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Abstract. We consider causally sufficient acyclic causal models in which
the relationship among the variables is nonlinear while disturbances have
linear effects, and show that three principles, namely, the causal Markov
condition (together with the independence between each disturbance and
the corresponding parents), minimum disturbance entropy, and mutual
independence of the disturbances, are equivalent. This motivates new and
more efficient methods for some causal discovery problems. In particular,
we propose to use multichannel blind deconvolution, an extension of
independent component analysis, to do Granger causality analysis with
instantaneous effects. This approach gives more accurate estimates of the
parameters and can easily incorporate sparsity constraints. For additive
disturbance-based nonlinear causal discovery, we first make use of the
conditional independence relationships to obtain the equivalence class;
undetermined causal directions are then found by nonlinear regression
and pairwise independence tests. This avoids the brute-force search and
greatly reduces the computational load.

1 Introduction

Given some observed variables, scientists, engineers, and policy-makers often
wish to find their causal relations, as well as to understand how to control a
particular variable by manipulating others. Discovering causal relations from
non-experimental data has attracted the interests of researchers in many areas,
such as philosophy, psychology, machine learning, etc [13, 19]. In this paper we
focus on the causally sufficient acyclic causal models [13] of continuous variables.
That is, we assume that there are no confounders nor any feedback in the causal
relations.

There are some frequently-used models for acyclic causal discovery, and tra-
ditionally they are estimated with different principles. For example, for Gaus-
sian variables with linear relations, conditional independence between the vari-
ables allows one to find a set of acyclic causal models which are in the d-
separation equivalence class [13]. Generally speaking, with more specific informa-
tion about the disturbance distribution or the causal structure, one can find the
underlying causal model more accurately. Based on the independent component
analysis (ICA [8]) technique, a class of linear, non-Gaussian, and acyclic mod-
els (LiNGAM) can be estimated very efficiently [18]. Moreover, in economics,



Granger causality analysis [4] is a popular way to examine the causal relations
between times series. It exploits the temporal constraint that causes must pre-
cede effects and uses the vector auto-regression (VAR) for parameter estimation.

In this paper, we consider a large class of acyclic causal models in which
the causal relations among observed variables are nonlinear but the effect of
disturbances is linear, as extensions of the linear models mentioned above. We
show that for such causal models, mutual independence of the disturbances is
equivalent to conditional independence of observed variables (as well as the inde-
pendence between the disturbance and the parents affecting the same variable).
Furthermore, they are achieved if and only if the total entropy of the distur-
bances is minimized. The three criteria above, namely, conditional independence
of variables (together with the independence between each disturbance and the
corresponding parents), mutual independence of disturbances, and minimum dis-
turbance entropy, can all be exploited to estimate such causal models. In practice,
which one should be chosen depends on the problem at hand.

We then consider two causal discovery problems, and show how our results
help solve them efficiently. One is discovery of Granger causality with instan-
taneous effects. Previous methods consist of two separate steps: the first step
performs ordinary Granger causality analysis by using VAR’s, and the second
step finds the instantaneous causal relations [16, 10]. Although these methods
are consistent in large samples, they are not efficient, because the Gaussianity
assumption for the innovations made in the first step is usually not true. We
propose a more efficient approach to estimate this model by making the distur-
bances mutually independent, as achieved by multichannel blind deconvolution
(MBD) [1], an extension of ICA.

The second problem on which we apply our theory is nonlinear causal dis-
covery with additive disturbances in the case of more than two variables. The
existing approach requires an exhaustive search over all possible causal struc-
tures and testing if the disturbances are mutually independent [6]. It becomes
impractical when we have more than three or four variables. The proposed ap-
proach, which can easily solve this problem with tens of variables, consists of
two stages. First, using nonlinear regression and statistical independence tests,
one can find the d-separation equivalence class. Next, among all possible causal
models in the equivalence class, the one consistent with the data can be found
by examining if the disturbance is independent of the parents for each variable.

2 Equivalence of Three Estimation Principles for Acyclic

Causal Models

In this section we consider a kind of acyclic data generating processes in which
each variable is generated by a nonlinear function of its parents plus the dis-
turbance. Such processes can be represented graphically by a directed acyclic
graph (DAG). Mathematically, each of the observed variables xi, i = 1, · · · , n,
is written as

xi = fi(pai) + ei, (1)



where pai denotes the parents of xi, and the disturbances ei are independent
from each other.

