or there is noise in the process (Hyvärinen,

1999b). In general, we can only infer the most probable si by computing the posterior proba-

bility p(si|I,A).

Inference is usually assumed to happen very fast in the neural systems, as it is closely

connected to computing the immediate responses of the cells to stimuli. In fact, there may

be several timescales involved. Adaptation is presumably slower than inference but faster

than perceptual learning, and it may involve many timescales in itself.

Inference requires that we construct a model of the distributions of the components si

(see, e.g., Hyvärinen et al., 2009). One might assume that this model changes faster than the

actual features Ai. Thus, relatively fast adaptation phenomena have been modeled using the

principle of adding special data to the natural image patches as described above but updating

the model of the distributions of the si while leaving the features Ai constant (Wainwright,

Schwartz, & Simoncelli, 2002).

Finally, the dynamics at different timescales might require new models. One approach

would be to consider natural image sequences instead of static images (see, e.g., Hashimoto,

2003; Hurri & Hyvärinen, 2003; Hyvärinen, Hurri, & Väyrynen, 2003). With such models,

we can introduce new latent variables, which opens a new, relatively unexplored way to

model the temporal dynamics on different timescales. For example, one can introduce vari-

ables that model the variances of each si. These variables could be time correlated. Inference

of the ‘‘original’’ si then naturally proceeds by normalizing by these variance variables, not

unlike in the case of contrast gain control (Hyvärinen et al., 2003). Such normalization may

be related to adaptation (Buiatti & van Vreeswijk, 2003).

7. Discussion

Modelling the statistical structure of natural images is a modern approach to modeling

receptive fields. Possibly the most fundamental model is ICA, although sparse coding is an

older concept. The components obtained by them are not independent, which shows, in

fact, an opportunity to model further aspects of the visual system. Thus, in addition to sim-

ple-cell receptive fields, further models lead to emergence of complex cell properties,

the spatial (topographic) organization of the cells, contrast gain control, and Gestalt

phenomena.

Another approach to natural images is based on temporal coherence or stability (Földiák,

1991; Hashimoto, 2003; Hurri & Hyvärinen, 2003; Wiskott & Sejnowski, 2002). This means

that when the input consists of natural image sequences, that is, video data, the outputs of

simple cells in subsequent time points should be ‘‘coherent’’ or ‘‘stable,’’ that is, change as

little as possible. It is also possible to develop a unifying theoretical framework for the sta-

tistical properties discussed above: sparseness, temporal coherence, and topography; this is

based on the concept of a spatiotemporal bubble (Hyvärinen et al., 2003).
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A topic of intense current research is how to estimate both layers in a two-layer model of

natural images. This is in stark contrast to the models discussed above that fix the pooling of

simple-cell responses beforehand, and only estimate the Ai or Wi. In the models introduced

above, estimation of the pooling weights is possible, in principle, by considering them as

another set of parameters. However, this leads to serious technical difficulties (for recent

advances, see Karklin & Lewicki, 2008; Köster & Hyvärinen, 2007; Osindero, Welling, &

Hinton, 2006).

Another recently developed topic is estimation of Markov random fields, which provides

a model for whole images instead of small patches (Köster, Lindgren, & Hyvärinen, 2009).

The basic idea is that the same features are replicated in all possible spatial locations of the

image. An alternative approach for modeling whole images is to use wavelet tranformations,

thus completely fixing the features instead of learning them. The latter approach has been

quite successful in engineering applications (Simoncelli, 2005; Srivastava, Lee, Simoncelli,

& Chu, 2003).

It would be most useful if we could use this modeling endeavor, based on statistical mod-

els of ecologically valid stimuli, in a predictive manner. This means that we would be able

to predict properties of cells in the visual cortex, in cases where the properties have not yet

been demonstrated experimentally. Thus, we would obtain testable, quantitative hypotheses

that might lead to great advances, especially in the research in extrastriate areas such as V2,

whose function is not well understood at this point. One study based on such modeling

(Hyvärinen, Gutmann, & Hoyer, 2005) predicted that in V2 (or some related area) there

should be cells whose optimal stimulus is a broadband edge that has no side lobes while

being relatively sharp, that is, the optimal stimulus is closer to a step-edge than the Gabor-

like band-pass edges that tend to be optimal for V1 simple and complex cells.
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