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Abstract

Score matching and contrastive divergence are two recently proposed methods for estimation

of non-normalized statistical methods without computation of the normalization constant (par-

tition function). Although they are based on very different approaches, we show in this paper

that they are equivalent in a special case: in the limit of infinitesimal noise in a specific Monte

Carlo method. Further, we show how these methods can be interpreted as approximations of

pseudolikelihood.

1 Introduction

Denote by xt, t = 1, . . . , T as sample of data in an n-dimensional real space. Denote by q(x;θ)

an unnormalized pdf parameterized by the vector θ = (θ1, . . . , θn). The problem is to estimate

the model parameters when the computation of the normalization constant or partition function

Z(θ) =
∫

q(x;θ)dx is computationally very difficult.
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A recently proposed approach is contrastive divergence [3]. While there are different versions

of contrastive divergence (CD), we concentrate here on the version which is used in practice: the

gradient-based version. Denote by s the iteration index and by α a step size parameter. The iteration

consists of

θs+1 = θs + α[
∂ log q(xt;θ)

∂θ
−
∂ log q(x∗

t (θs);θ)

∂θ
] (1)

where x
∗
t denotes a point obtained by making a single step of a Markov Chain Monte Carlo (MCMC)

method starting from the point xt. CD is fundamentally based on these two ideas: taking a single

step of the Markov chain instead of many, and starting the iterations from the observed data points

instead of random points. We write x
∗
t as a function of θ because the distribution of x

∗
t depends on

the value of θ used in the MCMC method. The data point xt is randomly chosen from the sample

at each iteration of (1).

An important point is that here the value of θ in the MCMC step is fixed to the current value θs,

i.e. the differentiation on the right-hand side considers θs as a constant. Thus, the differentiation is

simplified because the dependence of the MCMC method on the value of θ is not taken into account.

Another approach to estimation of non-normalized models is score matching [5]. The starting

point is the gradient of the log-density with respect to the data vector. For simplicity, we call this

the score function, although according the conventional definition, it is actually the score function

with respect to a hypothetical location parameter [8]. For the normalized model density p, we denote

the score function by ψ(ξ;θ):

ψ(ξ;θ) =













∂ log p(ξ;θ)
∂ξ1

...

∂ log p(ξ;θ)
∂ξn













=













ψ1(ξ;θ)

...

ψn(ξ;θ)













= ∇ξ log p(ξ;θ)

The point in using the score function is that it does not depend on Z(θ). In fact we obviously have

ψ(ξ;θ) = ∇ξ log q(ξ;θ) (2)

Likewise, we denote by ψ
x
(.) = ∇ξ log px(.) the score function of the distribution of observed data.

The basic principle is that the score function should be equal for the observed distribution and

the model distribution. Thus, we minimize a function of the form

J(θ) =
1

2

∫

ξ∈Rn

px(ξ)‖ψ(ξ;θ) −ψ
x
(ξ)‖2dξ (3)
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This could in principle be accomplished by computing the gradient of the logarithm of a non-

parametric estimate of the pdf, but it was shown in [5] that no such computations are necessary.

The function in (3) is equal to an expression which only uses simple derivatives of q. A sample

version of the resulting objective function is given by

JSM (θ) =
∑

t

n
∑

i=1

1

2
ψi(xt;θ)

2 + ψii(xt;θ) (4)

where ψii = ∂ψi/∂ξi. The resulting estimator can be shown to be (locally) consistent [5].

Thus, these two methods use completely different approaches, and do not seem to have any

connection with each other. However, in this paper, we show a deep connection between these two

methods. Furthermore, we show an approximative connection to a third method, pseudolikelihood.

2 Score matching as deterministic contrastive divergence

Here we consider a Langevin Monte Carlo method [7], in which a new point x
∗
t is obtained from the

current point (here: observed data point) xt as

x
∗
t (θs) = xt +

µ2

2
∇x log q(xt;θs) + µn (5)

where n is standardized white gaussian noise. This is the uncorrected version of the Langevin

method. Below, we will consider the limit of infinitesimal µ, in which case the uncorrected version

is the same as a corrected one [7]. Such a method can be considered a first-order approximation (in

the limit of infinitesimal µ) of more sophisticated Monte Carlo methods [7].

Denote the second partial derivatives of log q by

ψij(x;θ) =
∂2 log q(x;θ)

∂xixj
(6)

A simple Taylor expansion gives

log q(x∗
t (θs);θ) = log q(xt;θ)+

∑

i

ψi(xt;θ)[
µ2

2
ψi(xt;θs)+µni]+

1

2

∑

i,j

ninjψij(xt;θ)µ
2+o(µ2)

Here, we take a second-order expansion, because it turns out that in the averaged version, the

first-order terms disappear, and the second-order terms are the most significant.

