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ABSTRACT

Neurofeedback requires a direct translation of neuronal brain activity to sensory input given to the user or subject.
However, decoding certain states, e.g., mindfulness or wandering thoughts, from ongoing brain activity remains
an unresolved problem.

In this study, we used magnetoencephalography (MEG) to acquire brain activity during mindfulness meditation
and thought-inducing tasks mimicking wandering thoughts. We used a novel real-time feature extraction to
decode the mindfulness, i.e., to discriminate it from the thought-inducing tasks. The key methodological novelty
of our approach is usage of MEG power spectra and functional connectivity of independent components as fea-
tures underlying mindfulness states. Performance was measured as the classification accuracy on a separate
session but within the same subject.

We found that the spectral- and connectivity-based classification approaches allowed discriminating mind-
fulness and thought-inducing tasks with an accuracy around 60% compared to the 50% chance-level. Both
classification approaches showed similar accuracy, although the connectivity approach slightly outperformed the
spectral one in a few cases. Detailed analysis showed that the classification coefficients and the associated in-
dependent components were highly individual among subjects and a straightforward transfer of the coefficients
over subjects provided near chance-level classification accuracy.

Thus, discriminating between mindfulness and wandering thoughts seems to be possible, although with limited
accuracy, by machine learning, especially on the subject-level. Our hope is that the developed spectral- and
connectivity-based decoding methods can be utilized in real-time neurofeedback to decode mindfulness states
from ongoing neuronal activity, and hence, provide a basis for improved, individualized mindfulness training.

1. Introduction

to detect some cognitive operations or mental states from underlying
neuronal activity (Lemm et al., 2011; Lotte et al., 2007). Often, the

A brain computer interface (BCI), an essential component for neuro-
feedback, allows translating patterns of neuronal activity in the brain to
inputs or commands for external devices (Wolpaw et al., 2002). Elec-
troencephalography- (EEG) or magnetoencephalography-based (MEG)
non-invasive BCIs provide opportunities for numerous clinical, assistive
and entertainment applications. However, they require robust decoding
of neuronal patterns: The person who controls the BCI should learn to
produce robust neuronal patterns and/or a device that implements BCI
should robustly identify these patterns.

Machine learning approaches have recently been successfully applied

classification is performed on the neuronal activity evoked by
time-locked presentation of a target stimulus or task (Blankertz et al.,
2011), which maximizes the signal-to-noise ratio of neuronal response.
However, there are plenty of applications that require detection of
cognitive states from stimulus-free ongoing neuronal activity.

One application where machine-learning BCI could be very useful is
mindfulness meditation, which has been shown to have several positive
behavioural outcomes (Tang et al., 2014). During mindfulness medita-
tion, attention is supposed to be focussed on the breath or a similar target,
but in reality, it varies over the time. Thus, it would be crucial to alert the
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Fig. 1. Diagram of the experiment. The tasks are MF (mindfulness meditation), FP (reflection of future planning) and EP (reflection on anxiousness-inducing

emotional pictures).

user in real-time about wandering thoughts, i.e., temporary weakening of
mindfulness. Detection of wandering thoughts can be considered as an
example of neurofeedback system where a desired mental state can be
defined by the user but the corresponding brain signal is not known. Such
a sustained-attention neurofeedback system would presumably have
many other applications, for instance, in driving assistance (Schmidt
et al., 2009).

Several functional magnetic resonance imaging (fMRI) studies sug-
gest that activity of default-mode network may underlie mind-wandering
thoughts (Andrews-Hanna et al., 2014; Christoff et al., 2009). On the
other hand, a recent study suggests that mind wandering can be repre-
sented through dynamic connectivity of the brain networks (Kucyi,
2017). Nevertheless, the indirect coupling of BOLD signal with neuronal
activity and the relatively low temporal resolution of fMRI do not allow
assessment of the contribution of short-lasting cognitive processes that
largely constitute wandering thoughts. Several attempts have been made
to find the brain correlates of wandering thoughts during sustained
attention tasks with millisecond resolution using electroencephalog-
raphy (EEG; (Baldwin et al., 2017; Braboszcz and Delorme, 2011)). These
studies have reported changes in the power at alpha frequency during
mind wandering, but the neuroanatomical basis remains poorly under-
stood because of low spatial resolution of EEG. A technically more
advanced, simultaneous EEG-fMRI neurofeedback study (Ros et al.,
2013) showed an increase of connectivity in default-mode network,
which was positively correlated with changes in mind-wandering as well
as resting state alpha rhythm. Although this study provided a link be-
tween the brain rhythms and anatomy for mind-wandering, the rela-
tionship between EEG and BOLD signal is rather indirect (Scheeringa
et al., 2011). Surprisingly, there is a lack of magnetoencephalography
(MEG) studies. MEG provides better temporal resolution compared to
fMRI and better spatial resolution compared to EEG, which allow
assessing fast neuronal processes and brain networks that are closely
related to fMRI networks (Brookes et al., 2011).

