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8.1 INTRODUCTION

Finding causal directions is a fundamental problem in scientific data analysis and
other fields. In general, finding causal directions is extremely complex, but we can
make progress by assuming that the causal relationships can only take some special
forms.

For simplicity, let us assume that we have only two observed random variables,
x and y, where either x is causing y or y is causing x. In particular, we exclude the pos-
sibility that there is some kind of bidirectional influence (feedback) between the two;
we also exclude the case where both are actually caused by some further, unobserved
variable (confounder).

Let us start by considering the very simplest case, where the relationship is
assumed linear. We thus need to choose between the following two models. The first
model assumes that x causes y, and is given by

y = 𝜌x + n (8.1)
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while the second model assumes that y causes x and is given by

x = 𝜌y + ñ (8.2)

In both models, the disturbances (also called external influences or noise), denoted
by n or ñ, are assumed independent of the regressors x and y, respectively. Without
restriction of generality, we can assume that x and y are standardized to zero mean
and unit variance. The parameter 𝜌 is then the same in the two models because it is
equal to the correlation coefficient.

Choosing between these two models, that is, identifying the causal direction, is a
well-known problem that is widely encountered in statistics and machine learning.
The problem is usually considered very difficult and perhaps unsolvable, since most
analysis assumes that the variables x and y are Gaussian, which also implies that
the disturbances are Gaussian. Under the Gaussian assumption, the two models are
completely symmetric in the sense that the variance explained is equal for the two
models, and further, the likelihood is the same for both models (both quantities being
simple functions of 𝜌).

The symmetry between the two models is illustrated in Figure 8.1a, where the
points were generated by y = 2x + n and x and n follow the standard Gaussian dis-
tribution. We see that the Gaussian data cloud generated by any of the two models
looks just the same, which underlines the unidentifiability of the causal direction.

The inability to decide between these two models under the assumptions of lin-
earity and Gaussianity is one of the motivations for the well-known saying that “cor-
relations does not equal causality.” However, it is possible to change the situation by
modifying any of these two assumptions.

For example, we can make the causal direction identifiable by assuming at
least one of the variables (the regressor or the disturbance) in the true model is
non-Gaussian. This leads to the theory whose main model is the linear non-Gaussian
acyclic model (Shimizu et al., 2006), treated in another chapter of this volume. It
is worth noting that there have been several pieces of work in statistics about the
asymmetry between two variables in the linear non-Gaussian case. Dating back to
2000, Dodge and Rousson (2000, 2001) considered identifying the correct bivariate
linear regression model under the assumption of a non-Gaussian true predictor,
which is also addressed in a related chapter of this volume (Dodge and Rousson,
2016). The case of a normal predictor and a non-Gaussian disturbance has been
discussed by Wiedermann and Hagmann (2015).

Here, we merely show how the symmetry between the two models is broken, as is
illustrated in Figure 8.1b, where the data were generated by y = 2x + n and x and n
were obtained by taking the square of standard Gaussian random samples and keeping
their original sign. We see that scatterplots for the two models are quite different from
each other (note the thin “arms” along either the vertical or the horizontal axis), which
gives hope that the causal direction could be identifiable.

Another modification that makes the causal direction identifiable is to assume a
nonlinear relationship, which is the topic of this chapter. We start by defining the
basic nonlinear model, show how it can be estimated, and then go to a more general
theory with more complex nonlinear relationships.
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(a)

(b)

(c)

(d)

x → y y → x

Figure 8.1 Illustration of the effect of the assumptions of linearity and Gaussianity on the
identifiability. On the left, we have data generated for the causal direction x → y, and on the
right, data generated for the causal direction y → x. The rows correspond to different models:
(a) linear Gaussian model, (b) linear non-Gaussian model, (c) the nonlinear model, with two
squaring nonlinearity in both directions, (d) the nonlinear model, with cubic root nonlinearity
and cubic nonlinearity.
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8.2 NONLINEAR ADDITIVE NOISE MODEL

8.2.1 Definition of Model

We start with a particularly simple form of nonlinear relationship, where a
scalar-valued nonlinear function, f or g, is taken of the regressor, and the disturbance
is added in an additive manner. Thus, we obtain the following two models to choose
from. The first model, which we denote by x → y, assumes that x causes y and is
given by

y = f (x) + n (8.3)

while the second model that assumes that y causes x, which we denote by y → x, and
is given by

x = g(y) + ñ (8.4)

Again, in both models, the disturbances n and ñ, are independent of the regressors
x and y, respectively. Here, unlike in the linear case, the functions f and g are likely
to be very different from each other. Furthermore, no assumption is made on the
distributions of the residuals.