A well-known approach to identify the acyclic causal relations is based on a
test called d-separation, which examines conditional independence between vari-
ables [13, 19]. In the following theorem, we show that mutual independence of the
disturbances and conditional independence between observed variables (together
with the independence between ei and pai) are equivalent. Furthermore, they
are achieved if and only if the total entropy of the disturbances is minimized.

Theorem 1 Assume that the data x1, · · · , xn are causally sufficient, and were
generated by the acyclic causal model in Eq. 1. Then, when fitting the model Eq. 1
with the causal structure represented by a DAG to x1, · · · , xn, the following three
properties are equivalent:

(i) The causal Markov condition holds (i.e., each variable is independent of its
non-descendants in the DAG conditional on its parents), and in addition,
the disturbance in xi is independent from the parents of xi.
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(ii) The total entropy of the disturbances, i.e.,
∑

i H(ei), is minimized, with the
minimum H(x1, · · · , xn).

(iii) The disturbances ei are mutually independent.

See Appendix for a proof. From this theorem, one can see that
∑n

i=1 H(ei)
can be used as a measure to compare the quality of different acyclic causal model.
Generally, we prefer the model with the smallest

∑n

i=1 H(ei). This is intuitively
appealing from a physics viewpoint. In physics, it is often claimed that causality
increases entropy [3]. Therefore, the disturbances ei, which are pure causes of
the observed variables xi, should have the least total entropy, compared to any
observed variables they generate. Another interesting point is that although the
causal relations among xi increases the total entropy of the observed variables,
i.e.,

∑
i H(xi), the joint entropy of the xi remains the same, with the value∑

i H(ei). In addition, the property (ii) for the acyclic causal model relates
causality and predictability from an information theory viewpoint. The causal
relations give the best prediction all variables in the system in an acyclic manner,
since the uncertainty (measured by entropy) in all errors ei is minimized.

All the three criteria in Theorem 1 can be used for causal discovery. However,
for a given problem, they may result in different techniques and involve different
computational loads. It should be noted that when using the minimum distur-
bance entropy criterion, one needs to constrain the causal models to be acyclic;
otherwise, minimization of this criterion tends to introduce cyclic relations into
the model, to reduce the magnitude of the disturbances.

It should be noted that the theorem does not state when the solution of the
problem is unique. It is well-known that for Gaussian variables, there may be sev-
eral solutions providing independent disturbances, and thus minimum entropy.

3 The property that the disturbance in xi is independent from the parents of xi is triv-
ial in the linear Gaussian case, since using linear regression, the noise (disturbance)
is uncorrelated from the explanatory variables (parents), and uncorrelatedness is
equivalent to independence for jointly Gaussian variables.



Finding exact conditions for uniqueness is an important problem for future re-
search. For example, non-Gaussianity, or temporal order, have been shown to
make the solution unique in the linear case [18, 4].

3 On Granger Causality with Instantaneous Effects

Granger causality [4] exploits the temporal information that the cause occurs
before the effect, such that the directions of the possible causal effects are known.
Consequently, it can be determined uniquely. A stationary process X1 : {x1t}
is said to Granger cause the process X2 : {x2t} if it contains information about
the predictability for x2,t+1 contained nowhere else in some large information
set, which includes x1,t−k, k ≥ 0 [4]. Using the language of conditional indepen-
dence, this means that X1 is not conditionally independent of x2,t+1 given the
large information set. In this sense, Granger causality is a kind of conditional
independence-based causality combined with the constraint that effects must fol-
low causes. Here we would like to treat xi,t as random variables, and use a DAG
to represent the possible causal relations among them. If there exist significant
causal relations xi,t−k → xj,t (k > 0, and i 6= j), then the process Xi Granger
causes Xj.

As the causal relations among xi,t are linear and acyclic, the three proper-
ties in Theorem 1 can all be used to estimate this model. Conventionally, all
of ei,t are treated as Gaussian, and minimization of the disturbance entropy is
reduced to minimizing the prediction error (in the mean square error sense), as
achieved by VAR’s. It should be noted that when eit are not Gaussian, although
the estimate given by VAR’s is consistent in large samples, it is not efficient.
With Granger causality analysis, it is sometimes observed that there is signifi-
cant contemporaneous dependency between the innovations ei. This means that
there are some instantaneous relations among xit, which cannot be captured by
traditional Granger causality.