Consider the difference of the unnormalized log-likelihoods as in (1). Let us compute the ex-

pectation of the difference with respect to the Monte Carlo noise n; denote the result by JCD. We
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obtain

JCD(θ,θs,xt) = En{log q(xt;θ) − log q(x∗
t (θs);θ)}

= −
µ2

2
[
∑

i

ψi(xt;θ)ψi(xt;θs) +
∑

i

ψii(xt;θ)] + o(µ2) (7)

because the expectation of ni is zero, and it is white and independent from the xt.

Now, we can analyze the averaged behaviour of contrastive divergence by looking at the gradient

of the difference in (7) with respect to θ, averaged over all xt. Note that JCD does not provide

a proper objective function for the algorithm because it depends on the current value θs as well.

However, the gradient of JCD with respect to θ (for fixed θs) does give us the original CD iteration

in (1) averaged over the Monte Carlo noise n. For notational simplicity, we consider the partial

derivatives with respect to the θk. We obtain

∂JCD(θ,θs,xt)

∂θk
= −

µ2

2
[
∑

i

∂ψi(xt;θ)

∂θk
ψi(xt;θs) +

∑

i

∂ψii(x;θ)

∂θk
] + o(µ2) (8)

In the algorithm, the running value of the estimate, θ, will be equal to θs. The step size µ will be

infinitesimal, so the term o(µ2) can be ignored. Thus, let us consider functions of the form

jk(θ) = −
∑

t

∑

i

∂ψi(xt;θ)

∂θk
ψi(xt;θ) +

∑

i

∂ψii(xt;θ)

∂θk
(9)

which take the average over all the xt.

The average behaviour of the CD algorithm, averaged over both the Monte Carlo noise n and

the sample index t, can now be described as the addition of the jk(θ), multiplied by a very small

step size, to the current estimates of θk. This approximation is valid if 1) the step size α is annealed

to zero as required in a classic stochastic approximation scheme, and 2) we consider the limit of the

step size µ being infinitesimal.

Our main result is that the CD algorithm with Langevin Monte Carlo can then be interpreted

as a gradient descent on the score matching objective function [5]. In fact, it is easy to see that

jk(θ) = −
∂JSM(θ)

∂θk
(10)

where JSM is the score matching objective function in (4).

Thus, we have proven that score matching is an infinitesimal deterministic variant of contrastive

divergence using the Langevin Monte Carlo method. In particular, computation of the second

derivative of the log-pdf in (4) is performed by a numerical Monte Carlo method in CD, adding
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Gaussian noise. In contrast, score matching is based on explicit algebraic formulae, in which all

derivatives and integrals can typically be computed without resorting to numerical differentiation

or Monte Carlo integration.

3 Simulations

To investigate the practical validity of the result given above, we performed simulations where

contrastive divergence, score matching, and maximum likelihood were used to estimate a basic ICA

model in two dimensions [5]. We took 100 observations from the model, and computed the gradients

of score matching objective function and likelihood at the point of the true separating matrix. For

CD, we computed the expected “gradient” over 5,000,000 Monte Carlo samples, with µ2 given values

0.1, 0.01, 0.001, 0.0001, and 0.00001. These three matrix gradients were normalized to unit Frobenius

norm, and the Frobenius distances between them compared over 10 runs. Specifically, we computed

the ratio of the distance between the gradients for contrastive divergence and score matching, to

the distance between the gradients for score matching and maximum likelihood. If this ratio is very

small our approximation is valid.

The results are shown in Figure 1. For moderate values of µ2, the mean ratio is only a few percent,

obtaining a minimum of 3.4% for µ2 = 0.001. However, when µ is larger or smaller, the average

ratios are large. For a large µ, this is expected because our approximation assumes infinitesimal µ.

For smaller µ, the reason seems to be that for then the noise in the Langevin equation dominates

over the deterministic part, and thus the gradient is very noisy. So, the plots shows a large error

because the expected CD gradient is not computed exactly enough using this sample size. This was

confirmed by additional simulations (not shown) in which the number of Monte Carlo samples was

increased by a factor of 10: The approximation was then quite good for µ2 = 0.0001 as well, with

an average ratio of 7.8% (max 31.3%, min 1.3% out of six trials). Larger MC sample sizes were not

investigated because they required excessive computation time.

