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Abstract

In many multivariate time series, the correlation structure is non-stationary, i.e. it changes over
time. The correlation structure may also change as a function of other cofactors, for example, the
identity of the subject in biomedical data. A fundamental approach for analysis of such data is to
estimate the correlation structure (connectivities) separately in short time windows or for different
subjects, and use existing machine learning methods, such as principal component analysis (PCA), to
summarize or visualize the changes in connectivity. However, the visualization of such a straightfor-
ward PCA is problematic because the ensuing connectivity patterns are much more complex objects
than e.g. spatial patterns. Here, we develop a new framework for analysing variability in connec-
tivities, using the PCA approach as the starting point. First, we show how to further analyze and
visualize the principal components of connectivity matrices by a tailor-made rank-two matrix ap-
proximation in which we use outer product of two orthogonal vectors. This leads to a new kind of
transformation of eigenvectors which is particularly suited for this purpose, and often enables inter-
pretation of the principal component as connectivity between two groups of variables. Second, we
show how to incorporate the orthogonality and the rank-two constraint in the estimation of PCA itself
to improve the results. We further provide an interpretation of these methods in terms of estimation
of a probabilistic generative model related to blind separation of dependent sources. Experiments on
brain imaging data give very promising results.

Keywords: Non-stationary connectivity, tensor decomposition, blind source separation, principal
component analysis, neuroimaging data analysis.

1 Introduction

Estimation of non-stationary covariances, correlations, or other kinds of statistical connectivities is a
topic of great interest in machine learning (Xuan and Murphy, 2007; Robinson and Hartemink, 2009;
Kolar et al., 2010; Robinson and Priebe, 2012; Liu et al., 2013) and neuroimaging (Kiviniemi et al.,
2011; Allen et al., 2012; Leonardi et al., 2013; Monti et al., 2014). Such analysis would complement
widely-used analysis methods for stationary (non-changing) connectivity. For example, spatial indepen-
dent component analysis (ICA) is often used in fMRI (Kiviniemi et al., 2003; van de Ven et al., 2004;
Beckmann et al., 2005) to find networks which have strong connectivities between the nodes (voxels).
In addition to such ICA, it would be very useful to find networks which have strongly changing connec-
tivities, either in terms of inter-network or intra-network connectivity, possibly ignoring networks where
the connectivity is strong all the time and does not change.

It is important that in addition to estimation of non-stationary connectivities we can summarize and
visualize the nonstationarity of the system in an intuitively appealing way. A simple way of summarizing
non-stationary behaviour would be to compute some kind of connectivity statistics for different time
segments, and then perform PCA (Leonardi et al., 2013) or clustering (Allen et al., 2012) in the space
of those connectivity statistics. The statistics of one segment could consist of the all the elements of the
covariance (or correlation) matrix computed inside that segment, for example. In a similar vein, network
science researchers have developed methods for detection and tracking of communities in dynamically
evolving networks, e.g. (Greene et al., 2010; Tantipathananandh and Berger-Wolf, 2011).

The problem with applying existing unsupervised machine learning methods on the set of connec-
tivity matrices is that they may not lead to very easily interpretable results due to the particularly high-
dimensional and complex nature of the connectivity data. For example, the weight vectors of principal
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components, as well as cluster centerpoints, are of the same form as the connectivity matrices. This
means they are much more difficult to visualize than spatial patterns, which can be visualized like vec-
tors in the data space. Such a principal component (or centerpoint) contains weights for all possible
connections, and it is not clear how to summarize it verbally either, for example in terms of “connectivity
between brain area A and brain area B”. Imposing sparsity as in sparse PCA (Journée et al., 2010) may
help, but does not qualitatively change the problem. Alternatively, using the spatial 2-D structure of
image data as in 2-D PCA (Yang et al., 2004) can simplify the results in some cases, but does not seem
to be very suitable for connectivity data.

Here, we develop a framework for analysing the variability of connectivities in terms of spatial
patterns, i.e. linear functions of the original data variables. In particular, we attempt to find pairs of
“components” of the original data—i.e. pairs of spatial patterns—which have maximally variable con-
nectivity, in the sense that the connectivity between the components is changing as strongly as possible.
The connectivity between such a pair of spatial components then gives an approximation of a principal
component of connectivity statistics. Such pairs are easier to interpret and to visualize in most cases
since we can simply visualize the two spatial patterns, e.g. brain areas.

The method simply takes a set of connectivity matrices as input, and does not make any explicit
assumptions on how those connectivities are obtained; in particular, they don’t have to be from differ-
ent time windows. They could come, for example, from different subjects, or different experimental
conditions.

Our method is based on developing a tailor-made low-rank approximation of connectivity matrices
or their principal components. We approximate a principal component of connectivity by the outer
product of two orthogonal vectors, motivated by the goal to model changes in connectivities between
two different groups of variables. This is in stark contrast to conventional methods directly based on
the eigen-value decomposition (and closely related to a further, second-stage PCA) in which we take the
outer product of an eigen-vector with itself. We further develop a method which combines such a low-
rank approximation with the computation of the connectivity-space PCA itself. The resulting method
can also be interpreted as estimation of the probabilistic generative model, related to blind separation of
linearly correlated sources.

This paper is structured as follows. A new theory of low-rank matrix approximation by two or-
thogonal vectors is motivated and presented in Section 2. Objective functions and learning algorithms
incorporating the orthogonal matrix approximation as a constraint in PCA are developed in Section 3.
A probabilistic generative model is proposed in Section 4. Simulations are presented in Section 5 and
experiments on real brain imaging data are in Section 6. Connections to related methods are discussed
in Section 7 and Section 8 concludes the paper. Preliminary results were presented by Hyvärinen et al.
(2014).

2 Orthogonal Rank-Two Approximation of Connectivity Component Ma-
trix

2.1 Motivation for New Matrix Approximation

Denote by Cτ,τ = 1, ...,k a number of connectivity matrices obtained by some well-known connectiv-
ity measures. For example, the Cτ can be covariance matrices, or correlation matrices. Typically, the
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different matrices could be obtained from different time segments of a multivariate time series. How-
ever, for the methods developed in this paper, it does not really matter what the difference between the
connectivity matrices is, and the index τ could just as well refer to different subjects, in which case we
are analysing inter-individual differences, or different experimental conditions. Merely for simplicity of
exposition we usually consider the case of time segments, which leads to analysis of non-stationarity.

A basic approach for analysing such matrices is to perform PCA on the vectorized forms of the ma-
trices, collapsing each matrix into a vector by scanning it column-by-column. We consider the vectorized
form of Cτ an observation at time point τ, and performing PCA in the usual way (this is called “matrix
PCA” in the following). Thus, we obtain a number of principal component matrices which have the same
form as Cτ. Let us denote a principal component thus obtained by K in the following.

A major problem is that such simple application of PCA leaves open the question of how to fur-
ther analyse or visualise the obtained K. In particular, visualization of such a component is often very
difficult.

A low-rank approximation of K could be used to analyse its structure. A well-known approach
is to use a rank-one approximation of K given by the dominant eigenvector. In such an approach, a
single eigenvector is mainly able to represent a single clique, i.e. a group of closely connected variables,
such that the correlations between those variables (within the clique) change together. Using many
eigenvectors, we can represent many cliques, but interactions between the cliques (e.g. brain areas) are
not explicitly represented.

Such a conventional low-rank analysis is useful in many cases, but here we wish to develop further
analysis methods for several reasons:

1. The principles of rank-one approximation are already well-known, as well as the principles of
successive (deflationary) rank-one approximations by the dominant eigenvectors, which are all
accomplished simply by the eigen-value decomposition of K.

2. What would be very interesting in many applications (for example, in brain imaging), is to find
two groups of variables, such that the connectivity between the two groups is changing strongly.
This needs more than conventional rank-one or rank-two approximations, as will be seen below.

3. We have found empirically that the K in real data often cannot be meaningfully represented by a
conventional low-rank approximation. An example of an eigenspectrum of K for a real data set
is given in Fig 1 which shows an interesting pattern of two dominant eigenvalues with opposite
signs. The intuitive and practical meaning of such an eigenstructure needs to be understood and
properly interpreted. The goal of the developments below is to explain the meaning of such an
eigenstructure. We will see that it is in fact closely connected to point 2 above, i.e. modelling
changing connectivity between two groups of variables.

On the other hand, it is clear that we should try to improve the method by incorporating such low-rank
constraints in the optimization problem itself. This will be done later in Section 3.

2.2 Definition by Two Optimization Problems

Assume we are given a matrix K which has the same dimensions as a connectivity matrix, obtained by a
PCA of the connectivity matrices or some similar method. Next, we consider how to develop a low-rank
approximation which is suitable for this particular purpose.
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Figure 1: Illustration of a prototypical eigenspectrum of a matrix obtained by PCA of connectivities. This
is from the first principal component of the functional connectivity MRI matrices analysed in Section 6
below. The spectrum is characterized by two dominant eigenvalues of opposite signs.