3.1 Granger Causality with Instantaneous Effects

Mathematically, Granger causality analysis of x1t, · · · , xnt with instantaneous
effects can be formulated as

xt =

p∑

τ=0

Bτxt−τ + et, (2)

where xt = (x1t, · · · , xnt)
T , et = (e1t, · · · , ent)

T , and Bτ are n × n matrix of
coefficients. Here we have assumed that all involved random variables have been
made zero-mean. We also assume that the instantaneous causal relations, which
are implied in B0, are acyclic. That is, B0 can be transformed to a strictly lower-
triangular matrix by simultaneous equal row and column permutations [18].
Equivalently, the representation Eq. 2 can be written as

(I−B0)xt =

p∑

τ=1

Bτxt−τ + et. (3)



3.2 Existing Methods

Existing methods for Granger causality analysis with instantaneous effects con-
sist of two steps [10, 16]. Multiplying both sides of Eq. 3 by (I−B0)

−1 from the
left, one can get

xt =

p∑

τ=1

(I−B0)
−1 ·Bτ · xt−τ + (I−B0)

−1 · et. (4)

This is exactly the Granger causality model without instantaneous effects with
the errors (I − B0)

−1 · et. Therefore, one can first find (I − B0)
−1 · Bτ , τ =

1, · · · , p, and (I−B0)
−1 · et, by ordinary VAR analysis. In the second step, one

needs to estimate B0 by examining (the estimate of) the errors (I−B0)
−1 · et.

One way is based on conditional independence graphs [16]. It is a combination
of VAR for lagged causality and conditional independence-based method [13]
for instantaneous causality. Due to the Gaussianity assumption, this method
produces a distribution-equivalence class of causal models. Another way, recently
proposed in [10], resorts to the ICA-based LiNGAM analysis [18]. The method
is very easy to implement, and also consistent in large samples. But when at
most one of the disturbance sequence is Gaussian, it is not efficient due to the
wrong assumption of Gaussianity of the disturbances in the first step and the
error accumulation of the two-step method.

3.3 Estimation by Multichannel Blind Deconvolution

According to the causal model Eq. 2, the causal relations among random vari-
ables xit are linear and acyclic. According to Theorem 1, such a causal model
can be estimated by making the disturbances eit mutually independent for dif-
ferent i and different t. That is, we need to make eit, which are a mixed and
filtered version of xt, both spatially and temporally independent. Estimation of
the model Eq. 3 (or equivalently, Eq. 2) is then closely related to the multi-
channel blind deconvolution (MBD) problem with causal finite impulse response
(FIR) filters [1, 8]. MBD, as a direct extension of ICA [8], assumes that the ob-
served signals are convolutive mixtures of some spatially and independently and
identically distributed (i.i.d.) sources. Under the assumption that at most one of
the sources is Gaussian, by making the estimated sources spatially and tempo-
rally independent, MBD can recover the mixing system (here corresponding to
eit and Bτ ) up to some scaling, permutation, and time shift indeterminacies [11].
This implies that Granger causality with instantaneous effects is identifiable if
at most one of the disturbances ei is Gaussian.

In Eq. 2, the observed variables xit can be considered as convolutive mixtures
of the disturbances eit. We aim to find the estimate of Bτ , as well as eit, in Eq. 2,
by MBD with the filter matrix W(z) =

∑p

τ=0 Wτz−τ (Wτ are n×n matrices):

êt =

p∑

τ=0

Wτxt−τ . (5)



There exist several well-developed algorithms for MBD. For example, one may
adopt the one based on natural gradient [1]. Comparing Eq. 5 and Eq. 3, one
can see that the estimate of Bτ (τ ≥ 0) can be constructed by analyzing Wτ :
by extending the LiNGAM analysis procedure [18], we can find the estimate of
Bτ in the following three steps, based on the MBD estimates of Wτ .

1. Find the permutation of rows of W0 which yields a matrix W̃0 without any
insignificant entries on the main diagonal. Note that here we also need to

apply the same permutations to rows of Wτ (τ > 0) to produce W̃τ .

2. Divide each row of W̃0 and W̃τ (τ > 0) by the corresponding diagonal entry

in W̃0. This gives W̃′
0 and W̃′

τ , respectively. The estimate of B0 and Bτ

(τ > 0) can be computed as B̂0 = I− W̃′
0 and B̂τ = −W̃′

τ , respectively.
3. To obtain the causal order in the instantaneous effects, find the permutation

matrix P (applied equally to both rows and columns) of B̂0 which makes

B̃0 = PB̂0P
T as close as possible to strictly lower triangular.