To start with a graphical illustration, see Figure 8.1c. Here, on the left side, we
have generated data from x → y with f (x) = x2 and used Gaussian noise n. We use
exactly the same nonlinearity and noise on the right in the direction y → x. This is
to illustrate the intuitively quite obvious idea that if the nonlinearity is not invertible
(such as squaring), the model is intuitively easy to choose since in the wrong direction,
it is not at all of the desired form: nonlinear transform plus independent noise. In fact,
it is implausible that y on the right-hand side (generating direction y → x) could have
been obtained by adding independent noise on some function of x since any function
of x cannot predict y well; in fact here the function of x that predicts y best is y = 0.
Thus, only the true generating model is at all plausible.

In Figure 8.1d, we have a less drastic, and invertible, nonlinearity (third power) for
x → y. Now, since f and g need not be the same in general, a more realistic illustration
would take g = f−1, which we do here. In particular, we take f (x) = x3 and g(y) =|y|1∕3sign(y). The breaking of symmetry between x and y is seen in the fact that the
data distributions are slightly different for the two models, even though they attempted
to create the same kind of joint distribution. (We also tried to match the noise levels to
make the distributions as similar as possible.) In particular, the noise is seen to “fatten”
the regression curve either vertically or horizontally, depending on the direction of
causal influence.

8.2.2 Likelihood Ratio for Nonlinear Additive Models

An attractive way of deciding between the two models in Equations (8.1) and (8.2)
is to compute their likelihoods and compare them in terms of their ratio. Essentially,
we choose the model that has the larger likelihood.
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The log-likelihood of the model x → y, for a single data point, can be obtained as
the sum of the log-prior of the variable x and the log-likelihood of the residual:

log p(x, y) = log px(x) + log pn(y − f (x)) (8.5)

Here, it is crucial that we have some kinds of estimates of the log-probability density
functions (log-pdf’s) of the regressor and the disturbance. Since it is usually more
convenient to operate with standardized quantities, so let us denote the log-pdf of the
standardized residual by Gn and the log-pdf of x by Gx. Then, the log-likelihood for
a single data point can be written as

log p(x, y) = Gx(x) + Gn

(
y − f (x)

𝜎n

)
− log 𝜎n (8.6)

where we denote the variance of the disturbance by 𝜎2
n . Choosing the standardized

log-pdf’s Gx,Gn could be done by modeling the relevant log-pdf’s by parametric (Kar-
vanen and Koivunen, 2002) or nonparametric (Pham and Garat, 1997) methods. It is
also possible that we have enough prior information on them, so we can fix the G in
advance.

Consider a sample (x1, y1), · · · , (xT , yT ) of data. Let us add together the
log-likelihoods of the data points and take the difference, and we obtain the
logarithm of the likelihood ratio for the sample as

R = 1
T

∑
t

[
Gx(xt) + Gn

(
yt − f (xt)

𝜎n

)
− Gy(yt) − Gñ

(
xt − g(yt)

𝜎ñ

)]

− log 𝜎n + log 𝜎ñ (8.7)

where we also need the standardized log-pdf’s of y and the disturbance ñ.
The likelihood ratio further depends on the estimated nonlinearities f , g. The esti-

mation of f and g can be done with classic least-squares estimation methods, fitting
some nonlinear (nonparametric) regression model on the sample. Such regression
methods are independent of any developments in this chapter. A large number of
nonparametric methods have been developed in the literature; see Hoyer et al. (2009)
for an example.