Denote by w and v two vectors in the data space which define brain areas or something similar. As
an important departure from conventional analysis, let us also assume that w and v are orthogonal. This
is because we want to analyse connectivities between two different groups of variables (e.g. two different
brain areas). In conventional rank-one approximation, we would take the outer product of w with itself,
and we would be analysing connectivity inside a group of variables (those corresponding to non-zero
entries in w) ; a conventional rank-two approximation wwT + vvT simply analyzes connections inside
two groups separately from each other.

Thus, we use the outer product of w and v to model a pattern of connectivity between two regions.
Due to symmetry of the connectivity matrices, we further use a symmetrized version. This leads to an
optimization problem in which we attempt to find w and v by minimizing

min
wT v=0

‖K− (vwT +wvT )‖2 (1)

where the norm is the Frobenius norm. This is a rather unconventional low-rank approximation since it
uses the outer products of two orthogonal vectors. We call it the orthogonal rank-two approximation.1

The optimization problem can be related to a graph-theoretic problem where K is a zero-one adja-
cency matrix, and w, v are indicator functions of two sets of nodes. Orthogonality of w,v then means that
the two sets are disjoint. The optimization problem means that we approximate the graph by one whose
connections consist exactly of all possible connections between the two sets. What we consider here is
a (rather strongly) relaxed version of such a combinatorial problem, reminiscent of spectral clustering
methods.

Some interpretations of the outer products in terms of non-stationarity in brain imaging are shown
in Fig. 2. In the most basic case (a), we can think of w and v as zero-one indicator functions of two

1The solution is clearly defined only up to a rescaling (and changing the signs) of the v and w since if we multiply v by a
non-zero constant, dividing w with the same constant will lead to the same approximation error.
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a) Simple change of connectivity strength
(w,v non-negative)

b) Switching of connectivity
(w non-negative, v not)

Figure 2: Illustration of different connectivity pattern changes modelled by the orthogonal rank-two
framework in the case of brain imaging. In each panel, the left side gives an illustration of connectivities
in terms of brain areas: each oval is the brain being analyzed, boxes are brain areas, and red lines
are connectivities. The right side shows the matrix produced as outer product of w and v (without
symmetrization), with the vectors w and v given as the line plots at the left and lower edges; black is
negative, white positive, gray zero. a) If both w and v are non-negative, we are modelling change of
connectivity between two groups of variables; in the simplest case the connectivity could be zero for
some τ and positive for others. b) If one of the vectors, say v, has negative values as well, we could be
modelling a case where the connectivity from w switches between the two brain areas, defined by the
positive and negative entries in v, respectively.

brain regions or other groups of variables. Then, the idea is that it is the connectivity between those
two areas that changes, possibly from zero to a positive value, as in this illustration. This is the simplest
possible interpretation, and could be considered approximately correct even if there are some weakly
negative values in w and v. If one of the vectors, say v, has really significant negative values, what
we are modelling is a more complicated connectivity pattern where the negative values correspond to a
change of connectivity of the opposite sign. For example, this could mean a switching of connectivity:
In some parts of the data, there is strong connectivity between the area defined by w and the area defined
by the positive values of v, while in other parts of the data, the strong connectivity is between the areas
defined by w and the negative parts of v. This simple case is illustrated in Fig. 2 b). 2 In the most general
case, where both w and v have both positive and negative values, the interpretation is more complex, and
the most meaningful interpretation may be obtained by assuming that at least some of the negative values
are small and insignificant.

The optimization problem in (1) is closely related to the following problem:

max
‖w‖=‖v‖=1,wT v=0

wT Kv (2)

In the following we shall study these two simple optimization problems, and their connection.

2However, the exact interpretation depends on the baseline of connectivities, the interpretation above assuming that the
connectivity principal component (dot-product between K and Cτ) has the same sign (or is zero) for all τ. If the connectivity
component fluctuates around zero, the connectivity would be switching in the sense that sometimes the connection between the
area defined by w has connectivities of the same sign as the signs of entries in v, and sometimes of the opposite sign.
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2.3 Theory of Orthogonal Rank-Two Approximation

To solve the optimization problem in (2), we have the following theorem. (While most proofs are given
in the Appendix, we prove this theorem here since the idea of the proof is important for the rest of the
paper.)

Theorem 1 Assume that K is a symmetric (real-valued) matrix, and the largest and smallest eigenvalues
of K are distinct. (Here, largest and smallest means according to ordinary sorting, not using absolute
values.) Then, a solution of the optimization problem (2) is given by

w =
1√
2
(emax + emin), v =

1√
2
(emax− emin) (3)

where emax and emin are the eigenvectors corresponding to the smallest and largest eigenvalues of K. The
whole set of solutions is given by {(w,v),(−w,−v),(v,w),(−v,−w)}. Denoting by λmax and λmin the
largest and smallest eigenvalues of K, the value of the objective at optimum is equal to 1

2(λmax−λmin).

Proof: Make the change of variables

a =
1√
2
(w+v), b =

1√
2
(w−v) (4)

which changes the optimization problem to:

max
‖a‖=‖b‖=1,aT b=0

1
2
[aT Ka−bT Kb] (5)

where we have used the equality

2wT Kv =
1
2
(w+v)T K(w+v)− 1

2
(w−v)T K(w−v) = aT Ka−bT Kb (6)

To maximize this without the orthogonality constraint, it is clear that we need to choose a so that it is
the eigenvector corresponding to the largest eigenvalue, and b so that it is the eigenvector corresponding
to the smallest eigenvalue. Furthermore, these two vectors are necessarily orthogonal, so they maximize
the objective even with the orthogonality constraint. The inverse of the transformation in (4) is given by

w =
1√
2
(a+b), v =

1√
2
(a−b) (7)

which gives (3). The value of objective function is then clearly given by half of the difference of eigen-
values. The whole set of solutions comes from considering the indeterminacy of the sign of normalized
eigenvectors, and the symmetry between w and v. End of proof.

The optimization theorem above applies for practically any connectivity structure, since there is no
assumption on the rank of the matrix K, or the signs of its eigenvalues. However, the theorem is certainly
more interesting in the case where the largest and smallest eigenvalues are very different, e.g. having
different signs, so that the objective function obtains a relatively large value.

If the matrix has rank two, the whole structure of the matrix can actually be explained by two eigen-
vectors. We could analyse the variance explained by the orthogonal rank-two approximation, which

7



should be large if the matrix is close to rank two. The following theorem provides the basis for such
analysis, and shows the connection between the two optimization problems (1) and (2); they are essen-
tially equivalent.

Theorem 2 Consider the problem of approximating a symmetric matrix by a symmetrized outer prod-
uct of two orthogonal vectors in (1) where the norm is the Frobenius norm. Make the assumptions of
Theorem 1. Then,

1. The set of optimizing w and v is the same, up to scaling constants, as the set of optimizing w and
v in the optimization problem (2), treated in the Theorem 1.

2. The value of the objective at optimum is equal to ‖K‖2− 1
2(λmax−λmin)

2

3. The objective is zero iff K has rank two and λmin =−λmax.

The proof is given in the Appendix.
Note that in Theorem 2, we cannot approximate every rank-two matrix exactly because we don’t

have separate scaling coefficients for the two eigenvectors. In a conventional rank-two approximation, we
would have the two eigenvalues as such scaling coefficients, and we would be able to exactly approximate
any rank-two matrix. Here, we obtain an exact approximation only if the two eigen-values have opposite
signs but equal absolute values. Thus, our approximation is exact precisely for matrices with the special
plus-minus structure mentioned in Section 2.1.

The important implication of the theory presented above is that in our optimization problem, we do
not use the eigenvectors themselves. This is in stark contrast to conventional low-rank approximations,
which are based on using the outer products of the eigenvectors with themselves. Thus, in conventional
methods, the eigenvectors themselves are supposed to give the interesting components in the data space.
Here, we have shown that we need to transform the eigenvectors to have meaningful components in the
low-rank approximation.

Note that our rank-two approximation is not positive semi-definite in general. Like in ordinary PCA,
we are mainly interested in modelling deviations from the mean, which precludes any constraints related
to non-negativity.

3 Constrained PCA Learning

The analysis in the preceding section gives new insight to the results obtained by applying PCA to the set
of connectivity matrices Cτ, as performed, for example, by Leonardi et al. (2013). Next, we propose to
directly integrate the orthogonal rank-two assumption into a PCA objective function. In particular, matrix
PCA clearly suffers from the problem that if two eigenvalues of the covariance matrix of connectivities
are equal, the corresponding eigenvectors are not well defined, and likely to mix together those two
source pairs. Finding directly a low-rank solution to a PCA-like objective is likely to alleviate this
problem, as will be confirmed below by the simulations in Section 5.