3.4 Sparsification of the Causal Relations

For the interpretation or generalization purpose, we need to do model selection
on the causal structure (i.e., to set insignificant entries of B̂τ to zero, and to
determine p, if needed). This is difficult to do in the two-step methods [16,
10], but is easily achieved in our method. Analogously to the development of
ICA with sparse connections [20], we can incorporate the adaptive L1 penalties
into the likelihood of the MBD model to achieve fast model selection. More
importantly, the model selection result obtained by this approach is consistent
with that by traditional information criteria, such as BIC [17].4 To make Wτ in
Eq. 5 as sparse as possible, we maximize the penalized likelihood

pl({Wτ}) = l({Wτ})− λ
∑

i,j,τ

|wi,j,τ |/|ŵi,j,τ |, (6)

where l({Wτ}) is the likelihood, wi,j,τ the (i, j)th entry of Wτ , and ŵi,j,τ a con-
sistent estimate of wi,j,τ , such as the maximum likelihood estimate. To achieve
BIC-like model selection, one can set λ = log T , where T is the sample size.

3.5 Simulation

To investigate the performance of our method, we conducted a series of simula-
tions. We set p = 1 lag and the dimensionality n = 5. We randomly constructed
the strictly lower-triangular matrix B0 and matrix B1. About 60% of the entries

4 Note that traditional model selection based on the information criteria involves a
combinatorial optimization problem, whose complexity increases exponentially in the
dimensionality of the parameter space. In the MBD problem, it is not practical to
set insignificant entries of B̂τ to zero by directly minimizing the information criteria,
as the number of parameters is too large.



in these matrices were set to zero, while the magnitude of the others is uniformly
distributed between 0.05 and 0.5 and the sign is random. The disturbances eit

were generated by passing i.i.d. Gaussian samples through a power nonlinearity
with exponent between 1.5 and 2.0 (the original sign was kept). The observations
xt were then generated according to Eq. 4. Various sample sizes (T = 100, 300,
and 1000) were tested. We compared the performance of the two-step method
proposed in [10], the method by MBD (Section 3.3) and the MBD-based method
with the sparsity constraint (Section 3.4). In the last method, we set the penal-
ization parameter in Eq. 6 as λ = log T to make its results consistent with those
obtained by BIC. In each case, we repeated the experiments for 5 replications.

Fig. 1 shows the scatter plots of the estimated parameters (including the
strictly lower triangular part of B0 and all entries of B1) versus the true ones.
Different subplots correspond to different sample sizes or different methods. The
mean square error (MSE) of the estimated parameters is also given in each
subplot. One can see that as the sample sizes increases, all methods give better
results. For each sample size, the method based on MBD is always better than
the two-step method, showing that the estimate by the MBD-based method is
more efficient. Furthermore, due to the prior knowledge that many parameters
are zero, the MBD-based method with the sparsity constraint behaves best.
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Fig. 1. Scatter plots of the estimated coefficients (y axis) versus the true ones (x axis)
for different sample sizes and different methods.

3.6 Application in Finance

In this section we aim at using Granger causality analysis with instantaneous
effects to find the causal relations among several world stock indices. The chosen



indices are Dow Jones Industrial Average (DJI) in USA, Nikkei 225 (N225) in
Japan, Hang Seng Index (HSI) in Hong Kong, and the Shanghai Stock Exchange
Composite Index (SSEC) in China. We used the daily dividend/split adjusted
closing prices from Dec. 4, 2001 to Jul. 11, 2006, obtained from the Yahoo finance
database. For the few days when the price is not available, we use simple linear
interpolation to estimate the price. Denoting the closing price of the ith index
on day t by Pit, the corresponding return is calculated by xit =

Pit−Pi,t−1

Pi,t−1

. The

data for analysis are xt = [x1t, ..., x4,t]
T , with 1200 samples.

We applied the MBD-based method with the sparsity constraint to xt. The
kurtoses of the estimated disturbances êit are 3.9, 8.6, 4.1, and 7.6, respectively,
implying that the disturbances are non-Gaussian. We found that more than half
of the coefficients in the estimated W0 and W1 are zero. B̂0 and B̂0 were con-
structed based on W0 and W1, using the procedure given in Section 3.3. It was
found that B̂0 can be permuted to a strictly lower-triangular matrix, meaning
that the instantaneous effects follow a linear acyclic causal model. Finally, based
on B̂0 and B̂1, one can plot the causal diagram, as shown in Fig. 2.