8.2.3 Information-Theoretic Interpretation

The likelihood ratio has a simple information-theoretic interpretation, which also
means we can use well-known information-theoretic approximations for its practi-
cal computation in the case where we do not want to postulate functional forms for
the G’s.

In fact, if we take the asymptotic limit of the likelihood ratio (T → ∞), we obtain
asymptotically

R → −H(x) − H

(
n
𝜎n

)
+ H(y) + H

(
ñ
𝜎ñ

)
− log 𝜎n + log 𝜎ñ (8.8)



�

� �

�

190 NONLINEAR FUNCTIONAL CAUSAL MODELS FOR CAUSAL DISCOVERY

where we denote differential entropy by H. The differential entropy, defined as
H(x) = − ∫ p(x) log p(x)dx, is the fundamental information-theoretic quantity for
continuous-valued variables.

We can go back to the nonstandardized quantities (which can here be done by
using the fundamental transformation formula H(𝛼x) = H(x) + log 𝛼, and we further
obtain a very simple equivalent expression:

R → −H(x) − H(n) + H(y) + H(ñ) (8.9)

Here, we see that determining causal direction is related to finding the direction that
corresponds to minimum entropy in the sense of the sum of the marginal entropies of
the regressor and the disturbance; we have more on this connection next.

The practical utility of this connection is that we can approximate the likelihood
ratio using any general, possibly nonparametric, approximations of differential
entropy. Several such approximations have been developed; for example, we can
use the maximum entropy approximations by Hyvärinen (1998), which are compu-
tationally simple. In fact, we only need to approximate one-dimensional differential
entropies, which is much simpler than approximating two-dimensional entropies.

This information-theoretic formulation also leads to a simple intuitive inter-
pretation of the likelihood ratio. It is well known that in the space of probability
distributions of unit variance, differential entropy is maximized by Gaussian
distribution. This is why (negative) differential entropy is often used as a measure
of non-Gaussianity. In our case, we can thus interpret the asymptotic limit of the
log-likelihood ratio in terms of non-Gaussianities and errors in regression:

R →

nongaussianity(x) + nongaussianity(residual in x → y) − log(error in x → y)

− [nongaussianity(y) + nongaussianity(residual in y → x) − log(error in y → x)]

Intuitively, this means that

(1) if the non-Gaussianities are negligible, we choose the direction in which the
error in the regression is smaller;

(2) if the errors in the regression are almost equal, we choose the direction of
causality in which the sum of non-Gaussianities of the regressor and residual
is maximized;

(3) in the general case, we have a sum of these two criteria: error in regression
and non-Gaussianity.

An interesting point here is that in the linear non-Gaussian case, the errors in
the regression are always equal, and thus, choosing the direction is solely based on
maximizing the non-Gaussianity. In contrast, in the nonlinear case, the errors in the
regressions can be the decisive factor in the identification. This is intuitively clear in
Figure 8.1c, where the right direction leads to a small regression error, while in the
wrong direction, the regression is catastrophically bad.
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8.2.4 Likelihood Ratio and Independence-Based Methods

An alternative approach to nonlinear additive models is provided by the
independence-based method by Hoyer et al. (2009). In such methods, the idea
is to use the independence of the regressor and the disturbance in each model as
the selection criterion: the model in which the residual (i.e., estimate of distur-
bance) is more independent of the regressor is chosen (again, assuming that some
nonparametric regression method is used to estimate f and g; see Section 8.3.3.)

The fundamental information-theoretic quantity for measuring the independence
of two random variables is mutual information, defined as

I(u, 𝑣) = H(u) + H(𝑣) − H(u, 𝑣) (8.10)

which is always nonnegative and zero if and only if the two variables are independent.
Here, H(u, 𝑣) is the joint entropy, which is simply the entropy of the random vector
consisting of (u, 𝑣).