In this study, we designed a behavioural paradigm where the subject
performed mindfulness meditation, and two different tasks mimicking
wandering thoughts, in consequent blocks. In contrast to mindfulness
meditation, the latter tasks supposedly induced numerous thoughts, e.g.,
related to positive future plans or anxious emotional scenes. We used
active tasks instead of resting state as a contrast for mindfulness medi-
tation, because variability of resting state activity seems to be too un-
specific, possibly related to various preceding mental states, including
mindfulness itself. We developed and applied spectral- and connectivity-
based classification approaches to discriminate the behavioural states
based on their underlying neuronal activity, in particular focussing on the
choice of feature extraction methods.

Our results show that it is possible, to some extent, to detect wan-
dering thoughts in on-going MEG measurements, and we provide a
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sketch of a pipeline for optimizing such detection. Furthermore, in
addition to the conventional view that mindfulness meditation is char-
acterised by changes in the power of alpha oscillations, the changes in
(dynamic) functional connectivity may provide an alternative, possibly
even better, description of mindfulness states.

2. Materials and methods
2.1. Experimental design

Twenty-four subjects (9 females, 27 + 5.5 years (mean + SD)) with
moderate or no previous experience in mindfulness meditation partici-
pated in the study. Prior to the study, we performed a screening to
include subjects with no history of neurological disorders, head trauma
or substance abuse. All participants had normal or corrected to normal
vision. Ten subjects had no previous experience, while other subjects had
experience in either focused attention or open monitoring meditation
practices ranged from 0.5 to 10 years.

After a 2-min resting state, participants were instructed to perform
one of the tasks while undergoing MEG (Elekta Neuromag, TRIUX). The
tasks were organized into 2-min blocks with counterbalanced order and
the participants performed each task four times in a single session. The
session ended with a resting state 2-min block. We conducted two ses-
sions per participant with a 5-min break between the sessions (Fig. 1).

The tasks were mindfulness meditation (MF), reflection on future
planning (FP) and reflection on anxiousness-inducing emotional pictures
(EP). In all tasks, subjects were instructed to sit still, fix the gaze on the
crosshair, and perform a task after a short (7s) visual instruction. The
visual instruction was shown at the beginning and at the middle of each
task (Fig. 1) to keep subjects’ attention. After each task, the subject was
asked to evaluate his/her involvement in the task by answering two
questions “How focussed were you on the task?” and “How did you feel
during the task? (pleasantness)” using a touch pad that provided a
gradual response within range from O to 1.

For the mindfulness meditation task, the subject was instructed to focus
his/her attention on the sensations of breathing and move his/her focus
of attention back to the task if mind-wandering occurs. The task started
with a visual instruction “Please focus on your breathing” accompanied
by a picture of clouds. For the future planning and anxiety-inducing tasks,
the subject individually selected 16 (out of 40) relevant pictures prior to
the experiment. In the future planning task, subject was asked to perform a
planning related to the picture, presumably following the ensuing chains
of thought and keeping his/her mind busy. The task started with an in-
struction “Please make plans related to the picture” accompanied by a
relevant picture. The anxiety-inducing task was similar to the future
planning, but instead of neutral pictures, disturbing, scary, disgusting or
other unpleasant pictures were shown to the subject. The task started
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with a visual instruction “Place yourself or someone close to you in this
situation” accompanied by a relevant picture. For the FP and EP tasks two
different pictures were presented for each 2-min block (at the beginning
and in the middle), and for the MF task, the same picture of clouds was
presented twice.

2.2. Analysis of behavioural data

We analysed the subject's responses for the question “How focussed
were you on the task?” (see, Fig. 1) ranged from O to 1. The average
values were the following 0.65+ 0.012 (mindfulness), 0.70+ 0.010
(future planning task) and 0.66 + 0.013 (anxiety-inducing task) respec-
tively. This result showed that the focus during different tasks was at a
reasonable level. Additionally, we compared the responses between
different tasks using the Wilcoxon rank sum test. The results showed no
significant difference (p > 0.05) between the tasks, suggesting that the
participants performed these tasks equally well.

2.3. Data pre-processing

In the analysis, we used the 204 planar gradiometers of the MEG
scanner. The Signal Space Separation (SSS) method (Taulu et al., 2004)
was applied to suppress the external interference and sensor artifacts.

2.4. Independent component analysis

To obtain neurophysiologically realistic sources of neuronal activity,
we applied complex-valued independent component analysis in the
frequency-domain (Fourier-ICA (Hyvarinen et al., 2010);) to MEG sen-
sor's time series. The time series were divided into 4-s epochs with 75
percent overlap and the epochs were Fourier transformed within the
range of 4-24 Hz. A complex-valued ICA using 64 PCA components was
applied to the epochs (from first sessions only), concatenated across
subjects, which provided a group-level ICA un-mixing matrix. Note that
the effective dimension of the data was reduced to approximately 64 by
SSS.

2.5. Component selection criteria

Often, several independent components in MEG reflect physiological
activity that is unrelated to neuronal activity of the brain (Jas et al.,
2017). To exclude possible confounders, we applied three criteria to
select independent components. First, we included only components that
had a spectral peak within the range 8-16 Hz and the power of this peak
was at least 50% larger than the power in theta (4-7 Hz) or high-beta
(17-24 Hz) bands. Before this comparison, we equalized the spectral
power over frequencies by subtracting the best fitting power-law func-
tion from the power spectra. Second, we analysed the component's spatial
maps and excluded those components that had more than three blobs
(i.e., continuous areas containing 5% of largest values) in the spatial map.
Third, we excluded the components if their maximum in spatial map was
located in the frontal or tempo-frontal areas. As a result, 38 components
(out of 64) were selected for further analysis. Generally speaking, brain
sources are spatially localized and band-pass, which leads to our
formulation of the first two criteria, and the third criterion was included
to exclude eye artifacts.

2.6. Spectral features extraction

The individual subjects’ spectral features were extracted in the
following manner. The sensor time series were divided into 4-s epochs
with 75 percent overlap and the epochs were Fourier transformed within
the range of 4-24 Hz. The group-level ICA un-mixing matrix was applied
to these epochs, and the amplitude spectra of frequency-domain inde-
pendent components were computed (Suppl. Fig. 1A). In order to in-
crease robustness of the spectral approach, we averaged the spectral
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amplitudes within four frequency bands: theta (4-7 Hz), alpha (8-12 Hz),
low-beta (13-16 Hz) and high-beta (17-24 Hz). The amplitude spectra
averaged inside these four frequency bands were then used as features for
classification.

2.7. Connectivity features extraction

As an alternative to the spectral features, individual connectivity
features were extracted as follows. Again, the sensor time series were
divided into 4s epochs with 75 percent overlap and the epochs were
Fourier transformed within the range of 4-24 Hz. The group-level ICA
un-mixing matrix was applied to these epochs and inverse Fourier
transform was computed to reconstruct components’ time series. The
independent component time series were filtered in four frequency
bands: theta (4-7 Hz), alpha (8-12Hz), low-beta (13-16 Hz) and high-
beta (17-24 Hz). In contrast to the spectral feature case, the Pearson
correlation coefficients were computed for each pair of the compo-
nents (Suppl. Fig. 1B), separately for each frequency band. The cor-
relation coefficients between epochs of independent component time
series were well above zero (Suppl. Fig. 2). The connectivity matrices
were then vectorised and used as features for classification.

2.8. Feature dimensionality reduction

To further improve the robustness of classification, we reduced the
dimensionality of the spectral- and connectivity-based features by
applying an algorithm described by Kauppi and colleagues (Kauppi et al.,
2013). The idea is to compute, for each epoch and component, the most
discriminating spectral or connectivity feature, and only use that in the
classification. The dimensionality of features were thus reduced as
follows,

Vr./ = ZFLIJ - ZE.I.j

teT1 1eT2

where F denotes a tensor containing the spectral or connectivity fea-
tures (whose dimensions are either: components =38 by epochs by
frequency_bands = 4; or: component_pairs =703 by epochs by fre-
quency_bands =4, respectively). Here, i denotes component or con-
nectivity pair index; T1 and T2 are indices of task 1 and task 2 in the
training dataset, respectively; ||| denotes vector norm operator; V;
means the vector consisting of all the V;; for different j. The final result
is given in matrix P which contains the resulting feature vectors of the
epochs, with dimensions: components =38 by epochs; or compo-
nent_pairs =703 by epochs, for spectral- or connectivity-based classi-
fication, respectively.

2.9. Classification methods: individual vs. group classification

The spectral and connectivity features with reduced dimensionality
were classified using the linear Support Vector Machine (SVM) algorithm
as implemented in scikit-learn (Pedregosa et al., 2011). We used two
scenarios to train and test the classifiers. In the first scenario “individual
classifier”, we trained the classifier using individual data from the first
session and tested the classifier using data from the second session. In the
second scenario “group classifier”, we trained the classifier using data
from both sessions and all subjects except one “testing” subject, and
tested the classifier using the testing subject's data from the second ses-
sion. The second scenario is more challenging, essentially providing in-
formation on the generalizability of the classifier across subjects
(Jayaram et al., 2016; Kia et al., 2017).



A. Zhigalov et al.
2.10. Real-time computation

We tested the computational time for both feature extraction and
classification algorithms to ensure that our approaches suit real-time
applications. The algorithms implemented in Python were launched on
a Linux based laptop (Intel Core i5-3570 @ 3.40 GHz, 8.00 GB RAM). The
average feature extraction time (+£SD) for single epoch was
0.0118 + 0.0085 and 0.0385 + 0.0192 s for the spectral and connectivity
approaches, respectively. The average classification time using linear
SVM was 0.0212 + 0.0042 and 0.1310 £ 0.0086 s for the spectral and
connectivity approaches respectively. Thus, the computational time was
negligibly small compared to the inter-epoch interval of 0.5s.

2.11. Statistical analysis of classification accuracies

To assess the statistical differences between the classification accu-
racies for different tasks or for different feature sets, we applied the
Wilcoxon rank sum test.

2.12. Statistical analysis of classification coefficients

To evaluate the contribution of different spectral and connectivity
features to the resulting classification accuracy, we performed a statis-
tical analysis of the significance of the classification coefficients. The
coefficients were divided by their absolute sum and averaged across
subjects and then compared against zero mean using a two-sided z-test.
For the spectral-based approach, we reported both uncorrected
(p < 0.05) and Bonferroni corrected classification coefficients, while for
the connectivity-based approach, we reported only Bonferroni corrected
classification coefficients, since there the problem of multiple testing was
more serious.

3. Results

We applied the spectral and connectivity approaches to investigate
whether and how it is possible to discriminate (decode) between mind-
fulness meditation (MF), future planning (FP) and reflection on anxious-
inducing emotional pictures (EP) tasks. We then analysed the classifica-
tion coefficients to identify neuronal correlates (spatial maps and spectral
profiles) associated with the mental states during task performance.

3.1. Classification accuracy

We first computed the classification accuracies using spectral and
connectivity approaches (Fig. 2).

The spectral approach with individual classifier provided accuracies
well above chance-level, 0.59 4 0.008 (MF vs. FP), 0.61 + 0.007 (MF vs.
EP) and 0.55 + 0.005 (FP vs. EP). The accuracies MF vs. FP and MF vs. EP

A
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were significantly larger (p < 0.004, individual classifier; p < 0.01, group
classifier) than the accuracy FP vs. EP, suggesting that FP and EP have
similar neuronal correlates. The accuracies for the group spectral-based
classifier were relatively low, 0.55+ 0.003 (MF vs. FP), 0.54 + 0.003
(MF vs. EP) and 0.52 + 0.002 (FP vs. EP), showing that the classifier had
poor generalization over subjects.

The connectivity approach provided slightly higher accuracies
compared to the spectral approach, 0.62+0.009 (MF vs. FP),
0.62 + 0.009 (MF vs. EP) and 0.55 + 0.004 (FP vs. EP). However, the
accuracies were not significantly different (p > 0.05) between the spec-
tral and connectivity classifiers. The accuracies at the group level clas-
sifier were similar to those of the spectral approach, 0.55 + 0.004 (MF vs.
FP), 0.54 + 0.002 (MF vs. EP) and 0.53 + 0.002 (FP vs. EP).

We repeated the analysis by swapping training and testing sessions.
There was no difference between accuracies for the original and swapped
sessions for the individual classifier, but the difference became non-
significant for the group classifier (Suppl. Fig. 3).

3.2. Relationship between spectral- and connectivity-based accuracies

To compare of the approaches further, we assessed the relationship
(correlation) between accuracies of spectral- and connectivity-based
classifiers at individual subject's level (Fig. 3). The results showed a
significant correlation between spectral- and connectivity-based accu-
racies only for two tasks, MF vs. FP (r=0.53, p < 0.008) and MF vs. EP
(r=0.60, p < 0.002) for individual classifier.

For the further analysis, we considered only results of the individual
classifier and two tasks (MF_FP and MF_EP).

3.3. Spectral and connectivity projections

We analysed the projection weights provided by the dimensionality
reduction algorithm (see, Materials and Methods), to evaluate the
frequency-specific differences between the tasks.

The results showed that largest difference between tasks was associ-
ated with alpha frequency (Fig. 4). For the spectral classifier, the pro-
jection weights at alpha frequency were a little larger compared to those
of connectivity classifier. Surprisingly, there was a strong variability of
the projection weights for group spectral classifier for different tasks, in
contrast to individual spectral and connectivity classifiers.

This result suggested that indeed, alpha frequency play an important
role in discriminating mindfulness and thought-inducing tasks.

3.4. Classification coefficients of the spectral approach
We analysed the SVM classification coefficients of spectral classifier

to evaluate the impact of different independent components and fre-
quency bands on the accuracy. The coefficients obeyed Gaussian

group classifier

0.7
B spectrum
I connectivity
0.65
§ *
= 0.6
(&)
o —_—
© 0.55
MF_FP MF_EP FP_EP

Fig. 2. Spectral- and connectivity-based classification accuracies averaged across subjects for (A) individual and (B) group classifiers. MF FP denotes mindfulness
meditation vs. future planning task, MF_EP denotes mindfulness meditation vs. reflection of anxious-inducing emotional pictures task, and FP_EP denotes future
planning task vs. reflection of anxious-inducing emotional pictures task. Error bars represent SEM.
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Fig. 3. Scatter plots of individual subject's accuracies computed using spectral and connectivity approaches for the following tasks, (A) mindfulness mediation vs.
reflection on future planning (MF_FP), (B) mindfulness mediation vs. reflection on anxiety-inducing emotional pictures (MF_EP) and (C) reflection on future planning

vs. reflection on anxiety-inducing emotional pictures (FP_EP).

distribution and we picked those coefficients whose absolute values were
above the chance-level corresponding to p < 0.05 (Fig. 5).

There were a few independent components (all independent com-
ponents are shown in Suppl. Fig. 4A and 4B) associated with significantly
larger classification coefficients. The components were associated with
both thought-inducing tasks, showing a slight increase in power spectra
at alpha frequency and located in the occipital (components 16, 20 and
30) or central areas (component 11). After correcting for multiple testing,
only one coefficient (component 30) remained significant. Importantly,
none of the significant weights was associated with components char-
acterised by strong (very clearly peaked) alpha oscillations, although
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several such components were available for classification (see Suppl.
Fig. 4A and 4B).

These results showed that rhythmic activity in occipital areas, but
apparently not exclusively in alpha frequency, makes the strongest
contribution to the discrimination of mindfulness and thought-inducing
tasks.

To further elucidate the classification weights for individual subjects,
we selected four largest coefficients and associated components. The
results showed that the components associated with largest coefficients
were highly individual (Suppl. Fig. 5), which make generalization of the
classifier coefficients over subjects impractical.
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Fig. 5. (A) Classification coefficients (absolute values) of spectral approach for the individual classifier. The significant coefficients indicated by black (p < 0.05,
uncorrected) and red (p < 0.05, Bonferroni corrected) arrows, respectively. (B) Spatial maps and spectral profiles of independent components associated with sig-
nificant coefficients. The grey curves indicate power spectra with subtracted power-law fit.

3.5. Classification coefficients of the connectivity approach

The connectivity approach provided similar classification accuracies
to the spectral approach, although these approaches utilized different
principles for feature extraction. Similarly to the spectral approach, the
classification coefficients followed a Gaussian distribution. We applied a
t-test and selected significant (p < 0.05, Bonferroni corrected) classifi-
cation coefficients (Fig. 6).

The results showed that multiple connections contribute to the clas-
sification accuracy (Fig. 6A). To identify the independent components

570

that represented a hub (i.e., node with a high degree) and hence, more
strongly influenced the classification accuracy, we analysed the node
degrees of the components using only the significant connections
(Fig. 6B). We selected the components with node degree above one, and
further analysed them (Fig. 6C).

Similarly to the spectral approach, strongest connections were asso-
ciated with the occipital and temporal components, some of which
demonstrated a peak at alpha frequency. Only one component (compo-
nent 17) was characterised by particularly prominent alpha oscillations
(see Suppl. Fig. 4A and 4B for comparison), again suggesting that alpha
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group classifiers.

oscillations may not be strongly related to mindfulness states. To evaluate the contribution of high node degree components in in-

These results demonstrated a considerable variety of spatial maps and dividual subjects, we selected four components with highest node degree
spectral patterns, which can underlie the difference in mindfulness and for each subject. The results showed that the high node degree compo-
thought-provoking tasks. nents were highly individual (Suppl. Fig. 6), and similarly to the spectral-
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Fig. 8. (A) The coefficients of the group spectral classifier for 64 independent components. The significant coefficients indicated by black (p < 0.05, uncorrected) and
red (p < 0.05, Bonferroni corrected) arrows, respectively. (B) The spatial maps and spectral profiles associated with the significant coefficients.

based classification, generalization over the subjects seems impractical.

3.6. All components classification

As noted in the Materials and Methods section, we excluded inde-
pendent components that seem to be strongly contaminated by non-brain
physiological artifacts. However, it is interesting to assess the impact
such components would have on the classification. To accomplish this,
we selected all the 64 independent components and applied the spectral-
and connectivity-based classification approaches (Fig. 7).

We observed no differences in the accuracy for 38 and 64 indepen-
dent components for the individual spectral and connectivity classifiers,
as well as for the group connectivity classifier (Fig. 7). However, there
were large differences in the accuracy for the group spectral classifier in
MF vs. FP (p < 0.001) and MF vs. EP (p < 0.03).

To clarify the difference, we analysed the classification coefficients of
the group spectral classifier (Fig. 8).

The results clearly showed that when artifacts were not removed, the
classifier picked the components that were mainly associated with
physiological artifacts such as eye-blinks (component 6 and 18), cardiac
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FP_EP

o
o

MF_FP  MF_EP

activity (component 52), instrumental noise or other physiological arti-
facts (20, 50, 56). On the other hand, the possibly sensory-motor
component (15) may have been erroneously excluded from the main
analysis. After correcting for multiple testing, three coefficients (com-
ponents 18, 50 and 52) remained significant.

In this case, the higher accuracy of the group spectral classifier likely
to be related to the fact that the artifacts were highly consistent across
subjects (Smith and Nichols, 2018), and thus provided a better basis for
generalizing to new subjects.

3.7. Individual and group ICA

To evaluate the impact of ICA on classification accuracy, we recom-
puted the accuracies using spectral- and connectivity-based classifiers for
individual and group ICA weights. Because the spectral profiles and
spatial maps of individual independent components strongly varied
across subjects, we did not apply the component selection criteria (see,
Materials and Methods) and computed the classification accuracies for all
64 components (Fig. 9). There were no significant differences in the ac-
curacies for individual and group ICA. This means that ICA spatial filters
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Fig. 9. Classification accuracies for the individual and group ICA weights using (A) spectral and (B) connectivity approaches.
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can be precomputed in advance and the classification approach can be
operated in real time.

4. Discussion

In this study, we developed spectral- and connectivity-based classi-
fication approaches and showed that the mental states underlying
mindfulness and thought-provoking tasks can be discriminated using
MEG recordings and machine learning approaches.

We observed a variety of spatial and spectral patterns that contribute
to discriminating mindfulness meditation, suggesting that several
neuronal mechanisms may underlie mindfulness state. While the results
in Fig. 4 indicate that the alpha frequency band is the most important,
they also show the major contribution of other bands for classification.
Moreover, our detailed analysis showed that none of the strongest clas-
sification weights was associated with components characterised by
particularly strong alpha oscillations. Indeed, among many components
with a noticeable peak at the alpha frequency, the components with the
most pronounced peaks in alpha frequency (clearly oscillatory compo-
nents) did not show any significant contribution to the discrimination.
This seems to refute the conventional view on mindfulness meditation
where the mindfulness state is tightly related to alpha frequency oscil-
lations (Kerr et al., 2013). However, one caveat is that we used rather
inexperienced meditators, and the situation might be different in the case
of more experienced meditators.

In our results, spectral and connectivity features gave similar classi-
fication accuracies, which raises the question of whether they contain the
same information. This does not seem to be so based on comparisons of
the most important sources in Figs. 5 and 6, and so it would seem that the
similar classification accuracies may be only a coincidence. However,
since our connectivity measures used zero lag, some overlapping infor-
mation is likely to be present.

We visualized the spatial weights enabling classification between
mindfulness and the tasks simulating wandering thoughts. It should be
noted that the connection between these classifier weights and the neural
correlates is not straight-forward. Interpretation of the weights can lead
to wrong conclusions regarding the origin of neural signals of interest,
since significant nonzero weights may also be associated with task-
irrelevant signals (Haufe et al., 2014). However, from a neurofeedback
viewpoint, the classifier weights reported here show which brain areas
should be measured, e.g. in a case of building a portable EEG cap with a
small number of sensors.

Considering that the task-relevant frequencies and brain regions may
not be simply linked to the classification weights, there have been a few
attempts to clarify the neuronal basis of mindfulness meditation. Gil and
colleagues (Navarro Gil et al., 2018) showed that an EEG neurofeedback
that aims at increasing power at the alpha frequency, improves mind-
fulness outcome, and thus, may be effective for increasing mindfulness in
healthy individuals. Unfortunately, the neurofeedback signal in this
study was derived by averaging a set of occipital-parietal electrodes,
which makes difficult to assess the location of underlying sources.
Another EEG study (van Lutterveld et al., 2017) overcame such limitation
by deriving the neurofeedback signal in a source space. The neurofeed-
back was provided based on gamma-band activity (40-57 Hz) from the
posterior parietal cortex. The subjects were able to volitionally control
the neurofeedback signal in the direction associated with effortless
awareness by practicing effortless awareness meditation. Hence, these
two studies suggested that not only alpha but also other frequencies are
associated with mindfulness meditation, and parietal cortex may have a
key role in mindfulness.

We observed relatively low classification accuracy in discriminating
between future planning and reflection on anxiousness-inducing
emotional pictures tasks, which suggests similarity of the rhythmic
neuronal activity as captured by MEG during these tasks. Although these
tasks are behaviourally quite different, and likely to be different in terms
of amplitudes of the evoked responses in an affective picture paradigm
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(Olofsson et al., 2008), they may be similar in terms of task-nonspecific
cortical processes related to attentional states. Consequently, our anal-
ysis, focussing on ongoing brain activity, may not be sensitive to this
difference.

The overall classification accuracy in this study was nearly sixty
percent, which is relatively low for a neurofeedback system. However,
accuracies for a few participants were around seventy percent or more,
which may allow a significant improvement in mindfulness meditation.
Moreover, this relatively low accuracy may be explained by the fact that
the subjects did not have previous experience in mindfulness meditation.
Possibly, the neurofeedback might work much better after subjects gain
more experience. Generalization over subjects was even more difficult,
presumably due to the large individual differences and the methods are
more likely to work when a large amount of data can be collected from
each single subject. However, it should be noted that advanced multi-task
classification methods might be able to generalize better by either finding
some structure in data that is invariant across subjects or finding some
structure in the decision rules between different subjects (Jayaram et al.,
2016; Kia et al., 2017). Furthermore, combining brain measurements
with psychophysiological measurements (for instance, heart-rate vari-
ability (Nesvold et al., 2012)) and other modalities might be useful to
obtain practically useful classification performance in future research.
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