Fig. 2 reveals some interesting findings. First, DJIt−1 has significant impacts
on N225t and HSIt, which is a well-known fact in the stock market. Second,
the causal relations DJIt−1 → N225t → DJIt and DJIt−1 → HSIt → DJIt are
consistent with the time difference between Asian and USA. That is, the causal
effects from N225t and HSIt to DJIt, although seeming to be instantaneous,
are actually mainly caused by the time difference. Third, unlike SSEC, HSI is
very sensitive to others; it is even strongly influenced by N225, another Asian
index. Fourth, it may be surprising that there is a significant negative effect from
DJIt−1 to DJIt; however, it is not necessary for DJIt to have significant negative
autocorrelations, due to the positive effect from DJIt−1 to DJIt going through
N225t and HSIt.

DJIt-1 N225t-1 HSIt-1 SSECt-1

DJIt N225t HSIt SSECt
0.020.420.12

0.11

-0.15
0.35 0.21

-0.07 0.04

0.05 0.04

Fig. 2. Result of applying Granger causality analysis with instantaneous effects to
daily returns of the stock indices DJI, N225, HSI, and SSEC, with p = 1 lag. Large
coefficients (greater than 0.1) are shown in bold.



4 Additive Disturbance-Based Nonlinear Causal

discovery with More than Two Variables

The additive disturbance causal model Eq. 1 has been proposed for nonlinear
causal discovery very recently by Hoyer et al. [6]. They mainly focused on the
two-variable case and showed that the model is able to distinguish the cause
from effect for some real-world data sets. Suppose we have two variables x1 and
x2. The method to find the causal relation between them is as follows. First,
examine if they are independent using statistical independence tests, such as the
kernel-based method [5]. If they are, no further analysis is needed. Otherwise,
one then continues by testing if the model x2 = f2(x1) + e2 is consistent with
the data. Nonlinear regression is used to find the estimate of f2 and e2. If ê2

is independent of x1, the causal model x2 = f2(x1) + e2 is accepted; otherwise
it is rejected. One then needs to test if the reverse model x1 = f1(x2) + e1

is acceptable. Finally, if one model is accepted and the other is rejected, the
additive disturbance nonlinear causal model is uniquely found. If both models
hold, one can conclude that in this situation the additive disturbance causal
model cannot distinguish the cause from effect. If neither of the models holds,
one can conclude that the model cannot explain the data well, possibly due to
the existence of hidden variables or a different data generating process. When
performing nonlinear regression, one should carefully avoid over-fitting.

4.1 Existing Methods

It is much more difficult to find the causal relations implied by the causal model
Eq. 1 when we have more than two observed variables. In this case, a brute-force
search was exploited in [5]; for each possible acyclic causal structure, represented
by a DAG, one performs nonlinear regression of each variable on its parents,
and tests if the residuals are mutually independent with statistical independence
tests. The simplest causal model which gives mutually independent disturbances
is preferred. Clearly this approach may encounter two difficulties. One is that
the test of mutual independence is difficult to do when we have many variables.
The other is that the search space of all possible DAG’s increases too rapidly
with the variable number. In fact, it is well-known that the total number of all
possible DAG’s is super-exponential in the number of variables. Consequently,
this approach involves high computational load, and is not suitable when we
have more than three or four variables.

4.2 A More Practical Approach

We propose an approach which is suitable for identifying the nonlinear causal
model Eq. 1 with moderate-sized variables, say, with tens of variables. According
to Theorem 1, the nonlinear causal model Eq. 1 can be identified by enforcing the
causal Markov property and the independence between the disturbance and the
parents associated with the same variable. This motivates a two-stage approach



to identify the whole causal model. One can first use conditional independence-
based methods to find the d-separation equivalence class. Next, the nonlinear
causal model Eq. 1 is used to identify the causal relations that cannot be deter-
mined in the first step: for each possible causal model contained in the equiva-
lence class, we estimate the disturbances, and determine if this model is plau-
sible, by examining if the disturbance in each variable xi is independent of the
parents of xi.

5 In this way, one avoids the exhaustive search over all possible
causal structures and statistical tests of mutual independence of more than two
variables.