In fact, the likelihood ratio can be interpreted from the viewpoint of such max-
imization of independence. Using basic information-theoretic properties, we have
under x → y

H(x, y) = H(x) + H(y|x) = H(x) + H(y − f (x)|x)
= H(x) + H(n|x) = H(x, n) (8.11)

and by symmetry, this is equal to H(y, ñ). Now if we can consider the difference
between the mutual information of the regressors and residuals in the two directions
and obtain

I(x, n) − I(y, e) = H(x) + H(n) − H(x, n) − [H(y) + H(e) − H(y, e)]

= H(x) + H(n) − H(y) − H(e)

= H(x) + H

(
n
𝜎n

)
− H(y) − H

(
ñ
𝜎ñ

)
+ log 𝜎n − log 𝜎ñ (8.12)

where two terms equal to H(x, y) cancel. Here, we see that asymptotically, the objec-
tive derived from the likelihood ratio is equal to the difference of the two mutual
information (with sign reversed). Its sign tells which mutual information is larger and,
in particular, in which direction the residual of the regression is more independent.
Thus, using the likelihood ratio is equivalent to using mutual information as indepen-
dence measure in the methods by Hoyer et al. (2009). We will elaborate more on this
in Section 8.4.

The aforementioned developments thus show that when comparing independen-
cies of the residuals such as Hoyer et al. (2009), it is not necessary to explicitly
estimate mutual information; estimation of one-dimensional entropies leads to an
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equivalent result. This is very important from a practical viewpoint, since estimating
one-dimensional entropies is much easier than estimating two-dimensional quantities
such as mutual information.

8.3 POST-NONLINEAR CAUSAL MODEL

Obviously, it is important to use sufficiently general functional models in causal dis-
covery: if the assumed functional causal model is too restrictive to properly approxi-
mate the true data-generating process, the causal discovery results may be misleading.
Therefore, if specific knowledge about the data-generating mechanism is not avail-
able, we should attempt to fit a model that is as general as possible. Post-nonlinear
(PNL) causal models offer an interesting generalization of the nonlinear additive
model of the previous section.

8.3.1 The Model

The PNL causal model consists of a nonlinear influence from the cause, a noise or
disturbance, and–in contrast to the model above–a possible sensor or measurement
distortion in the observed variables (Zhang and Hyvärinen, 2009b, 2010). The effect
y is generated by a post-nonlinear transformation of the nonlinear effect of the cause
x with additive noise n:

y = f2( f1(x) + n) (8.13)

where both f1 and f2 are nonlinear functions and f2 is assumed to be invertible.
The post-nonlinear transformation f2 represents the sensor or measurement distor-
tion, which is frequently encountered in practice. A slightly more restricted version
of the model, in which the inner function, f1, is also assumed to be invertible,
was proposed in Zhang and Chan (2006) and applied to causal analysis of stock
returns.1

The PNL causal model has the most general form among all well-defined func-
tional causal models in which the causal direction has been shown to be identifiable
under mild assumptions. Clearly, it contains the linear model and the nonlinear addi-
tive noise model as special cases. The multiplicative noise model, y = x ⋅ n, where
all involved variables are positive, is another special case: the multiplicative noise
model can be written as y = exp(log x + log n), where log n is considered as a new
noise term, f1(x) = log (x), and f2(⋅) = exp(⋅).

Next, we discuss the identifiability conditions of the causal direction for the PNL
causal model, which naturally contain those for the linear model and nonlinear addi-
tive noise model as special cases.

1In Zhang and Chan (2006) both functions f1 and f2 are assumed to be invertible; this causal model, as a con-
sequence, can be estimated by making use of post-nonlinear independent component analysis (PNL-ICA;
Taleb and Jutten, 1999), which assumes that the observed data are componentwise invertible transforma-
tions of linear mixtures of the independence sources to be recovered.
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8.3.2 Identifiability of Causal Direction

The identifiability conditions of the causal direction according to the PNL causal
model were established by a proof by contradiction (Zhang and Hyvärinen, 2009b).
We assume the causal model holds in both directions x → y and y → x and show that
this implies some very strong conditions on the distributions and functions involved in
the model. Therefore, if the data are generated according to the PNL causal model in
settings not fulfilling those strong conditions, the backward direction does not follow
the model, and the causal direction can be determined. We will next explain this in
more detail.

Assume that the data (x, y) is generated by the PNL causal model with the causal
relation x → y in (8.13). Moreover, let us assume (by contradiction) that the backward
direction, y → x, also follows the PNL causal model with independent noise. That is,

x = g2(g1(y) + ñ) (8.14)

where y and ñ are independent, g1 is nonconstant, and g2 is invertible.
Equations (8.13) and (8.14) define the transformation from (x, n) to (y, ñ); as a

consequence, using the change-of-variable technique, py,ñ can be expressed in terms
of px,n = pxpn. The identifiability results were derived by making use of linear sep-
arability of the logarithm of the joint density of independent variables, that is, for a
set of independent random variables whose joint density is twice differentiable, the
Hessian of the logarithm of their density is diagonal everywhere (Lin, 1998). Since y
and ñ are assumed to be independent, log py,ñ then follows such a linear separability
property. This implies that the second-order partial derivative of log py,ñ w.r.t. y and ñ
is zero. It then reduces to a differential equation of a bilinear form. Under certain tech-
nical assumptions (e.g., pn is positive on (−∞,+∞)), the solution to the differential
equation gives all cases in which the causal direction is not identifiable according to
the PNL causal model. Table 1 in Zhang and Hyvärinen (2009b) summarizes all five
nonidentifiable cases. The first one is the linear-Gaussian case, in which the causal
direction is well known to be nonidentifiable. Roughly speaking, to make one of those
cases true, one has to adjust the data distribution and the involved nonlinear functions
very carefully.

In other words, in the generic case, the causal direction is identifiable if the data
were generated according to the PNL causal model. Simulations results were further
presented in Zhang and Hyvärinen (2009b) to verify the established identifiability
results.

8.3.3 Determination of Causal Direction Based on the PNL Causal Model

The commonly used approach to distinguishing cause from effect with nonlinear
functional causal models consists of two steps, which are similar for both the non-
linear additive noise model and post-nonlinear model. First, one fits the nonlinear
regression model on the data for both hypothetical causal directions, obtaining esti-
mates for f and g. The second step is to do a statistical analysis of the regressors and
the residuals to determine the causal direction.
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For the nonlinear additive noise model, the functions f and g are usually estimated
by performing quite conventional Gaussian process (GP) regression (Hoyer et al.,
2009). (For details on GP regression, one may refer to Rasmussen and Williams,
2006) In contrast, estimation of the PNL causal model (8.13) has several indetermi-
nacies: the sign, mean, and scale of the noise term, and accordingly, the sign, location,
and scale of f , g are arbitrary. In the estimation procedure, one may impose certain
constraints to avoid such indeterminacies in the estimate. However, we should note
that in principle, we do not care about those indeterminacies in the causal discovery
context, since they do not change the statistical independence or dependence property
between the estimated noise and the hypothetical cause.

It is well known that for linear regression, the maximum likelihood estimator of the
coefficient is still statistically consistent even if the noise distribution is erroneously
assumed to be Gaussian. However, this may not be the case for general nonlinear
models. As shown in (Zhang et al. 2016, Section 3.2), if the noise distribution is mis-
specified, the estimated PNL causal model (8.13) may not be statistically consistent,
even when the indeterminacies in the estimate discussed earlier are properly tackled.
Therefore, the noise distribution should be adaptively estimated from data, if the true
one is not known a priori.

Regarding the statistical analysis of the regressor and the residuals, performing
independence tests between the estimated noise and hypothetical cause is one
approach (Hoyer et al., 2009), (Zhang and Hyvärinen, 2009b). A commonly used
option is the Hilbert-Schmidt information criterion (HSIC; (Gretton et al., 2005)),
although many others could be used. In fact, for nonlinear additive noise models,
as we discussed in Section 8.2.2, following Hyvärinen and Smith (2013), the
independence can be evaluated using one-dimensional entropy estimators as well.

Considering concrete implementations in the literature, Zhang and Hyvärinen
(2009b) proposed to estimate the PNL causal model (8.13) by mutual information
minimization with the involved nonlinear functions represented by multilayer
perceptrons (MLPs). Later, Zhang et al. (2016) proposed to estimate the PNL
causal model by making use of warped Gaussian processes with a flexible noise
distribution, which is represented by a mixture of Gaussians. We call these two
implementations PNL-MLP and PNL-WGP-MoG, respectively.