3.1 Definition of Constrained PCA Objective

Consider the original connectivity matrices by Cτ,τ= 1, ...,k as in the preceding section. In one time seg-
ment (or subject etc.), the connectivity between the two areas can be intuitively defined as wT Cτv which,
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in the case of covariance matrices is actually the covariance of wT x and vT x. We want to maximize
the variance of this quantity, in order to find components which explain as much of the nonstationary
(or otherwise changing) connectivity structure as possible. We constrain w and v in the same way as in
Theorem 1: their norms are equal to unity, and they are orthogonal. Thus, we obtain the (preliminary
form of the) optimization problem

max
‖w‖=‖v‖=1,wT v=0

1
k

k

∑
τ=1

(wT Cτv)2− (
1
k ∑

τ

wT Cτv)2 (8)

To simplify this, let us subtract the average connectivities to obtain the centered connectivity matrices

C̃τ = Cτ−
1
k

k

∑
i=1

Ci (9)

so that ∑τ C̃τ = 0. Thus, we obtain the final optimization problem, which is equivalent to (8), as

max
‖w‖=‖v‖=1,wT v=0

k

∑
τ=1

(wT C̃τv)2 (10)

To understand the meaning of such constrained PCA, it is useful to consider the basic case of two
connectivity matrices, i.e. k = 2. Then the subtraction of average connectivity means that C̃1 = −C̃2 =
1
2(C1−C2). Constrained PCA is then simply based on analysing the difference of the two connectivi-
ties, and Eq. (10) becomes the optimization problem in (2), the squaring being immaterial. In fact, the
unconstrained principal component is simply obtained by K = C1−C2 up to a scaling. So, the case of
two connectivity matrices reduces to the theory in Section 2, but for k ≥ 3, we need to develop a new
algorithm.

3.2 Algorithm for Constrained PCA

Next, we consider the general optimization problem formulated in (10). To find a simple and efficient
method for optimization problem in (10), we formulate the following alternative problem, inspired by
Journée et al. (2010):

max
‖a‖=‖b‖=‖r‖=1

∑
τ

rτ[aT C̃τa−bT C̃τb] (11)

with an auxiliary variable vector r = (r1, . . . ,rk), and a,b defined in (4). This modified optimization
problem is based on two ideas, already used in proof of Theorem 1. First, we have by simple linear
algebra

wT Mv =
1
4
(w+v)T M(w+v)− 1

4
(w−v)T M(w−v) (12)

for any symmetric matrix M. Thus, by making a change of variables in (4), we obtain the bracketed
expression above.

Second, the optimal rτ are trivially obtained as

rτ = c[aT C̃τa−bT C̃τb] (13)
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where the proportionality constant c is introduced due to the unit norm constraint but is immaterial.
Plugging this in (11) gives something related to the sum of squares in (10), although the existence of c
makes the situation a bit more complicated.

To formally show the equivalence of the two optimization problems, we have the following theorem:

Theorem 3 The vectors w, v are a solution of the optimization problem (10) if and only if a and b as
transformed in (4) are a solution (together with some r) of the optimization problem (11).

The theorem is proven in the Appendix.
The utility of this new formulation is that we can apply a simple alternating optimization method.

The solution for r given a,b was already given in (13), where the constant c can be set to any positive
value without affecting the algorithm. On the other hand, given a running estimate r and considering it
fixed, we have the optimization problem

max
‖a‖=‖b‖=1

aT Ma−bT Mb (14)

with
M = ∑

τ

rτC̃τ (15)

which was already considered in the proof of Theorem 1, and is solved by performing an eigenvalue
decomposition of M, and taking as a the eigenvector corresponding to the largest eigenvalue, and as b
the eigenvector corresponding to the smallest eigenvalue.

In fact, the eigenvectors a and b are necessarily orthogonal (unless in a very degenerate case where all
the eigenvalues are equal), and thus we obtain aT b = 0 automatically. Here, we see another really useful
property of this reformulation: The orthogonality constraint in (10) can be omitted since the optimum
will necessarily produce orthogonal a and b, which implies orthogonal w and v.

Thus, we obtain a simple algorithm which contains no step size parameters, and in which every
step is guaranteed, by construction, not to decrease the objective function. It is reasonable to start the
optimization at a point given by the orthogonal rank-two approximation of matrix PCA, which means
that maximization of this objective can be considered a finetuning of matrix PCA results.

3.3 Estimating Many Components

The methods so far presented in this section consider a single principal component pair of connectivities.
Next, we consider estimation of many principal component pairs.

Consider first the case of constrained PCA. We extend it to many component pairs by well-known
deflation (orthogonal projection) methods. However, here two distinct approaches seem to be possible:

1. A basic but very stringent condition would be to impose the orthogonality between all the vectors
wi and vi estimated. However, this may be too strict, since we may want to have pairs in which
one of the component is the same or similar to a previously estimated one.

2. In the matrix space, we can restrict the different rank-two approximations wivT
i + viwT

i to be
orthogonal in the sense that tr([wivT

i + viwT
i ][w jvT

j + v jwT
j ]) = 0 for i 6= j. This can be simply

implemented by projecting the one-dimensional subspace spanned by wivT
i +viwT

i away from the
set of connectivity matrices.
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In the matrix-level PCA case in Section 2, another solution would be to apply orthogonal rank-two ap-
proximation to principal component matrices obtained by conventional PCA of the connectivity matrices;
in such conventional PCA many components are defined in the usual way.

We propose here to use the orthogonality of rank-two approximations (case 2 above), both in the
constrained PCA case and the matrix-level PCA case. In practice, it does not seem to lead to too similar
components, and thus the orthogonality does not seem to be too relaxed with this method. It is also more
natural even in the case of matrix PCA, if the results of matrix PCA are to be reduced to the rank-two
approximation afterwards anyway.

3.4 Robust Variant

It is possible that the objective in (10) is too sensitive to connectivities in a single connectivity matrix,
which might be due to outliers. To alleviate this problem, we can easily develop a more robust version,
replacing squaring by an absolute value operator as

max
‖w‖=‖v‖=1,wT v=0

k

∑
τ=1
|wT C̃τv| (16)

This objective can be optimized using a similar alternating variables method by defining the relaxed
optimization problem as

max
‖a‖=‖b‖=1,rτ∈{−1,+1}

∑
τ

rτ[aT C̃τa−bT C̃τb] (17)

Given the rτ, the optimal a,b are obtained as in the basic constrained PCA algorithm. The only change
is that here, the optimal rτ are obtained as

rτ = sign(aT C̃τa−bT C̃τb) (18)

It is easy to show that this algorithm optimizes (16).

4 Probabilistic Generative Model

To get further insight into the methods in the preceding section, it is very useful to formulate a generative
probabilistic model such that the methods above can be considered to estimate parameters in it. Again, we
develop the model for the case where the connectivity matrices come from different time segments, but
the model is applicable for the general case where the meaning of the index τ has an arbitrary meaning.
The connectivity matrices are assumed to be covariance or correlation matrices here.

4.1 Basic Idea

To present the basic idea, we assume we have just two time segments. In both the data follows a linear
mixing model, with standardized, possibly Gaussian components si

x = Hs (19)

where the number of si is equal to the number of the xi, and H is square and orthogonal. Assume the
matrix H is the same for the whole data, but the statistics of the components change as follows. In the
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first segment, all the si are independent, but in the second segment, we have the perfect correlation s1 = s2
while all the other components are independent. Then we have

C1 = HHT (20)

C2 = HHT +h1hT
2 +h2hT

1 (21)

where hi is the i-th column of H, and the matrix principal component, as shown in Section 3.1, is given
by

K = C2−C1 = h1hT
2 +h2hT

1 (22)

so, by Theorem 2, optimization of (2) will find w = h1 and v = h2. This shows that the methods con-
sidered in this paper can be seen to analyse changes in correlation structure of components in a model
related to blind source separation, or independent component analysis (ICA) (Comon, 1994; Hyvärinen
et al., 2001). Various extensions relaxing the independent assumption have been developed before, see
in particular Sasaki et al. (2014) for a related method considering linearly correlated components.

4.2 Definition of Probabilistic Model

Next, we define the generative model with more generality. To begin with, assume the data is generated
by a generative model as in (19), with Gaussian and standardized si. In the following, we model the
nonstationary covariance of two components, which can be assumed to be those with indices 1 and 2
without loss of generality. The nonstationary covariance of h1 and h2 is modelled by a latent variable
z(τ). In particular, the i, j-th element of the precision matrix of x in time segment τ is assumed to be
equal to z(τ):

cov(s(τ))−1 = I+ z(τ)[e1eT
2 + e2eT

1 ] (23)

where ei is the i-th canonical basis vector (all zeros but the i-th entry equals one). We assume

∑
τ

z(τ) = 0 (24)

which means that over the whole data set, the precision matrix of s is identity, as can be seen by summing
(23) over τ. Further, we have to assume

|z(τ)|< 1, for all τ (25)

which preserves the positive definiteness of the precision matrix by making it diagonally dominant.
We further assume that H is orthogonal. This assumption is made since we want the components to

be mainly non-overlapping, i.e. to represent groups of variables which do not contain the same variables.
(If the data were whitened, we would find the typical assumption of uncorrelatedness used in ICA.) This
assumption may seem unrealistic, but let us point out that it is made in this theoretical generative model
only, and in the actual method explained in the preceding section, the constraint on orthogonality is
essentially weaker as explained in Section 3.3.

To estimate the model, we have the following theorem, proven in Appendix:

Theorem 4 Assume that the data follows the model specified by (23,24,25,19). Assume further that H
is orthogonal, and that z follows a uniform prior in the infinitesimal interval [−ε,ε]. Then the Taylor
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approximation of the log-likelihood of the model has the leading term (ignoring constant terms not
depending on the parameters):

log L̃(H) =
ε3

6 ∑
τ

(hT
1 C̃τh2)

2 (26)

where C̃τ is the covariance matrix in time segment τ with average covariances subtracted as in Eq. (9).

Note that here the first-order and second-order terms (in ε) disappear since they correspond to a Gaussian
likelihood of orthogonally transformed data, which is constant. Using such an infinitesimal ε is justified
by the fact that we are considering a infinitesimal departure from stationarity, and in fact the term of
O(ε3) would be constant in the case of stationarity.

Also, since we used the orthogonality of H in computing its determinant (the normalization constant)
in the proof, this likelihood is valid only for orthogonal H. In fact, it explodes if H is allowed to go
infinitely far from the origin.

What we see in this Theorem is that the constrained PCA objective in (10) appears as a first-order
approximation of the likelihood. The first-order approximation means that the dependencies between
the components are infinitesimal. This provides the link between our heuristically defined objective, and
estimation of the generative model.

Our model considers, for simplicity, a single component pair. More than one component pair can be
estimated by well-known deflationary methods, discussed in section 3.3.

It should be noted that the probabilistic generative model as presented here is in fact a special case
of generative models that can be estimated by the practical algorithms presented in earlier sections. In
particular, we assumed here that the average connectivity is zero (Eq. 24), which is not at all necessary in
the practical algorithm. Likewise, we assumed that the whole matrix H is orthogonal, while in the prac-
tical algorithm we use a more much more relaxed orthogonality constraint as discussed in Section 3.3.
These extra constraints make the model much more similar to ICA and BSS methods, and amenable to
mathematical analysis. They should thus be seen as mathematical simplifications and not real restrictions
on the data to be analyzed in practice.

4.3 More Realistic Model with Changing Variances

A problem in practice is that the simple model above ignores an essential aspect of many kinds of real
data, which is the nonstationarity of the variances of observed variables. To make the model more
realistic, we thus add separate terms modelling the changing variances (rescaling) of the data variables
as:

x = DτHs (27)

where Dτ is a random diagonal matrix modelling the changing variances of the data variables; its expec-
tation is equal to identity. We do not make strong assumptions on Dτ, since in the developments below,
we will see that it essentially disappears when we normalize the data covariance matrices by calculating
the correlation coefficient matrices.

The justification for introducing the changing variances is the empirical observation that covariances
can sometimes get unrealistically large values, possibly due to outliers or faulty sensors which lead
to extremely high variances for some of the observed variables. In practice, most research uses the
correlation coefficients instead of covariances, while the theory in the preceding section implies we
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should use covariances. As we see below, the model of changing variances removes this theoretical
discrepancy, showing that correlation coefficients are actually the connectivity measure that is implied
by this theory.

In this model, we need to introduce a further assumption on h1 and h2: They must be non-overlapping
in the sense that

∑
i

h2
1ih

2
2i = 0 (28)

This is necessary for the likelihood approximation because it means that the nonstationarity does not
affect the diagonal of the inverse covariance matrix, and, as a first-order approximation, it does not affect
the covariances of the observed variables. (For more details, see proof of the theorem below.) Such
an assumption also makes intuitive sense, since it is essentially a stronger form of the orthogonality
constraint, and in fact a form which more strictly formalizes the intuitive idea that h1 and h2 should
model different sets of variables.3

To estimate the modified model, we have the following theorem (proven in the Appendix), which
again gives an approximate log-likelihood which is equal to our heuristic objective used in Section 3.2:

Theorem 5 Assume that the data follows the model specified by (23,24,25,27). Assume further that H
is orthogonal and, in important contrast to Theorem 4, that the first two columns are non-overlapping
in the sense of (28). Assume further that z follows a uniform prior in the infinitesimal interval [−ε,ε].
Then the Taylor approximation of the log-likelihood of the model has the leading term (ignoring constant
terms not depending on the parameters):

log L̃(H) =
ε3

6 ∑
τ

(hT
1 C̃τh2)

2 (29)

where C̃τ is the correlation coefficient matrix with average correlation coefficients removed.

This approximation does not hold for covariances in this model, in contrast to Theorem 4 above.

5 Simulations

We performed simulations to investigate how the methods presented are actually capable of estimating
the components for data coming from our generative models in Section 4.

We have here three variants of orthogonal connectivity factorization, which we name as follows:

OCF1: the orthogonal rank-two decomposition of matrix PCA results (Section 2),

OCF2: the constrained PCA algorithm or finetuning (Section 3),

OCF3: the robust version of the constrained PCA algorithm (Section 3.4).

Furthermore, as baseline, we used

EVD: ordinary rank-two approximation using emax,emin obtained by eigen-value decomposition
of matrix PCA results.

3This assumption of non-overlappingness cannot be made on all the columns of H as it is full rank. Instead, it will only be
made pairwise on the pairs correspond to correlated components.
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We applied these four methods on connectivity matrices given by correlation coefficients. In addition, we
applied the basic method OCF1 on connectivities given by covariances, which is denoted by OCF1cov.

We simulated six different kinds of datasets based on our generative models, giving rise to Simula-
tions 1–6. Before going to details, we provide an overview of the six simulations:

Simulation 1 Basic case with one non-stationary component pair, where all OCF methods are
supposed to work (in contrast to EVD).

Simulation 2 Introducing random scaling of observed variables as in Section 4.3 to see what
difference this makes between the different OCF methods.

Simulation 3 Further introducing overlap between the spatial patterns, i.e. violating Eq. (28) to
see the significance of this constraint.

Simulation 4 Going back to the basic case, and introducing strong outliers to investigate robustness
of the different methods.

Simulation 5 Like Simulation 1, but now with two non-stationary components.

Simulation 6 Making Simulation 5 more difficult by equalizing the statistical properties (espe-
cially variances) of the two components.

The dimension of the data was 12, which is rather small but enabled us to run the algorithm thousands
of times in a reasonable time frame. The number of time points was 5,000 which can be considered
realistic in many brain imaging scenarios (for fMRI, assuming many subjects) and is not very different
from what we have in the real-data experiments in the next section.

The changes in the correlations were created blockwise, so that in each block (segment) of 250 points
(similar to a typical resting-state fMRI session), the correlation structure was randomly generated, with
correlation coefficients between correlated source pairs drawn from a uniform distribution in [−0.5,0.5].
In the algorithm, the size of each segment in which the connectivity was computed was not fixed to the
right value, but took different values: 50, 100, 250, 200, and 750 were used. For each setting, 1,000
datasets (trials) were randomly generated and the results shown are averaged over them. As in the theory
in Section 4, the matrix H was always constrained orthogonal.

In the first four simulations, there were a total of 12 Gaussian sources, all of which were independent
except for one pair. In the most basic one, Simulation 1, there was no overlap between the spatial patterns
between the sources, and there was no effect of variable scaling of the observed variables, i.e. we used
generating model in Section 4.2 with constraint (28). In Simulation 2, the observed variables had variable
scaling in Section 4.3. In Simulation 3, the spatial patterns had overlap of 25%. In Simulation 4, two
strong outliers (10 times std of data) were introduced in the data.

Furthermore, we created two simulations (#5 and #6) in which there were two pairs of connected
sources (both without overlap and without variance scaling). In Simulation 5, the connectivities between
the pairs were created independently of each other, while in Simulation 6, we created the two pairs so
that the statistical properties (mean and variance) of the connectivities were the same for the two pairs.

The estimation error was computed as a simple mean-squared error, and normalized so that it gives
the proportion of error of the parameter vector norm. For visibility, the Briggs logarithms are plotted.

The results are in Fig. 3. In Simulation 1, we see that all proposed methods work quite well, while
the baseline (EVD) is much worse. Unsurprisingly, the errors are minimized when the window size in
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the algorithm is equal to the window size in data generation. In Simulation 2, we see that when the
observed variables are randomly rescaled, using covariance does not work well at all, while correlations
coefficients do work very well with all the methods. In Simulation 3, we see that introducing overlap
between the spatial patterns reduces the performance of all the methods rather uniformly but not dramat-
ically. Introducing outliers in Simulation 4 makes most methods fail, but the robust method (OCF3) still
works. Interestingly, it is now important that the window size is not too large, presumably because with
a large window the proportion of connectivity matrices destroyed by outliers is larger. It should also be
noted that in most simulations the robust method (OCF3) has slightly larger errors, which indicates a
typical trade-off with robust methods.

The basic case of two source pairs in Simulation 5 is not very different from the case of a single
source pair. However, we see some advantage for OCF2 (finetuning by constrained PCA), presumably
because with more source pairs, matrix PCA with orthogonal rank-two approximation may mix them up
if the eigenvalues are not clearly distinct. Such a phenomenon is simulated more explicitly in Simulation
6 where the eigenvalues are set equal.

The case of two source pairs with identical connectivity statistics in Simulation 6 is quite interesting,
showing that OCF2 (finetuning by constrained PCA) results in a major improvement. This is understand-
able based on the theoretic argument that PCA cannot distinguish the eigenvectors in the case where the
eigenvalues are equal. Actually, it is a bit surprising that OCF1 based on matrix PCA works at all in
this case, which is presumably because the randomness in the data generation process created slightly
unequal eigenvalues, and also because any mixing of eigenvectors in the matrix PCA may be partly
compensated by the EVD of the matrix principal component.

To recapitulate, OCF2 seems to be the best method in this comparison simulations, except that the
robust variant OCF3 is better with outliers. OCF1 also performs quite well. We would like to emphasize
that OCF1 (matrix PCA with orthogonal rank-two approximation) is also a new method, so the fact that
finetuning (OCF2) makes little difference in most simulations is not disappointing; it merely shows that
our basic approach using the orthogonal rank-two approximation works well enough in itself and the
more sophisticated developments may not always be needed. In contrast, the baseline (EVD) performed
very badly.

Finally, we did a further simulation to investigate the consistency of the estimator. We took the basic
setting in the first simulation above and used OCF2, but varied the sample size to see if the estimation
error seems to go to zero, which would indicate consistency of the estimator, and identifiability of the
model in this specific case. The result is in Fig. 4. The error clearly seems to go to zero, which indicates
consistency.

6 Experiments on Brain Imaging Data

To further validate the model, we performed experiments on two kinds of real brain imaging data, inves-
tigating both inter-subject variability of connectivity, as well as non-stationarity of connectivity.
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Figure 3: Main simulations with artificial data. Each panel is one simulation (type of dataset), and each
curve gives estimation errors for one variant of the algorithm. Vertical axis: Estimation errors, which
were given a ceiling of one (logarithm of zero) for visualization purposes. Horizontal axis: window size
used in the algorithm (the window size in data generation was always the same). Standard errors of the
mean are smaller than marker size and thus not plotted.
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Figure 4: Further simulations with artificial data on consistency. Log-estimation error as a function of
sample size when sample size grows larger. Standard deviation given as error bar.

6.1 Multi-Subject Functional Connectivity MRI Data

Methods We first applied the method on public-domain functional connectomics data from the USC
Multimodal Connectivity Database4. The data consists of functional connectivity magnetic resonance
imaging (fcMRI) resting-state data. We selected the 103 subjects measured at Oulu University Hospi-
tal, tagged “Oulu”. The database provides one functional connectivity matrix per subject, consisting
of correlations of activities between 177 regions-of-interest (ROI). Thus, we analyze the inter-subject
variability of connectivities in this experiment.

We used the same four different methods as in the simulations, that is OCF1: Matrix PCA followed
by orthogonal rank-two decomposition (Section 2), OCF2: constrained PCA (Section 3), and OCF3:
robust variant of constrained PCA (Section 3.4), and, as a baseline for comparison, we also considered
EVD, the original eigenvectors emax,emin of the matrix principal components (which are related to the
w,v of the first method by a 90 degree rotation as in Theorem 1).

The resulting 3D spatial patterns were plotted so that the centre of each ROI was plotted as a dot.
Very small values were plotted as gray dots, while clearly positive and negative values were plotted as
red and blue dots, respectively, so that the diameter of the dot was proportional to the absolute value.
To visualize the 3D structure, the dots were projected onto three planes, sagittal (brain viewed from the
side), horizontal (brain viewed from above), and frontal (brain viewed from the front, or equivalently
from the back). The projections were transparent, using no occlusion information, i.e. the visualization
used a “glass brain”. As a background, we plotted a 2D projection of the grey matter in the ICBM
152 atlas (version 2009a) template brain volume for normal population (Fonov et al., 2011). Due to an

4http://umcd.humanconnectomeproject.org
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apparent scaling incompatibility between the two data sources, the coordinates of the ROI centers were
increased by 7% which seemed to provide a better fit.

Note that the signs of w and v are not determined by the estimation methods, similarly to PCA or
ICA. Purely for the purposes of visualization, we determine the signs so that the strongest coefficients
are positive.

To further compare the methods quantitatively, we computed two statistics of the resulting represen-
tations. First, the sparsity of the spatial patterns, which was defined as a normalized version of the fourth
(non-centred) moment, (∑i w4

i +∑i v4
i )/(∑i w2

i +∑i v2
i )

2/n. Second, a measure of overlap, which was a

normalized version of the correlation of the squares, (∑i w2
i v2

i )/
√

∑i(w2
i )

2
√

∑i(v2
i )

2. (In these measures,
any mean was not subtracted.) We also computed the similarities of the resulting spatial patterns for the
three proposed methods.

Results and Discussion The first two component pairs for OCF1, i.e. matrix PCA followed by the
orthogonal rank-two decomposition are shown in the upper panels of Fig. 5 and Fig. 6.

The red (positive) areas of the first principal component pair (Fig. 5) reveal somewhat surprisingly
two well-known resting state network configurations. The v resembles markedly the default mode net-
work (DMN) with emphasis on the ventromedial pre-frontal cortex, as well as some posterior cingulate
(PCC) participation. The other spatial pattern w is formed from auditory, language areas and sensorimo-
tor cortices and can be regarded to form a task-positive network (TPN); however it has to be noted that
also major medial cerebral arteries lie in these areas.

The second component pair (Fig. 6) has again DMN in v, with a bit more emphasis on the PCC
and angular gyri, and less on upper frontal areas. The w seems to consist of frontal areas of the central
executive network (CEN), interestingly on both sides of the v’s DMN frontal regions.

These results are intriguing since the method finds well-known functional brain networks based on
the inter-individual variability. Previously, similar networks have been found by spatial ICA (Kiviniemi
et al., 2003; van de Ven et al., 2004; Beckmann et al., 2005). In particular, the DMN seems to be most
variable in its connectivity with TPN and CEN. These spatial patterns cover a substantial part of the
fronto-parietal functional networks. It is possible that this variability of connectivity is related to the
intra-subject temporal non-stationarity of the DMN found in a previous ICA analysis (Kiviniemi et al.,
2011). As the DMN is one of the most robust components in spatial ICA of resting-state activity in
single subjects, the intersubject variability of DMN connectivity suggests that it performs different tasks
reflecting the individual brain function of each subject.

For comparison, we also plot the eigenvectors emin,emax of the matrix principal components corre-
sponding to the smallest and largest eigenvalues, in the lower panels of Fig. 5 and Fig. 6. Clearly, these
spatial patterns are less localized and more overlapping, and thus it is difficult to associate them with
individual brain areas.

Constrained PCA results (OCF2, OCF3) are not plotted here since they are visually indistinguishable
from OCF1 (see also quantitative comparison below). This is at least partly attributable to the fact that
OCF2 and OCF3 used OCF1 as the initial point of optimization iterations.

In addition to the spatial patterns, let us further note that we can also compute the time courses of the
components for each subject, which could give rise to further analyses. Here, we simply note that the
average connectivity between the two ares in the first principal component were negative, while for the
second principal component they were positive (results not shown). These values are well in line with
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1st component pair for fcMRI

OCF1: Matrix PCA + orth rank-two approx

w

v

EVD: Matrix PCA + ordinary EVD

w

v

Figure 5: Results on multi-subject fcMRI: the first principal component pair obtained by the two meth-
ods. Top panel: Matrix principal component analysed by orthogonal rank-two approximation. Bottom
panel: For comparison, matrix PC analysed by ordinary EVD. In each panel, the upper and lower parts
give the two spatial patterns w,v in the pair obtained, seen from three different angles. The brains are
facing right.
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2nd component pair for fcMRI

OCF1: Matrix PCA + orth rank-two approx

w

v

EVD: Matrix PCA + ordinary EVD

w

v

Figure 6: Results on multi-subject fcMRI: the second principal component pair obtained by the two
methods. For legend see Fig. 5.
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the interpretation given above.
The quantitative comparison of results for the four methods is in Fig. 7. We see that all the three

methods in this paper improve the sparsity (a) and reduce the overlap (b) between the spatial patterns
quite substantially, compared to the baseline given by the eigenvectors of matrix PC (“EVD”). (Note that
the reduced overlap has nothing to do with orthogonality, vector pairs are orthogonal for all the methods.)
On the other hand, it is difficult to see any differences between the new proposed methods regarding these
measures. Comparison of similarities of OCF1 and OCF2 components (pairs) in Fig. 7 c) shows that
while the two first component pairs are very similar, further components actually have some differences,
the fourth component pairs being completely different. In contrast, the robust version (OCF3) is very
similar to OCF1 for all the five computed components (Fig. 7 d).

Regarding the computation times in this analysis, we just briefly mention that the total computation
time was of the order of one minute for all the results in this section, most of which was spent in com-
putation of basic constrained PCA (finetuning). Perhaps surprisingly, the robust version was much faster
than the basic constrained PCA.

6.2 Non-Stationarity in Magnetoencephalographic Data

Methods Second, we investigated non-stationary connectivity in magnetoencephalographic (MEG)
data from Ramkumar et al. (2012). The data comprised a single 12 minute session recorded on a Elekta
Neuromag 306-channel neuromagnetometer. The subject received alternating stimulation of visual, au-
ditory, and tactile modalities, interspersed with rest periods. As basic preprocessing, we applied the
signal space separation method (Taulu et al., 2004) to attenuate artifacts and motion correction, and
downsampled the data to 150 Hz.

We first Morlet-filtered the data using a single complex-valued Morlet filter with centre frequency
of 10 Hz to extract alpha-range activity. We next performed ICA on the Morlet-filtered MEG data to
separate sources of rhythmic activity. Finally, we computed the energies (envelopes) of the sources, and
used these as input to the proposed method.

Correlation coefficient matrices between the energies of independent components were computed in
non-overlapping time windows of a length of 5 seconds. Two variants of the method, OCF1 or matrix
PCA followed by rank-two approximation (Section 2), and OCF2 or constrained PCA (Section 3) were
applied on the data. Note that w and v could be interchanged, and we have here manually switched
them in some plots to make the results of the two methods as similar as possible, purely for the ease of
visualization.

Results and Discussion We show the first component pair (w,v) for the two methods in Fig. 8, and
the second component pair in Fig. 9. The spatial patterns are visualized on the measurement helmet by
adding together the spatial patterns (squares of columns of mixing matrix) of those underlying indepen-
dent components that contribute to each connectivity component. Thus we obtain a rough plot of the
spatial extents of the components.

In general, the results using constrained PCA look cleaner and more plausible. The first component
pair (Fig. 8, lower panel), shows that the strongest non-stationarity is in the connectivity between an
occipito-parietal area and the left temporal area. The second component pair (Fig. 9, lower panel) shows
that another strongly nonstationary connectivity is between inferior occipital areas and slightly superior
occipito-parietal areas.
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Figure 7: Quantitative comparison of methods based on fcMRI results. a) The sparsities of fcMRI
component spatial patterns for different methods. Methods are from left to right: EVD, the original
eigenvectors of the matrix PCA (baseline); OCF1, matrix PCA with orthogonal rank-two decomposition;
OCF2, constrained PCA; OCF3, constrained PCA with the robust version of objective. b) The overlaps
of fcMRI components for different methods, same as in a. c) Similarities of estimated components for
OCF1 and OCF2. The color codes the absolute values of correlations of the spatial patterns, taking the
maximum over the two permutations of v and w. d) As c, but using robust version of constrained PCA
(OCF3 instead of OCF2).
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1st component pair for MEG amplitudes

OCF1: Matrix PCA + orth rank-two approx

w v

OCF2: Constrained PCA

w v

Figure 8: Results on non-stationarity of MEG amplitudes: the first principal component pair obtained by
the two methods. Top panel: Matrix principal component analysed by orthogonal rank-two approxima-
tion. Bottom panel: Constrained PCA results. In each panel, the left and right parts give the two spatial
patterns in the pair obtained.

2nd component pair for MEG amplitudes

OCF1: Matrix PCA + orth rank-two approx

w v

OCF2: Constrained PCA

w v

Figure 9: Results on non-stationarity of MEG amplitudes: the second principal component pair obtained
by the two methods. (See Fig. 8 for legend.)
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7 Discussion

Next, we discuss the relation of our methods to well-known methods.

7.1 PARAFAC as constrained PCA

The method has interesting relations to parallel factor analysis (PARAFAC) (Harshman, 1970), also
called CANDECOMP, which is one of the simplest tensor decompositions (the collection of covariances
can be considered a tensor). Let us first consider basic PARAFAC for the centred connectivity matrices
C̃τ. Considering just a single component for simplicity, we would be minimizing

min
w,v,r∑

τ

‖C̃τ− rτwvT‖2 (30)

where the idea is to approximate each of the matrices C̃τ by the same outer product wvT , but allowing
for a rescaling by the scalar rτ. The optimal vectors would clearly be such that w = v due to symmetry
of the C̃τ. Ignoring irrelevant constants, we can write the objective as

min
w,r ∑

τ

r2
τ‖w‖4−2rτwT C̃τw (31)

Due to the scaling by rτ we can further assume without loss of generality that ‖w‖= 1, and we can solve
the optimal r as

rτ = wT C̃τw (32)

Plugging this into the objective, we obtain the final equivalent objective for PARAFAC as

max
‖w‖=1

∑
τ

(wT C̃τw)2 (33)

which basically means that PARAFAC is trying to find a single spatial pattern w such that the variability
inside that spatial pattern is maximized. Superficially, this objective looks algebraically quite similar to
our constrained PCA objective, but with the crucial difference that the vectors multiplying C̃τ are here
equal, while in our constrained PCA they are two different vectors constrained orthogonal.

7.2 Connection to BSS methods

Next, we point out that such PARAFAC can be seen as a blind source separation method based on the
nonstationarity of variances (Matsuoka et al., 1995; Pham and Cardoso, 2001); see also De Lathauwer
(2006) for related developments. Consider data which has been generated by a linear mixing x = Hs
where the variances σi,τ of the si change independently of each other. The covariance at a time segment is
then equal to Hdiag(σ2

i,τ)HT , and the centred covariance is obtained by replacing the σ’s by the centered
versions. Assume the data has been whitened so H is orthogonal, and define q = HT w. Then, the
objective in (33) equals, in the limit of infinite number of time windows,

∑
τ

(wT C̃τw)2→ Eτ{(wT H[diag(σ2
i,τ)−diag(Eτ{σ2

i,τ})]HT w)2}

= Eτ{(∑
i

q2
i [σ

2
i,τ−E{σ2

i,τ}])2}= ∑
i

q4
i var(σ2

i,τ) (34)
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If we constrain ‖w‖ = ‖q‖ = 1, this reduces to a well-known optimization problem usualy formulated
in terms of kurtosis in ICA theory (Comon, 1994; Delfosse and Loubaton, 1995), and is well-known to
be solved by taking w to be equal to one of the columns of H, thus finding one of the original sources
si. Thus, we see how PARAFAC of the covariance matrices can separate sources, in the same way as
methods by Matsuoka et al. (1995); Pham and Cardoso (2001).

7.3 Our method as orthogonally constrained PARAFAC

We can further show that our constrained PCA method can be obtained from a PARAFAC with special
constraints, followed by a transformation. Let us consider a PARAFAC with two components (here, each
component corresponding to one outer product) where we constrain 1) the rτ to have opposite signs and
same absolute value for the two components, and 2) the two vectors a and b to be orthogonal:

min
‖a‖=‖b‖=1,aT b=0

∑
τ

‖C̃τ− rτ(aaT −bbT )‖2 (35)

In other words, we approximate the matrices C̃τ by the difference of the two outer products, so that
the scaling rτ is applied on that difference instead of having a separate scaling variable for each outer
product.

Here, we assume that the PARAFAC uses the outer product aaT instead of using two different vectors,
say acT . This is not really a constraint since it is clear that the optimal approximation will use the same
vector due to symmetry of C̃τ. Expanding the squared norm, we obtain

min
‖a‖=‖b‖=1,aT b=0

∑
τ

−2rτ(aT C̃τaT −bT C̃τb)+ r2
τ(‖a‖4 +‖b‖4−2(aT b)2)+ const. (36)

from which we get rτ = aT C̃τaT −bT C̃τb and an equivalent optimization problem is

max
‖a‖=‖b‖=1,aT b=0

∑
τ

(aT C̃τa−bT C̃τb)2 (37)

This is the same as our reformulated constrained PCA in (10) with optimal rτ plugged in, except that we
have the constraint of orthogonality. However, it was shown in the proof of Theorem 1 that the optimal
a and b in the optimization of (11) are always orthogonal, so the same a and b maximize this objective
as well.

7.4 Checking and comparing model assumptions

Thus, we see that the constrained PCA method can be seen to be a constrained form of PARAFAC.
This might seem to imply that there is little reason to apply constrained PCA since PARAFAC is a more
general method. Such reasoning is invalid, because in the PARAFAC framework, it is the a and b which
are considered to define the components, e.g. in terms of spatial patterns. In our framework, we transform
them into w,v, by taking sums and differences, in order to get the spatial patterns. Thus, the components
obtained are completely different. Furthermore, one of the main motivations for the constrained PCA
method is that by inputting the constraints in the optimization problem itself, we can get better estimates
of the relevant parameters.

Basically, which method should be used depends on whether the assumptions in our model are cor-
rect. In particular, we assume that the main non-stationarity is in correlations between the components,
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while the BSS framework which is equivalent to constrained PARAFAC assumes that it is the variances
of the components which are nonstationary. For example, in raw EEG/MEG data (as opposed to energies
of sources which we used in our experiments in Section 6.2), the nonstationarity of variances is a well-
known phenomenon (Hyvärinen et al., 2010), and it would probably be a bad idea to apply our method on
such data. The same applies for natural image sequences (Hyvärinen et al., 2009). The situation is very
different in fMRI: The nonstationarity of variances does not seem to be a phenomenon of much interest
in the neuroimaging community, in contrast to nonstationarity in connectivity which is a topic of great
current interest (Leonardi et al., 2013). Thus, it may be reasonable to assume that the non-stationarity of
connectivity is a more prominent phenomenon.

If the assumptions in our model are not fulfilled, it is possible that our algorithm is in fact doing
something like blind source separation based on nonstationarity, where the sources will not be given by
the w,v but by a,b (at least assuming that the data is white or close to white). Such a possibility could
in some cases be checked by investigating which pair gives a more plausible estimate of spatial patterns.
For example, if we assume that the spatial patterns are sparse, the sparsities of these solutions could be
compared, which is what we did for the fMRI data in Section 6.1.

7.5 Relationship to common spatial patterns

The method has some similarity to common spatial patterns (CSP). Typically, in CSP we assume just
two connectivity matrices and analyse their difference. As noted in Section 3.1, in the case of just two
time segments, PCA in the connectivity matrix space in fact results in the analysis of the difference of
the two connectivity matrices in our framework as well. Extensions to many connectivity matrices exist
but are not too widely used (Dornhege et al., 2008).

So, the crucial difference is in how the difference of connectivity matrices is analysed. In CSP, we
would use well-known low-rank approximations, i.e. vectors equal to the eigenvectors. This in in contrast
to our method, where we transform the eigenvectors by taking sums and differences. On the other hand,
CSP has an interesting affinity to our method in the sense that vectors corresponding to both the dominant
positive and negative eigenvalues are utilized.

Another important difference is that CSP is usually formulated in an supervised case, where the seg-
mentation of the data corresponds to some externally defined classes. However, nothing would prevent
CSP to be applied, for example, to the first half and the second half of resting-state data. Further related
work in classification was published by Tomioka and Müller (2010), where a penalty for the rank of a
matrix classifier leads to a low-rank classifier.

We can actually easily define a supervised variant of our method, simply by definining the segments
in which connectivity is computed to correspond to segments predefined by an experimental protocol or
other supervisory labels. In such a case, we could even use the components for classification. However,
we leave a detailed investigation of such supervised methods for future research and concentrate on
purely unsupervised learning here.

8 Conclusion

We proposed a new method, which we call Orthogonal Connectivity Factorization, for analysing the
dynamics of connectivity patterns, or in general, the differences of a set of connectivity matrices. The
main novelty here is to find components which are linear in the original data. This is in contrast to
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conventional methods which find linear components in the connectivity matrix space. The main goal is
to analyse the variability (nonstationarity) of connectivities in a way which is intuitively comprehensible
and easy to visualize. Furthermore, our method considerably reduces the number of free parameters to
estimate, and is thus likely to lead to better results when data is scarce.

The method finds two linear, orthogonal components of the data such that the connectivity between
them is maximally non-stationary. The orthogonality constraint is the main mathematical novelty, and
sets the method apart from related methods, such as common spatial patterns (CSP), or blind source sep-
aration using non-stationarity (Matsuoka et al., 1995). Intuitively, the method is related to a constrained
form of PCA, but, according to the simulations, seems to have better identifiability, similarly to ICA or
PARAFAC. The orthogonality constraint improved the fMRI analysis results substantially.

We presented three variants of the method (OCF1–OCF3). The first is based on further analysing the
PCA of connectivity matrices by a dedicated, orthogonal rank-two approximation, and the two others are
based on formulating a constrained PCA objective function and optimizing it by a tailor-made algorithm.
Constrained PCA produced better results on some simulated data, especially when there are component
pairs with similar statistics, which leads to the well-known identifiability problem of PCA. Constrained
PCA seemed to produce better results even with some of real data, although only on one of the data sets,
and the validation of the results are purely visual since ground truth was not known. However, the basic
idea of performing the novel orthogonal rank-two approximation on results of matrix PCA is surprisingly
efficient as well.

While the method was mainly motivated by brain imaging data in this paper, it seems to have ex-
tremely wide applicability, and we didn’t make any assumptions which would be somehow particular
to brain imaging data. For example, it is easy to imagine applications on word co-occurrence matrices,
correlations in financial time series, and regional feature covariances in images.

A Matlab package implementing the method is publicly available on the Internet.5
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A Proofs of Theorems

A.1 Proof of Theorem 2

Proof: We can equivalently formulate the problem as

min
α,‖w‖=‖v‖=1,wT v=0

‖K− α

2
(vwT +wvT )‖2 (38)

5http://www.cs.helsinki.fi/u/ahyvarin/code/ocf/
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where α is a scalar and the norm is the Frobenius norm. Then, we have

‖K− α

2
(vwT +wvT )‖2 = ‖K‖2−2αvT Kw+

α2

2
(39)

under the unit norm and orthogonality constraints. Maximizing this with respect to α gives α = 2vT Kw,
and plugging this alpha into the objective function transforms the optimization problem into

min
‖w‖=‖v‖=1,wT v=0

‖K‖2−2(wT Kv)2 (40)

which is equivalent to (2) since we can always switch the sign of, say, w and thus we have to actually
maximize the absolute value of the bilinear form in (2). Using Theorem 1, we further see that the value
of the objective is as announced in the theorem.

The squared Frobenius norm of a symmetric matrix equals, by diagonalization, the sum of the
squared eigenvalues. Denote by c the sum of the squares of the eigenvalues of K, excluding the smallest
and the largest. So, we have

‖K‖2 = λ
2
max +λ

2
min + c (41)

Thus, the optimal value of the objective function can be manipulated as

‖K‖2−2(wT Kv)2 = (λ2
max +λ

2
min + c)− 1

2
(λmax−λmin)

2−=
1
2
(λmax +λmin)

2 + c (42)

This is clearly always non-negative, and it is zero if and only if c = 0, which means that the matrix has
rank two, and λmin =−λmax.

A.2 Proof of Theorem 3

Given a,b, the optimal rτ is as in (13), with

c =
1√

∑τ[aT C̃τa−bT C̃τb]2
(43)

Plugging this into the objective (11), we obtain the optimization problem

max
‖a‖=‖b‖=1

√
∑
τ

(aT C̃τa−bT C̃τb)2 (44)

Maximizing this objective is equivalent to maximizing

max
‖a‖=‖b‖=1

∑
τ

(aT C̃τa−bT C̃τb)2 (45)

since an increasing transformation of the objective does not change the optimizing point.
Now, assume a,b,r maximize the transformed objective (11). Then, by the logic just given, the a,b

maximize (45). On the other hand, for any given r, the optimization of (11) is equivalent to the problem

max
‖a‖=‖b‖=1

aT Ma−bT Mb (46)
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with
M = ∑

τ

rτC̃τ (47)

Since this is of the same form as the problem in the proof of Theorem 1, the a and b are orthogonal,
as shown in the proof of Theorem 1. Thus, the optimization of (11) gives the same a,b as the same
optimization of (45) with an added orthogonality constraint:

max
‖a‖=‖b‖=1,aT b=0

∑
τ

(aT C̃τa−bT C̃τb)2 (48)

In this optimization, we can transform the variables as in (7), and we obtain original constrained PCA
objective (10). Thus, an optimum of (11) is an optimum of (10).

Conversely, assume that w,v optimize the original objective (10). Transforming as in (4), the ensuing
a,b equivalently solve the problem in (48). As shown in the preceding paragraph, the constraint of
orthogonality on a,b does not change the optimum, i.e. the a,b solve (45) as well. Thus, see that the a,b
also optimize (11), together with the r given in (13).

A.3 Proof of Theorems 4 and 5

We prove here Theorem 5. The proof of Theorem 4 is obtained as a simplification of the proof below, by
replacing D−1

τ by identity, and any correlation coefficient matrices by covariance matrices.
First, we have for the precision matrix of observed data

cov(x(τ))−1 = [DτHcov(s(τ))HT Dτ]
−1 = D−1

τ Hcov(s(τ))−1HT D−1
τ

= D−1
τ [I+ z(τ)(h1hT

2 +h2hT
1 )]D

−1
τ (49)

Denoting the observed covariance matrix in time segment τ by Ĉτ, we can formulate the Gaussian like-
lihood of the model defined by (27) and (23) as

logL(H,z(τ),Dτ) =−∑
τ

1
2

tr(ĈT
τ D−1

τ (I+ z(τ)[h1hT
2 +h2hT

1 ])D
−1
τ )

+
1
2

log |det(I+ z(τ)[h1hT
2 +h2hT

1 ])|+ log |detD−1
τ |+ log p(z(1), . . . ,z(k)) (50)

where p(z(1), . . . ,z(k)) is the (prior) pdf of the z(τ), and the summation is taken over all the terms. Using
logic similar to the proof of theorem 1, and the orthogonality of H, we see that the eigenvalues of the
first matrix whose determinant is being computed above are equal to 1− z(τ) and 1+ z(τ), and the rest
are ones. Furthermore, we can arrange the product in the first trace term as according to the well-known
commutativity of the trace. Thus, we have

logL(H,z(τ),Dτ) =−∑
τ

z(τ)hT
1 D−1

τ ĈτD−1
τ h2 +

1
2

log |1− z(τ)2|+ log |detD−1
τ |

+
1
2

tr(D−1
τ ĈτD−1

τ )+ log p(z(1), . . . ,z(k))+ const. (51)

where the constant term does not depend on z or H. Now, in Theorem 5, we approximate Dτ by the
standard deviations of the data variables (i.e. its sample version). This approximation is exact in the limit
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of infinitesimal z(τ). Together with the non-overlapping property, the approximation leads in fact to error
of O(z2) if we neglect finite-sample errors, because we have

cov(x(τ)) = I− z(τ)(h1hT
2 +h2hT

1 )− z(τ)2(h1hT
1 +h2hT

2 )+O(z3) (52)

as can be verified by simply multiplying this by cov(x(τ))−1. Now, due to the non-overlapping property,
h1hT

2 has zero diagonal, which means that the variances are only changed by O(z2). Thus,

cov(x(τ)) = Dτ[I− z(τ)(h1hT
2 +h2hT

1 )]D
−1
τ +O(z2) (53)

With this approximation, D−1
τ ĈτD−1

τ is nothing else than the sample correlation coefficient matrix C̄τ in
time segment τ, and we have the approximation of the likelihood

logL(H,z(τ)) =−∑
τ

z(τ)hT
1 C̄τh2 +

1
2 ∑

τ

log |1− z(τ)2|+ log p(z(1), . . . ,z(k))

+ const.+O(z3) (54)

where the constant term does not depend on z or H.
Next, we implement the zero-mean constraint of z in (24). We use the simple identity E{(x−Ex)(y−

Ey)} = E{x(y− Ey)} = E{(x− Ex)y} applicable for any two random variables, which in this case,
applied on z and hT

1 C̄τh2 and averaging taking place over τ, implies

∑
τ

z(τ)hT
1 C̄τh2 = ∑

τ

z(τ)(hT
1 C̄τh2−

1
T ∑

τ

hT
1 C̄τh2) = ∑

τ

z(τ)hT
1 [C̄τ−

1
k ∑

τ

C̄τ]h2 (55)

and thus we define the correlation coefficient matrices with the average correlations removed as

C̃τ = C̄τ−
1
k ∑

τ

C̄τ (56)

and we can write the approximate likelihood as

logL(H,z(τ)) =−∑
τ

z(τ)hT
1 C̃τh2 +

1
2 ∑

τ

log |1− z(τ)2|+ log p(z(1), . . . ,z(k))+ const.+O(z3) (57)

which holds even for z without the zero-mean constraint. Thus, we see that we can equivalently analyze
the correlation coefficients whose global means have been removed, which makes intuitive sense, and
was done above.

As in the theorem, we define

p(z) =
1
2ε

I[−ε,ε] (58)

To integrate out z(τ), let us first make a Taylor expansion for each of them separately. Denoting cτ =
hT

1 C̃τh2, simple Taylor approximations give for a single time point (where indices t are dropped for
simplicity):

L(H,z) = exp(logL(H,z)) = exp(−zc)
√

1− z2 +O(z3) =

[1− zc+
1
2

z2c2 +o(z2)][1− 1
2

z2 +o(z2)]+O(z3) = 1− zc+
1
2
(c2−1)z2 +o(z2) (59)
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Now we need to integrate this for all τ, over [−ε,ε]T with the constraint of zero mean in (24):

1
(2ε2)

∫
S
∏

τ

[1− z(τ)cτ +
1
2
(c2

τ−1)z(τ)2 +o(z(τ)2)]dz(1),dz(2), . . . ,dz(k) (60)

where S = {x ∈ [−ε,ε]T ,∑τ xτ = 0}. When the product in the integrand is written out, it will have a)
a constant term equal to one, not depending on the parameters (i.e. c), b) the first-order terms −z(τ)cτ

which integrate to zero by symmetry, and c) second-order terms which are the relevant ones. They are of
two kinds, 1

2(c
2
τ −1)z(τ)2 and z(τ)cτz(τ′)cτ′ . The terms 1

2 z(τ)2 can be ignored since they do not depend
on cτ. The remaining terms can be arranged as 1

2(∑τ cτz(τ))2. Since the cτ have zero mean, this term
does not depend on the mean of the z(τ), and it in fact equal to 1

2 ∑τ(cτz(τ))2. Thus, we are left with
an integral in which all variables are separable, and we simply need to compute (ignoring lower-order
terms)

1
(2ε2)

∫
ε

−ε

∫
ε

−ε

. . .
∫

ε

−ε

1
2 ∑

τ

(cτz(τ))2dz(1),dz(2), . . . ,dz(k) =
ε3

6 ∑
τ

c2
τ (61)

which gives the approximation in the theorem.
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Journée, M., Nesterov, Y., Richtárik, P., and Sepulchre, R. (2010). Generalized power method for sparse
principal component analysis. J. of Machine Learning Research, 11:517–553.

Kiviniemi, V., Kantola, J. H., Jauhiainen, J., Hyvärinen, A., and Tervonen, O. (2003). Independent
component analysis of nondeterministic fMRI signal sources. NeuroImage, 19(2):253–260.

Kiviniemi, V., Vire, T., Remes, J., Abou-Elseoud, A., Starck, T., Tervonen, O., and Nikkinen, J. (2011).
A sliding time-window ICA reveals spatial variability of default mode network in time. Brain Con-
nectivity, 1:339–347.

Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010). Estimating time-varying networks. The Annals
of Applied Statistics, 4(1):94–123.

Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Schluep, M., Vuilleumier, P., and
Van De Ville, D. (2013). Principal components of functional connectivity: A new approach to study
dynamic brain connectivity during rest. NeuroImage, 83:937–950.

Liu, S., Quinn, J. A., Gutmann, M. U., and Sugiyama, M. (2013). Direct learning of sparse changes
in markov networks by density ratio estimation. In Machine Learning and Knowledge Discovery in
Databases (ECML2013), pages 596–611. Springer.

Matsuoka, K., Ohya, M., and Kawamoto, M. (1995). A neural net for blind separation of nonstationary
signals. Neural Networks, 8(3):411–419.

Monti, R. P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., and Montana, G. (2014). Estimating
time-varying brain connectivity networks from functional mri time series. NeuroImage, 103:427–443.

Pham, D.-T. and Cardoso, J.-F. (2001). Blind separation of instantaneous mixtures of non stationary
sources. IEEE Trans. Signal Processing, 49(9):1837–1848.

Ramkumar, P., Parkkonen, L., Hari, R., and Hyvärinen, A. (2012). Characterization of neuromagnetic
brain rhythms over time scales of minutes using spatial independent component analysis. Human
Brain Mapping, 33(7):1648–1662.

Robinson, J. W. and Hartemink, A. J. (2009). Non-stationary dynamic Bayesian networks. In Advances
in Neural Information Processing Systems 21, pages 1369–1376. MIT Press.

Robinson, L. F. and Priebe, C. E. (2012). Detecting time-dependent structure in network data via a new
class of latent process models. Arxiv preprint arXiv:1212.3587.

33



Sasaki, H., Gutmann, M. U., Shouno, H., and Hyvärinen, A. (2014). Estimating dependency structures
for non-Gaussian components with linear and energy correlations. In Proc. Int. Conf. on Artificial
Intelligence and Statistics (AISTATS2014), JMLR W&CP, volume 33, pages 868–876, Reykjavik,
Iceland.

Tantipathananandh, C. and Berger-Wolf, T. Y. (2011). Finding communities in dynamic social networks.
In Int. Conf. on Data Mining (ICDM), pages 1236–1241.

Taulu, S., Kajola, M., and Simola, J. (2004). Suppression of interference and artifacts by the signal space
separation method. Brain Topography, 16:269–275.

Tomioka, R. and Müller, K.-R. (2010). A regularized discriminative framework for EEG analysis with
application to brain–computer interface. NeuroImage, 49(1):415–432.

van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., and Linden, D. E. (2004). Functional
connectivity as revealed by spatial independent component analysis of fMRI measurements during
rest. Human Brain Mapping, 22(3):165–78.

Xuan, X. and Murphy, K. (2007). Modeling changing dependency structure in multivariate time series.
In Proceedings of the 24th international conference on Machine learning, pages 1055–1062.

Yang, J., Zhang, D., Frangi, A. F., and Yang, J.-Y. (2004). Two-dimensional PCA: a new approach to
appearance-based face representation and recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(1):131–137.

34