In the first stage of the proposed approach, we need to find an efficient way
to derive the conditional independence relationships and to construct the equiv-
alence class. This brings up two issues. One is how to reliably test conditional
independence for variables with nonlinear relations. Traditionally, in the imple-
mentation of most conditional independence-based causal discovery algorithms,
such as PC [19], it is assumed that the variables are either discrete or Gaussian
with linear causal relations. This assumption greatly simplifies the difficulty in
conditional independent tests. But here we need to capture the nonlinear causal
effects. Some methods, such as the probabilistic non-parametric test proposed
in [12], have been developed for this task. However, they may be unreliable when
the conditional set contains many variables, due to the curse of dimensionality.
Alternatively, one may simplify the conditional independence test procedure by
making use of the particular structure of the nonlinear causal model Eq. 1. This
can be done by extending the partial correlation concept to the nonlinear case.

Partial correlation measures the degree of linear association between two
variables, with the effect of a set of conditional variables removed. In particular,
the partial correlation between X and Y given a set of variables Z, denoted by
ρXY ·Z, is the correlation between the residuals RX and RY resulting from the
linear regression of X with Z and of Y with Z, respectively. Here we assume
that the data follow the nonlinear generating process Eq. 1. Due to the additive
disturbance structure, one can examine if X and Y are conditionally independent
given the variable set Z by performing independent tests on the residuals RN

X

and RN
Y , which are obtained by nonlinear regression of X with Z and of Y

with Z, respectively. In our implementation, Gaussian process regression with
a Gaussian kernel [15] is adopted for nonlinear regression, and the involved
hyperparameters are learned by maximizing the marginal likelihood. The kernel-
based independence test [5] with the significance level 0.01 is then used to test
if the residuals are independent.

The other issue is how to construct the independence-based equivalence class
with as few conditional independence tests as possible. We adopt the total con-
ditioning scheme discussed in [14], which was shown to be very efficient provided
the underlying graph is sparse enough. It first finds the Markov blanket of each
variable and builds the moral graph. The Markov blanket of the variable X is

5 According to Theorem 1, one can use the total entropy of the disturbances as the
criterion to find the “best” causal model in the equivalence class. However, this
approach does not easily provide a criterion for testing model validity.



the set of parents, children, and children’s parents (spouses) of X . Let V be the
set of all variables. The variable Y is in the Markov blanket of X if X and Y
are not conditionally independent given V \ {X, Y }. In particular, in our case
we use nonlinear regression combined with the kernel-based independence test
to perform the conditional independence test, as discussed above. Next, it re-
moves the possible spouse links between linked variables X and Y by looking
for a d-separating set around X and Y . When spouse links are removed, the V-
structures can be oriented using collider sets. One can then find the equivalence
class by propagating orientation constraints. For details of the total condition-
ing scheme for causal discovery based on Markov blankets, see [14]. In order
to construct the moral graph, one needs to perform nonlinear regressions for

n(n− 1) times and independence tests for n(n−1)
2 times, where n is the number

of observed variables. To find the possible spouse links, one further needs to do
nonlinear regressions for 2α+1 times and corresponding independence tests for
2α times, where α = maxX,Y |Tri(X −Y )|, with Tri(X −Y ) denoting the set of
variables forming a triangle with X and Y .

Finally, for each DAG in the equivalence class, we use nonlinear regression
to estimate the disturbances and then test if the disturbance and parents are
independent for each variable. Those that make each disturbance independent
of the parents associated with the same variable are valid models.

4.3 Simulation

In this section we investigate how the proposed approach behaves with a simu-
lation study. The data generating process is given in Fig. 3. It consists of seven
variables with both linear and strongly nonlinear causal relations, and the dis-
turbances are Gaussian, uniform, or super-Gaussian. The sample size is 1000.

x1

x2

x3

x6

x5

x7

x4

Data-generating process:

x1 = v1, with normal v1;
x2 = x1/2 + x3

1/10 + v2, with normal v2;
x4 = v4, with normal v4;
x3 = x2 + x4 + v3, with super-Gaussian v3;
x5 = x2x3 + v5, with uniform v5;
x6 = x3/2 + x3

3/10 + v6, with normal v6;
x7 = |x3|

1.3(1 + x2 + tanh(x4)) + v7, with normal v7.

Fig. 3. The true data-generating model used in the simulation, where vi are mutually
independent, the standard deviation of vi is a random number between 0.2 and 1, and
v3 is obtained by passing a Gaussian variable through the power nonlinearity with
exponent 1.5.