Thus, overall the SM and CD gradients were much more similar to each other than they were to

the likelihood gradient, which is in line with our theoretical result.
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Figure 1: The relative distance between CD and score matching gradients as a function of µ2. This

is defined as the ratio, in percentages, of the distance between the expected CD gradient and the

score matching gradient to the distance between the score matching and likelihood gradients. Solid

line shows the mean value over 10 trials, dotted lines show the minimum and maximum values over

the trials.
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4 Connection with pseudolikelihood

A related method for estimating non-normalized models is pseudolikelihood [2].The basic idea is

to consider the conditional pdf’s p(xi|x1, . . . , xi−1, xi+1, . . . , xn;θ), i.e. conditional densities of the

random variable given all other variables, where θ denotes the parameter vector. Let us denote by

x
/∈i the vector with xi removed:

x
/∈i = (x1, . . . , xi−1, xi+1, . . . , xn) (11)

and the logarithms of the conditional pdf’s by

ci(xi;x
/∈i,θ) = log p(xi|x

/∈i,θ) = log p(x;θ) − log

∫

p(x;θ)dxi (12)

We then estimate the model by maximizing these conditional pdf’s in the same way as one would

maximize ordinary likelihood. Given a sample x(1), . . . ,x(T ), the pseudolikelihood (normalized as

a function of sample size by dividing by T ) is thus of the form

JPL(θ) =
1

T

T
∑

t=1

n
∑

i=1

ci(xi(t);x
/∈i(t),θ) (13)

Pseudolikelihood is, in some special cases, equivalent to contrastive divergence. This was shown in

[6] for a fully-visible Boltzmann machine, with CD based on Gibbs sampling. However, such a result

is unlikely to hold in general.

The gradient of pseudolikelihood can be computed as

∇θJPL(θ) =
1

T

T
∑

t=1

n
∑

i=1

∇θ log p(x;θ) −∇θ log

∫

p(x;θ)dxi (14)

As shown in [1], such a gradient can be equivalently expressed as

∇θJPL(θ) =

n
∑

i=1

Ex∇θ log p(x;θ) − Exi|x/∈i∇θ log p(x;θ) (15)

where Ex means expectation with respect to the observed (sample) distribution of x, and Exi|x/∈i

means expectation with respect to the conditional distribution of xi given all other xj , i 6= j.

Here we see that with continuous-valued data, pseudolikelihood is computationally much more

complex than SM, because computation of the conditional pdf in (12) needs numerical integration

with respect to xi, or, equivalently, sampling from the conditional distribution xi|x
/∈i in (15).

Now consider what happens if we approximate this numerical integration with an MCMC method,

and only take a single step in the MCMC method, à la contrastive divergence. Specifically, consider
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a Langevin iteration which is only run with respect to xi, keeping all other variables fixed:

x+
i,t(θs) = xi,t +

µ2

2

∂ log q(xt;θs)

∂xi
+ µ ν (16)

where ν is a standardized gaussian variable. If such an iteration were run infinitely, we would obtain

a sample of the conditional distribution xi|x
/∈i. However, we approximate such a Langevin method

by using a single iteration.

Consider a variable x
′ which is obtained by applying the iteration in (16) on a randomly chosen

index k. Then the distribution of x
′ can be simply expressed using the original Langevin iteration

in (5): Define a new noise variable n
′ which is zero in all other directions expect for the variable xk

where k is chosen randomly. Then, equation (5) holds, with these new definitions of x
′ instead of

x
∗ and n

′ instead of n. The point is that since (15) takes the sum over all i, it is in the expectation

equal to using the newly defined x
′ as the sampling distribution, i.e.

∇θJPL(θ) =

n
∑

i=1

Ex∇θ log p(x;θ) − Ex
′∇θ log p(x′;θ) (17)

which brings us back to the definition of CD in (1), in an averaged form. All our analysis of the

Langevin iteration is equally valid for n
′, because our analysis only used the mean and the covariance

of n, and they are the same for n and n
′. (Actually, the variance of n′

i is scaled by a constant that

depends on the dimension of the data space, but this scaling effect can be cancelled by rescaling µ

accordingly.)

Thus, we have shown that score matching and contrastive divergence can be considered as ap-

proximations of pseudolikelihood, obtained by running a single step of an MCMC method to compute

the conditional pdf needed in pseudolikelihood.

5 Conclusion

We have shown that score matching and contrastive divergence are equivalent in the limit of in-

finitesimal step size, and with a particular MCMC method. Further, we showed how these methods

can be considered approximations of pseudolikelihood.

Our results imply that the statistical results on score matching can be applied on this variant of

contrastive divergence, including consistency [5] and optimality in signal restoration [4]. However,

as the equivalency only holds in the limit of infinitesimal µ, and other Monte Carlo methods are
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often preferred in practice, the actual performance of contrastive divergence may differ from that

of score matching. The performance of pseudolikelihood can be even more different because the

approximation is unlikely to be at all exact in practice and has mainly theoretical interest.
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