8.4 ON THE RELATIONSHIPS BETWEEN DIFFERENT PRINCIPLES
FOR MODEL ESTIMATION

So far, we have mainly discussed the identifiability of the causal direction in the
two-variable case, and it should be noted that the results can be readily extended
to the case with an arbitrary number of variables, as shown in Peters et al. (2011).
The basic idea is that no matter how many variables are involved in the system, when
we are interested in a particular pair of directly connected variables, it becomes the
two-variable case if the values of relevant variables are fixed.

Maximum likelihood is usually used to fit the functional causal model together
with a directed acyclic graph (DAG) to the given data. Not surprisingly, the negative
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likelihood (with the distribution of the noise adaptively estimated from data) is
equivalent to the mutual information between the estimated noise terms, as stated in
Theorem 3 in Zhang et al. (2016). The higher the likelihood, the less dependent the
estimated noise terms. (Note that the root variables in the DAG are also counted as
noise terms.)

On the other hand, traditionally, it has been noted that under the causal Markov
condition, which states that each variable is independent from its nondescendants
conditioning on its parents, and the faithfulness assumption, one could recover an
equivalence class of the underlying causal structure based on conditional indepen-
dence relationships of the variables (Spirtes et al., 2001, Pearl, 2000). This is known
as the constraint-based approach to causal discovery. How are these principles,
including mutual independence of the estimated noise terms and the causal Markov
condition, related to each other? Next, we will answer this question, and the results
in this section hold for an arbitrary number of variables.

In the following, we consider optimization over different DAG structures to find
the causal structure. We assume we have infinite data, and we optimally fit the non-
linear functions fi according to the DAG structure given, using some hypothetical
method, which is statistically consistent. Then the question is how the statistical
properties of the estimated noise terms (residuals) are related to the conditional inde-
pendence properties of the variables xi, for each particular DAG.

Suppose (first) that we fit the nonlinear additive noise model given the DAG struc-
ture, that is,

xi = fi(pai) + ni (8.15)

where pai represents the direct causes of xi, to the data, that is, parents in the DAG. It
has been shown that mutual independence of the estimated residuals and conditional
independence between observed variables (together with the independence between
ni and pai) are equivalent; furthermore, they are achieved if and only if the total
entropy of the disturbances is minimized (Zhang and Hyvärinen, 2009a). More specif-
ically, when fitting the model (8.15) with a hypothetical DAG causal structure to the
given variables x1, · · · , xK , the following three properties are equivalent:

(i) The estimated noise terms ni are mutually independent.

(ii) The total entropy of the estimated noise terms, that is,
∑

iH(ni), is minimized,
with the minimum being equal to H(x1, · · · , xK).

(iii) The causal Markov condition holds (i.e., each variable is independent of its
nondescendants in the DAG conditioning on its parents), and in addition, the
noise term in xi is independent of the parents of xi.

Let us then consider the PNL causal model. When one fits the PNL causal model

xi = fi2( fi1(pai) + ni) (8.16)

to the data, the scale of the noise terms as well as fi1 is arbitrary, since fi2 is also to be
estimated. Consequently, unlike for the nonlinear additive noise model, in the PNL
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causal model context, it is not meaningful to talk about the total entropy of the noise
terms (see condition (iii)). However, as shown in Zhang and Hyvärinen (2009b), when
fitting the PNL causal model with a hypothetical DAG causal structure to the data,
we still have the equivalence between conditions (i) and (iii).

The next question is how to estimate a functional causal model for more than
two variables in practice. one approach is to use exhaustive search: for all possible
causal orderings, fit functional causal models for all hypothetical effects separately
and then do model checking by testing for independence between the estimated noise
and the corresponding hypothetical causes. However, note that the complexity of this
procedure increases superexponentially along with the number of variables. Smarter
approaches are thus needed.

The aforementioned theorem suggests a simpler two-step method to find the
causal structure implied by the PNL causal model. We use here the relationship
between mutual independence of the noise terms and the causal Markov condition
combined with the independence between each noise term and its associated parents.
One first uses the constraint-based approach (Spirtes et al., 2001), (Pearl, 2000) to
find the Markov equivalent class from conditional independence relationships given
by some nonparametric conditional independence tests; for instance, one can adopt
the kernel-based test (Zhang et al., 2011). This approach first finds the skeleton of
the causal graph by removing the edge between a pair of variables, if there exists
some subset of variables (including the empty set) given that they are conditionally
independent. It then uses the orientation rules to find the causal directions of some
edges. The PNL causal model is then used to identify the causal directions that
cannot be determined in the first step: for each DAG contained in the equivalent
class, we estimate the noise terms and determine whether this causal structure is
plausible by examining whether the disturbance in each variable xi is independent of
the parents of xi. Consequently, one avoids the exhaustive search over all possible
causal structures and high-dimensional statistical tests of mutual independence of
all noise terms.

8.5 REMARK ON GENERAL NONLINEAR CAUSAL MODELS

We have discussed several functional causal models, namely, the linear model, non-
linear additive noise model, and PNL causal model. Now let us discuss the possibility
of doing causal discovery with the general form of functional causal models. A func-
tional causal model represents the effect y as a function of the direct causes x and
some unmeasurable noise (Pearl, 2000):

y = f (x, n;𝜽1) (8.17)

where n is the noise that is assumed to be independent of x, the function f ∈ 
explains how y is generated from x, is an appropriately constrained functional class,
and 𝜽1 is the parameter set involved in f . We assume that the transformation from
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(x, n) to (x, y) is invertible, such that n can be uniquely recovered from the observed
variables x and y.

In the functional causal model (8.17), the noise term is assumed to be independent
of the cause. If for the reverse direction, one cannot find a noise term that is inde-
pendent of the hypothetical cause (which is y), then we can determine the true causal
direction or distinguish cause from effect. As discussed earlier, in general, this is the
case for the PNL causal model, as well as for the linear and nonlinear models with
additive noise. Unfortunately, this is not the case if we do not impose any constraint
on the function f .

As discussed in Hyvärinen and Pajunen (1999), given any two random variables
x and y with continuous support, no matter how they are related, one can always
construct another variable, denoted by n̊, which is statistically independent of x. In
Zhang et al. (2016), the class of functions to produce such an independent variable n̊
(or called independent noise term in our causal discovery context) was given, and it
was shown that this procedure is invertible: y is a function of x and n̊.

This is also the case for the hypothetical causal direction y → x: we can also always
represent x as a function of y and an independent noise term, if the functional form
is not properly constrained. That is, any two variables would be symmetric accord-
ing to the functional causal model, if f is not constrained. Therefore, in order for the
functional causal models to be useful to determine the causal direction, we have to
introduce certain constraints on the function f such that the independence condition
on noise and hypothetical cause holds for only one direction. Examples of such con-
straints include the linear model, the nonlinear additive noise model, and the PNL
causal model discussed earlier. As we have already seen, under appropriate assump-
tions, the constraints of additive noise and the PNL data-generating model serve such
a goal.

8.6 SOME EMPIRICAL RESULTS

Various nonlinear functional causal models have been used to distinguish cause from
effect on the cause-effect pairs available at http://webdav.tuebingen.mpg
.de/cause-effect/. They consist of different data pairs, for which the causal
direction is believed to be known, for testing the performance of causal detection
algorithms. They are from different scientific disciplines including climate analysis,
finance, and computer science. Here let us summarize the results reported in Zhang
et al. (2016). The exploited approaches include the PNL causal model estimated
by mutual information minimization with nonlinear functions represented by MLPs
(Zhang and Hyvärinen, 2009b), denoted by PNL-MLP for short, the PNL causal
model estimated by warped Gaussian processes with Gaussian noise, denoted by
PNL-WGP-Gaussian, the PNL causal model estimated by warped Gaussian processes
with MoG noise, denoted by PNL-WGP-MoG, the additive noise model estimated
by Gaussian process regression (Hoyer et al., 2009), denoted by ANM, the approach
based on the Gaussian process prior on the function f (Mooij et al., 2010), denoted
by GPI, and IGCI (Janzing et al., 2012). The data set consists of 77 data pairs. To
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reduce computational load, we used at most 500 points for each cause-effect pair:
if the original data set consists of more than 500 points, we randomly sampled 500
points from them; otherwise, we simply used the original data set.

The accuracy of different methods (in terms of the percentage of correctly discov-
ered causal directions) is reported as follows:

PNL-MLP: 70%

PNL-WGP-Gaussian: 67%

PNL-WGP-MoG: 76%

ANM: 63%

GPI: 72%

IGCI: 73%

One can see that all results are better than chance, illustrating the effectivity of using
functional causal models to distinguish cause from effect. Here PNL-WGP-MoG
gives the best performance among these methods.

8.7 DISCUSSION AND CONCLUSION

We have given a survey of functional causal models that enable us to fully identify the
causal structure from observational data. We focused on the two-variable case, where
the task is to distinguish cause from effect. We have reviewed the linear non-Gaussian
causal model, nonlinear additive noise model, and the post-nonlinear causal model,
listed from the most to the least restrictive. We addressed the identifiability of the
causal direction: for those three models, in the generic case, the backward direction
does not admit an independent noise term, and as a consequence, it is possible to
distinguish cause from effect. We have also briefly discussed the procedure to achieve
so, which consists of fitting the functional model and performing an independence test
between the estimated noise and the hypothetical cause. For nonlinear additive noise
models, we have also presented a likelihood-ratio-based approach to determining the
causal direction.

There are some open problems along this line of research. First, one can consider
functional causal models as a way to represent the conditional distribution of the
effect, given the cause. Can we then find hints as to the causal direction directly from
the data distribution? Or, in other words, can we find a general way to characterize
the causal asymmetry directly in terms of certain properties of the data distribution?
An attempt to do so is to make use of the so-called exogeneity property of a causally
sufficient causal system (Zhang et al., 2015).

Secondly, note that nonlinear functional causal models are usually intransitive.
That is, if both causal processes x1 → x2 and x2 → x3 admit a particular type
of functional causal model, the process x1 → x3 does not necessarily follow the
same model. (Linear models are transitive.) This could be a potential issue of
functional-causal-model-based causal discovery: it may fail to discover indirect
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causal relations. (Here, by direct causal relations, we mean the causal relations in
which only a single noise variable is involved.) On the other hand, this may be a
benefit of using functional causal models for causal discovery, in that it is possible
to detect the existence of the causal intermediate variable and further recover it. But
how to do so is currently unclear.

In this chapter, we were concerned with causal discovery in the continuous case. In
the discrete case, if one knows precisely what model class generated the effect from
cause, which, for instance, may be the noisy AND or noisy XOR gate, then under
mild conditions, the causal direction can be easily seen from the data distribution.
Consider binary variables and take the noisy AND gate as the causal process. Then
the probability of the effect variable taking value 1 is smaller than (or equal to, if the
noise only takes value 1) that for the cause variable. However, generally speaking,
if the precise model class of the causal process is unknown, it is difficult to recover
the causal direction from observed data in the discrete case, especially when the car-
dinality of the variables is small. As an illustration, consider the situation where the
causal process first generates continuous data and discretizes such data to produce the
observed discrete ones. It is then not surprising that certain properties of the causal
process are lost due to discretization, making causal discovery more difficult.

Finally, developing efficient methods for causal discovery of more than two
variables based on functional causal models is an important step toward solving
large-scale real-world causal analysis problems in various domains including
neuroscience and biology. To make causal discovery computationally efficient, one
may have to limit the complexity of the causal structure, say, limit the number of
direct causes of each variable. Even so, a smart optimization procedure instead of
exhaustive search is still missing in the literature.

The package for estimating the post-nonlinear causal model and causal direction
identification based on this model is available at http://webdav.tuebingen
.mpg.de/causality/CauseOrEffect_NICA.rar (with nonlinear func-
tions represented by MLPs) or http://people.tuebingen.mpg.de/
kzhang/warpedGP.zip (estimated by warped Gaussian processes with
mixture-of-Gaussian noise).
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