We first used nonlinear regression and independence test to construct the
moral graph, with the result shown in Fig. 4(a). One can see that it is exactly



the moral graph corresponding to the causal model generating the data. The
edge x2−x4 was then found to be a spouse link, since they are (unconditionally)
independent. Consequently, x3 and x7 are colliders and thus common children of
x2 and x4. That is, we have x2 → x3 ← x4 and x2 → x7 ← x4. Furthermore, since
x5 (x6) is not connected to x4 in the moral graph, one can find the orientation
x3 → x5 (x3 → x6). To avoid cyclicity, the causal direction between x2 and x5

must be x2 → x5. The resulting equivalence class is shown in Fig. 4(b), with
only the causal direction between x1 and x2 and that between x3 and x7 are
not determined. Under the hypothesis x3 ← x7, we found that the disturbance
estimated by nonlinear regression is independent of the assumed parents (x2,
x4, and x7), while the disturbance is not independent of the parents for the
variable x7 under the hypothesis x3 → x7, so we obtained x3 ← x7. Similarly,
one can find the causal direction x1 → x2. The obtained causal model is given
in Fig. 4(c), which turns out to be the same as the one generating the data
(Fig. 3). For comparison, we also show the equivalence class obtained by the
PC algorithm [19] implemented in Tetrad 6 with the significance level 0.01. One
can see that since the linearity assumption in PC is violated in this case, the
resulting equivalence class is significantly different from the true causal model;
in fact, half of the edges are spurious.
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Fig. 4. Simulation results of nonlinear causal discovery with additive disturbances. (a)
The moral graph obtained by our approach (the significance level for independence tests
is 0.01). (b) The graph after removing spouse link (x2 − x4), orienting V-structures,
and propagating orientation constraints. (c) The final result. (d) For comparison, the
result obtained by the PC algorithm, with the significance level 0.01.

4.4 Application in Causal Discovery of MEG Data

As an illustration of the applicability of the method on real data, we applied it on
magnetoencephalography (MEG), i.e., measurements of the electric activity in
the brain. The raw data consisted of the 306 MEG channels measured by the Vec-
torview helmet-shaped neuromagnetometer (Neuromag Ltd., Helsinki, Finland)

6 Available at http : //www.phil.cmu.edu/projects/tetrad/



in a magnetically shielded room at the Brain Research Unit, Low Temperature
Laboratory, Helsinki University of Technology. The measurements consisted of
300 seconds of resting state brain activity earlier used in [9]. The subject was
sitting with eyes closed, and did not perform any specific task nor was there any
specific sensory stimulation.

As pre-processing, we performed a blind separation of sources using the
method called Fourier-ICA [9]. This gave nine sources of oscillatory brain ac-
tivity. Our goal was to analyze the causal relations between the powers of the
source, so we divided the data into windows of length of one second (half overlap-
ping, i.e., the initial points were at a distance of 0.5 seconds each) and computed
the logarithm of the local standard deviation in each window. This gave a total
of 604 observations of a nine-dimensional random vector, on which we applied
our method.

We first tested if the obtained variables have linear causal relations. If the
variables have linear acyclic causal relations and at most one of the distur-
bances is Gaussian, the de-mixing matrix obtained by ICA can be permuted to
lower-triangularity, and the causal model can be uniquely found [18]. We applied
FastICA [7], a widely-used linear ICA algorithm, to the data, and found that the
de-mixing matrix is far from a permuted lower-triangular matrix. Furthermore,
some independent components are not even truly independent, as verified by
the kernel-based independence test [5], which gave the p-value 7 × 10−3. These
findings imply that a linear acyclic causal model does not fit the data well.

We then applied the proposed approach to do nonlinear causal analysis. The
results, including the moral graph and the final causal diagram, are shown in
Fig. 5. Note that there is a bidirected edge x2 ↔ x3 in the final result (Fig. 5(b));
in fact, neither of the causal relations x2 → x3 and x2 ← x3 could make the
disturbance independent of the parents. This means that the causal relation
between x2 and x3 could not be represented by Eq. 1, or that there exists some
confounder. For comparison, the result by the PC algorithm is given in Fig. 5(c).
It contains clearly more edges, with two bidirected and three undirected.
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(a) moral graph (b) causal diagram (c) by PC

Fig. 5. Experimental results of the MEG data. (a) The moral graph obtained by con-
ditional independence tests. Here no spouse link exists. (b) The final causal model. The
thickness of the lines indicates the strength of the causal effects, as measured by the
contributed variance. (c) For comparison, the result by the PC algorithm [19] is given.



For illustration, Fig.6 plots the effect of the causes for each variable which
has parents. One can see that three of the causal relations (x9 → x6, x5 → x8,
and (x1, x7) → x9) are close to linear, while others are clearly nonlinear. The
obtained causal connections are something completely new in neuroscience. Their
interpretation will require a lot of work from domain experts.

Fig. 6. The effect of the causes on each target variable in the MEG data. For clarity,
we also give the fitted surface in 3D plots.

5 Conclusion

In this paper we focused on the acyclic causality discovery problem with an
additive disturbance model. For the acyclic causal models in which the causal
relations among observed variables are nonlinear while disturbances have linear
effects, we have shown that the following criteria are equivalent: 1. mutual in-
dependence of the disturbances, 2. causal Markov property of the causal model,
as well as the independence between the disturbance and the parents associated
with the same variable, and 3. minimum disturbance entropy. From this view-
point, conventional conditional independence-based methods, non-Gaussianity-
based linear methods, and the Granger causality analysis could be unified.

The criterion of mutual independence of disturbances then inspires us to ex-
ploit multichannel blind deconvolution, a well-developed extension of ICA, to
estimate Granger causality with instantaneous effects. Compared to other meth-
ods, this approach is more efficient (in the statistical sense), and it admits simple
ways for model selection of the causal structure by incorporating suitable penal-
ties on the coefficients. Finally, we showed that nonlinear causal discovery with
additive disturbances can be achieved by enforcing the causal Markov condition
and the independence between the disturbance and parents of the same variable.



The resulting approach is suitable for moderate-sized problems. Simulations and
real-world applications showed the usefulness of the proposed approaches.
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Appendix: Proof of Theorem 1

Implication (iii) ⇒ (i) is obviously, as shown below. Suppose xk is neither xi

nor any descendant of xi. Apparently xk is a function of the disturbances which
do not include ei, and hence xk (as well as any parent of xi) is independent of ei.
According to Eq. 1, we have p(xi|pai, xk) = p(ei|pai, xk) = p(ei|pai) = p(xi|pai),
meaning xi and xk are conditionally independent given pai. Below we shall prove
(i)⇒ (ii) and (ii)⇒ (iii).

As the causal relations of xi are acyclic, xi can be arranged in an order such
that no later variable causes any earlier one. Let k(i) denote such an order. Let
x̃i be the vector of x with the order k(i), i.e., x̃k(i) = xi, and denote by ẽi and
p̃ai the disturbance in x̃i and the parents of x̃i, respectively.

According to the properties of conditional entropy, for any 1 ≤ i ≤ n, we
have

H(ẽi) ≥ H(ẽi|p̃ai) (7)

= H(x̃i|p̃ai) ≥ H(x̃i|x̃1, · · · , x̃i−1), (8)

where the equality in 7 holds if and only if ei is independent of p̃ai, and the
equality in 8 holds if and only if x̃j (j < i, and x̃j 6∈ p̃ai) are conditionally
independent of ẽi given p̃ai [2]. Summation of the above inequality over all i
yields

∑

i

H(ei) =
∑

i

H(ẽi) ≥ H(x̃1) + H(x̃2|x̃1) + · · ·+ H(x̃n|x̃1, · · · , x̃n−1) (9)

= H(x̃1, · · · , x̃n) = H(x1, · · · , xn),

where the equality in Eq. 9 holds when (i) is true. This implies (i)⇒ (ii).
Now let us suppose (ii) is true. Denote by G the transformation from (x̃1, · · · , x̃n)

to (ẽ1, · · · , ẽn). As ẽi only depends on x̃i and its parents, the Jacobian ma-
trix of G, denoted by JG , is a lower-triangular matrix with 1 on its diagonal.
This gives |JG | = 1, and hence H(ẽ1, · · · , ẽn) = −E{log pẽ(ẽ1, · · · , ẽn)} =
−E{log[px̃(x̃1, · · · , x̃n)/|JG |]} = H(x1, · · · , xn). Consequently, the mutual infor-
mation I(e1, · · · , en) =

∑
i H(ei)−H(ẽ1, · · · , ẽn) = H(x1, · · · , xn)−H(x1, · · · , xn)

= 0, meaning that ei are mutually independent. We then have (ii) ⇒ (iii).
Therefore, (i), (ii), and (iii) are equivalent. �


