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ABSTRACT
We consider a new estimation method (“score matching”)
for parametric statistical models. It is based on optimal
denoising using empirical Bayes. The ensuing method
has the additional advantage that it does not require the
model probability densities to be properly normalized, un-
like maximum likelihood. In fact, it does not even require
the model densities to be integrable, so one can use im-
proper model densities. Furthermore, the method leads to
a new geometric intepretation of estimation.

1. INTRODUCTION

1.1. Signal denoising by Empirical Bayes

An approach that has gained increasing acceptance in ma-
chine learning, computational neuroscience, and signal pro-
cessing is based on hierarchical Bayesian modelling. The
typical setting for modelling the observed multivariate
continuous-valued data vector, denoted byx, is as fol-
lows. The vectorx follows a distribution with probabil-
ity density function (pdf)p(x|s), wheres is a vector of
latent variables or parameters. The vectors in its turn
follows a prior distributionp(s|θ) whereθ is a vector of
(hyper)parameters. Typically,x is a somehowcorrupted
or incompleteversion ofs which is the real quantity of in-
terest (e.g. animage), andθ gives some kind offeatures.
The joint probability is obtained by concatenating these
probabilities:

p(x, s,θ) = p(x|s)p(s|θ) (1)

where we assume a flat prior forθ.
The central idea is that in such methods, the hyper-

parameters or featuresθ are not set subjectively, but es-
timated (learned) from the data. Methods in which the
hyperparameters are estimated from the datax are usually
called Empirical Bayes. In this paper, we consider a set-
ting that is slightly different from conventional Empirical
Bayes. We assume that a separate sample ofs, denoted by
s(1), . . . , s(T ) can be observed, and the hyperparameters
θ are estimated from such a sample. The priorp(s|θ) is
then used for Bayesian inference ofs when anx is ob-
served for unknowns. (In what follows, we shall simply
call p(s|θ) the “prior” andθ the “parameter” vector, omit-
ting the prefix “hyper”.)

The starting point of our analysis is to consider how
the parameters inθ should be estimated from a sample of
uncorrupted signalss(1), . . . , s(T ) in this context.

1.2. Denoising with infinitesimal gaussian noise

To simplify the analysis, we make here the following as-
sumptions:

1. A point estimate ofθ is used.This is because com-
putational considerations usually make integration
over the parameter space (e.g. feature space in the
case of images) too expensive.

2. A point estimate of thes is used.This is because in
practical applications, the posterior must typically
be output as a point estimate (e.g. a denoised im-
age).

3. The point estimate is the maximum a posteriori
(MAP) estimate.This is the typical, and computa-
tionally most feasible, point estimate to summarize
the posterior ofs. MAP estimation simply means
finding the value that maximizes the posterior den-
sity of s, given an estimatêθ:

ŝMAP (θ̂,x) = argmax
s

p(x|s)p(s|θ̂)

= argmax
s

log p(x|s) + log p(s|θ̂) (2)

where the notation witĥθ andx in parentheses em-
phasizes that the estimate is a function of both the
observed datax and the (previously) obtained pa-
rameter estimateθ. Such a framework is often used
with very high-dimensional data where computa-
tional considerations are of central importance.

4. The corrupting process is additive gaussian noise
with infinitesimal variance.Additive gaussian noise
is the archetypal corrupting process, and an infinites-
imal variance allows first-order approximations which
are the core of the analysis given here.

Thus,x is the sum of ann-dimensional nongaussian
random vectors and the noise vectorn:

x = s + n. (3)

where the noisen is gaussian and of covarianceσ2I, where
σ2 is infinitesimal. The maximum a posteriori (MAP) es-
timator fors is

ŝ = argmin
u

1

2σ2
‖x− u‖2 + log ps(u) (4)



which is the basic method of Bayesian denoising. We ob-
tain (e.g. [1])

ŝ = g(x) (5)

where the functiong is defined by

g−1(u) = u− σ2∇ log ps(u). (6)

1.3. Why maximum likelihood may not be optimal

Most work on Bayesian inference in signal restoration and
computational neuroscience seems to implicitly assume
that maximum likelihood estimation (MLE) is the optimal
way of estimating the parameters. However, this does not
follow from the classic optimality criteria of MLE. The
main justification for MLE is that it is, under certain as-
sumptions, asymptotically Fisher-efficient, i.e. gives asymp-
totically the most exact estimates for parameters, in terms
of squared error. In our case, this would mean that the
error in the estimate ofθ is a small as possible.

However, what we want to minimize here is the er-
ror in the MAP estimate ofs, and not the error inθ. It
is possible that some estimation methods give a large er-
ror in θ, but this error does not induce a large error in
s. As a common example of a related situation consider
multicollinearity in prediction by linear regression: if the
predicting variables are highly correlated, their individual
regression coefficients have large estimation errors; yet,
the prediction might be quite good. So, if we are not inter-
ested in the values of the parameters themselves, but only
the quality of the Bayesian inference that they provide, es-
timation errors inθ may be irrelevant, and there seems to
be no reason to consider MLE ofθ optimal.

Furthermore, the prior modelp(s|θ) might only be a
roughapproximationof the true prior distribution ofs; the
real prior might not belong to the familyp(s|θ). In such
a case, which is actually the target of the analysis in this
paper, any considerations of squared error inθ may be
of little use and even ill-defined. In fact, the error in this
case may not have anything to do with Fisher-efficiency,
because even in the limit of an infinite sample, when the
variance of the estimator goes to zero, the prior model will
not be equal to the distribution of the data. Then, estima-
tion ofθ should be based on a direct measure of how good
the ensuing MAP estimation ofs is.

Information theory provides another justification for
MLE in terms of optimal compression, see e.g. [2]. How-
ever, such considerations seem to be irrelevant if the goal
is Bayesian (MAP) inference ofs.

1.4. Our approach

In this paper, we summarize the theory developed in [3,
4, 5] and present it in a simplified, unified setting. We
show how to obtain the optimal estimator ofθ in terms
of denoising, i.e. inference ofs (Sections 2 and 3). The
ensuing solution turns out to have an important compu-
tational advantage as well: it enables the consistent esti-
mation of non-normalized models without computation of
the normalization constant (Section 4). Since the estima-
tor is based on minimization of a Euclidean distance, we

propose an intuitive intepretation of the estimator in terms
of a geometrical projection (Section 5). The quantities
involved can also be interpreted in terms of “structure” in-
herent in the data, as has hitherto been done in the case
of Shannon entropy. Finally, we point out an interesting
aspect of the theory, which is that the model densities do
not need to be integrable at all, i.e. they need not be proper
densities (Section 6).

2. ANALYSIS OF ESTIMATION ERROR

2.1. Hierarchical data model

We shall first rigorously define the whole process of data
generation and parameter estimation in a hierarchical model
where a separate sample of uncorrupted signals can be ob-
served.

1. Estimation of parameters: A sample
s(1), . . . , s(T ) is generated from a prior distribution
p0(s). From this sample, we compute an estimateθ̂

for θ, using a method to be specified.

2. Generation ofs underlying observed data: A sin-
gle vectors0 is generated from the prior distribution
p0(s).

3. Generation of observed data: A data vectorx is
generated from the data distributionp(x|s0). In our
simplified setting, this means we add gaussian noise
of infinitesimal variance (see [5] for a more general
approach).

4. MAP inference: Usinĝθ andx, an estimatês for s0

is obtained by MAP estimation as in (2).

In step 4, the data generating processp(x|s) is assumed
to be exactly known; its estimation would be a completely
different problem. The prior distributionp0 is approxi-
mated by a parameterized family of pdf’s,p(.|θ). We do
not assume thatp0 belongs to the familyp(.|θ).

The goal is now to minimize the error‖∆s‖ = ‖ŝ −
s0‖ that is due to the error in the approximation of the
prior p0(s) by p(s|θ̂). Even with a perfect estimate for the
prior, there will, of course, be an estimation error inŝ due
the randomness in the process of sampling the data from
p(x|s0), which corresponds to the process corrupting the
signal. However, we will see below that it is possible to
separate these two kinds of errors.

Next, we need some notation. Denote the derivatives
of the log-pdf ofs givenθ by

ψ(s|θ) =









∂ log p(s|θ)
∂s1

...
∂ log p(s|θ)

∂sn









=







ψ1(s|θ)
...

ψn(s|θ)







= ∇s log p(s|θ) (7)



and the corresponding Hessian matrix by

H(s|θ) =









∂ log p(s|θ)
∂s1s1

. . . ∂ log p(s|θ)
∂s1sn

...
∂ log p(s|θ)

∂sns1

. . . ∂ log p(s|θ)
∂snsn









= ∇sψ(s|θ)T (8)

Similary, denote byψ(x|s) andH(x|s) the gradient
and the Hessian matrix oflog p(x|s), where the differ-
entiation is still done with respect tos, and denote by
ψ0(s) andH0(s) the corresponding gradient and Hessian
of log p0(s). In the following, we use the shorter notation
ŝ = ŝMAP (θ̂,x).

2.2. Decomposition of error

Our first result is given in the following theorem, obtained
by combining Theorems 1 and 2 in [5]:

Theorem 1 Assume that all the log-pdf ’s in (2) are differ-
entiable. Assume further that the estimation error∆s =
ŝ − s0 is small. Then the first-order approximation of the
error is

E{‖∆s‖2} = σ4E{‖E1‖
2} + σ4E{‖E2‖

2}

+ o(σ2‖∆s‖2) (9)

where

E1 = ψ0(s0) −ψ(s0|θ̂) (10)

E2 = ψ0(s0) +ψ(x|s0) (11)

and the expectation is taken over the distributionp0 for
thes0.

Now, the error vector inE2 is a function ofs0 andx only,
i.e. the data generating parts (steps 3 and 4) above. Thus,
it does not depend on our estimate forθ. In contrast,
ψ0(s0)−ψ(s0|θ̂) in E1 doesdepend on̂θ which is a func-
tion of the samples(1), . . . , s(T ) (step 2 above). Thus, we
see a clear decomposition of the error in two parts

• The first part,E{‖E1‖
2}, is the error in the estimate

ŝ due to an error in our approximationp(.|θ) of the
prior p0. In fact, if the approximation of the prior is
exact,ψ0(s0) = ψ(s0|θ̂) for anys0, and this term
is zero.

• The second part,E{‖E2‖
2}, does not depend on the

samples(1), . . . , s(T ) or θ̂ at all. It is related to
the error that the MAP estimator has even when the
prior p0 is known perfectly. This can be seen from
the fact that ifs0 were equal to the MAP estima-
tor using a perfect prior model,E2 would be zero
(because according to the definition of the MAP es-
timator, the sum of these gradients has to be zero).

3. PROPOSAL OF OPTIMAL ESTIMATOR

Based on Theorem 1, we propose to minimize‖E1‖
2 in

order to minimize the estimation (restoration) error ins.
Such an estimator should be optimal in the sense of mini-
mizing squared error.

Thus, taking the expected value of the error‖E1‖
2 over

all s with respect top0, and introducing the factor1/2 for
notational simplicity, we arrive at the following objective
function:

J (θ) =
1

2

∫

p0(s)‖ψ0(s) −ψ(s|θ)‖2ds (12)

Basically, the objective function is a weighted squared
error between the gradient of the log-densityψ0 of the
samples(t) and the gradient of the log-density given by
the model,ψ(.|θ̂). This is actually rather natural because
the definition of the MAP estimator (2) implies that the
sum of the gradients of the log-densitiesp(x|s) andp(s|θ̂)
must be zero; only the latter gradient depends on the pa-
rameter estimatêθ. So, to minimize the error in the MAP
estimator, one should find anθ that gives an accurate model
of that gradient.

It may seem that the objective functioñJ is computa-
tionally intractable because it usesψ0(s) which depends
on the unknown priorp0. However, it turns out that the ob-
jective function is very closely related to the “score match-
ing” objective function proposed in [3], see also [6]. Thus,
we can use the following equivalent form:

Theorem 2 Under some regularity constraints [3], the
objective function in (12) can be expressed as

J (θ) =

∫

p0(s)

[

∑

i

∂iψi(s|θ) +
1

2
ψi(s|θ)

2

]

ds

+ const. (13)

where∂i denotes differentiation with respect tosi, and the
constant term does not depend onθ.

The proof, reproduced in the Appendix, is based on a sim-
ple trick of partial integration.

Obviously, the sample version of this expression for
the objective function is obtained as

J̃ (θ) =
T

∑

t=1

∑

i

∂iψi(s(t)|θ) +
1

2
ψi(s(t))

2 (14)

where we have omitted the irrelevant constant.
The sample version in (14) is easy to compute: it only

contains sample averages of some functions which are all
part of the model specification and can be simply com-
puted, provided that the model is defined using functions
log p(.|θ) whose derivatives can be given in closed form
or otherwise simply computed.

4. COMPUTATIONAL ADVANTAGE OF
PROPOSED ESTIMATOR

In fact, the objective function in (14) was originally pro-
posed in [3] because it solves an unrelated computational



problem. The problem considered in that paper was what
to do if the normalization constant of the pdf is not known.
In other words, the prior pdf is defined using a functionq
in a form that is simple to compute, butq does not inte-
grate to unity. Thus, the pdf is given by

p(s|θ) =
1

Z(θ)
q(s|θ) (15)

where we donot know how to easily computeZ which is
given by an integral that is often analytically intractable:

Z(θ) =

∫

q(s|θ) ds (16)

Now, the important point is that the derivatives of the log-
density with respect to thesi ( ψ, “score functions”) do
not depend onZ at all, so the problem of computing the
normalization constant disappears when we consider only
the score functions. This is because

∇s log p(s|θ) = ∇s log q(s|θ) −∇s logZ(θ)

= ∇s log q(s|θ) (17)

It is natural to try to estimate the model by looking at the
Euclidean distance between the score function of the data
and the score function given by the model as in (12). This
leads to the present objective function, independently of
any considerations of statistical optimality .

Thus, the computational advantage of the objective
function in (14) is that it does not containZ, or any other
any integrals or other expressions which would be difficult
to compute. This is in stark contrast to the maximum like-
lihood estimator, which would require a numerical evalu-
ation of the integral in (16). In [3], it was further proven
that such an estimator is (locally) consistent.

We can thus conclude that our proposed estimator com-
bines statistical optimality, in the sense of denoising, with
computational simplicity, in the sense that the prior model
p(s|θ) does not need to integrate to unity.

5. AN ALTERNATIVE APPROACH TO
INFORMATION GEOMETRY

In this section, we will propose two intuitive interpreta-
tions of the estimation performed by the proposed estima-
tor, i.e. score matching. The interpretations are based on
two ideas:

• Score matching estimator is obtained by minimiz-
ing a Euclidean distance, which leads to an inter-
pretation asprojection.

• The amount of noise that can be removed from data
is dependent on the amount ofstructure inherent
in the data vector. Such structure is often associ-
ated with information-theoretical quantities such as
(neg)entropy, but our analysis provides an alterna-
tive measure of structure.

The word “structure” is used loosely in what follows,
intuitively it means a lack of complete randomness in the

data distribution. This is similar to the intuitive princi-
ple of information theory, in which the structure present
in the data distribution allows it to be represented more
compactly, i.e. compressed. Here, we show how the pro-
portion of gaussian noise that can be removed from noisy
observations leads to a similar measure of structure.

5.1. Definition of geometry

We begin by defining basic geometrical concepts based
on the score functions. Consider the spaceS of probabil-
ity density functions which are sufficiently smooth in the
sense that the assumptions needed in the theorems above
are fulfilled. Assume thatps in S is fixed once and for
all. Given any two pdf’sp1 andp2 in S, we define their
dot-product as

〈p1, p2〉s =

∫

ps(ξ)

[

n
∑

i=1

ψ1,i(ξ)ψ2,i(ξ)

]

dξ (18)

whereψ1,i denotes thei-th element in the score function
of p1, and likewise forψ2,i. (For a bit more mathematical
rigour, we useξ as the integrating variable instead ofs.)
The norm of a pdf is then given by

‖p1‖
2
s

= 〈p1, p1〉s =

∫

ps(ξ)

[

n
∑

i=1

ψ1,i(ξ)
2

]

dξ

=

∫

ps(ξ)‖ψ1(ξ)‖
2dξ (19)

where the notation‖.‖, without a subscript, in the right-
most integral denotes the ordinary Euclidean norm.

The norm we have just defined is closely related to
Fisher information. The multidimensional Fisher infor-
mation matrix is defined here as

IF (s) = E{ψ(s)ψ(s)T }. (20)

Strictly speaking, this is the Fisher information matrix w.r.t.
a hypothetical location parameter. Obviously, we have

‖ps‖
2
s

= tr(IF (s)) (21)

Using the norm, we can also naturally define the distance:

dist2
s
(p1, p2)

=

∫

ps(ξ)

[

n
∑

i=1

(ψ1,i(ξ) − ψ2,i(ξ))
2

]

dξ

=

∫

ps(ξ)‖ψ1(ξ) −ψ2(ξ)‖
2dξ (22)

Basically, we are defining something similar to a Hilber-
tian structure in the space of score functionsψ. Now we
proceed to show how these geometric concepts can be in-
terpreted as measures of the structure of a prior distribu-
tion in Bayesian inference.



5.2. Denoising capacity using perfect model

First of all, the norm‖.‖s defined in (19) is closely related
to denoising capacity. In previous work, we proved the
following:

Theorem 3 Assume thatp(x|s) is a gaussian distribution
with means and covarianceσ2I. The squared error of
the MAP estimator̂s, when the distributionps is exactly
known,is given by

tr(E{(s − ŝ)(s − ŝ)T }) = nσ2 − σ4‖ps‖
2
s

+ terms of higher order inσ2 (23)

This is a simple corollary of Theorem 2 in [1].
Thus, we can interpret‖ps‖2

s
as theamount of struc-

ture that is present in the data vectors. It determines the
amount of noise reduction that we can achieve by MAP
estimation when we have a perfect model of the distribu-
tion of s. (The dominant termnσ2 does not depend on the
distribution of the data so it is irrelevant as a measure of
structure.) The case of an imperfect model will be con-
sidered in the next section. Now we show some examples
of different distributions and the amounts of structure they
contain.

Example 1 A flat distribution

pf (ξ) = c for all ξ ∈ R
n (24)

has no information that could be used in denoising. In
fact, it corresponds to a score function that is identically
zero, so the norm‖pf‖s is zero.

Example 2 The gaussian distribution has minimum struc-
ture in the sense of‖.‖s for a fixed covariance structure
[2]. This holds for both our Fisher-information based
measure and the more widely used Shannon entropy.

Example 3 Take anys with smooth pdf. Consider the
variable rescaled variableσs. Whenσ → 0, the‖ps‖s

goes to infinity. The structure becomes infinitely “strong”
in the sense that we then know thats does not take any
other values than zero. Conversely, ifσ → ∞, ‖ps‖s goes
to zero, because the limit is the flat prior. On the other
hand, translating the distribution ass + µ for a constant
µ does not change‖.‖s.

5.3. Denoising capacity using imperfect model

In practice, we do not have a perfect model ofps. Denote
by p̂ our approximation ofps. Combinining the proofs of
Theorems 1 and 3 gives the following general result

Theorem 4 Assume thatp(x|s) is as in Theorem 3. As-
sume we usêp as the approximation of the priorp(s|θ̂) in
the MAP estimator defined in (2). The denoising error can
then be decomposed as

tr(E{(s − ŝ)(s − ŝ)T }) = nσ2 − σ4‖ps‖
2
s

+ σ4dist2
s
(p̂, ps) + terms of higher order inσ2 (25)

We see that the error is increased proportionally to the dis-
tance dist2

s
(p̂, ps). Thus, it is this distance between̂p and

ps that gives the reduction of denoising capacity due to an
imperfect model. This enables us to interpret this distance
as the amount of structure ofs which isnot modelledby
p̂. Thus, the metric we have defined is themetric of opti-
mal estimationif the purpose is to construct a prior model
of the data to be used in Bayesian inference such as de-
noising. For exponential families, the decomposition is
orthogonal as will be shown next.

5.4. Exponential families

Now we show how the theory is simplified for exponential
families.

5.4.1. Orthogonal decomposition

First we show how a particularly illustrative geometric de-
composition can be obtained in the case of exponential
families.

Assume our model comes from an exponential family
defined as:

log p(s|θ) =

n
∑

i=1

θiFi(s) + logZ(θ) (26)

where the parameter vectorθ can take all values inRm,
andZ is a normalizing constant that makes the integral
equal to unity. The score functions are simply obtained:

ψ(s|θ) =
n

∑

i=1

θi∇Fi(s) (27)

which shows that the space of score functions in the model
family is a linear subspace. This implies that estimation
by minimization of dist2

s
(p(.|θ), ps) is an orthogonal pro-

jection. In an orthogonal projection, the residual is orthog-
onal to the result of the projection. Denote the estimator
minimizing‖.‖s by p̂. Then this orthogonality means

〈p̂− ps, p̂〉s = 0 (28)

and it also implies the following Pythagorean decomposi-
tion

‖ps‖
2
s

= dist2
s
(p̂, ps) + ‖p̂‖2

s
(29)

This decomposition has a very interesting interpreta-
tion. Above, we interpreted the term on the left-hand side
as the amount of structure in the data, and the first term
on the right-hand side as the amount of structure not mod-
elled. On the other hand, we have by Theorem 4 and (29)

tr(E{(s− ŝ)(s − ŝ)T }) =

= σ2n− σ4‖p̂‖2
s
+ o(σ4) (30)

which suggests an intepretation of‖p̂‖2
s

as the structure
(succesfully) modelled, because it is the reduction in de-
noising error when using the model. So, we see that the



terms in (29) can be intuitively interpreted so that the de-
composition reads

Structure in data

= Structure not modelled

+ Structure modelled (31)

each term in this “equation” correspondinf to one term in
Eq. (29).

5.4.2. Closed-form solution

Another interesting property of the exponential family in
the context of score matching was shown in [4]: the esti-
mator can be obtained in closed form. Again, we assume
that the parameter space isR

m, i.e.θ can take all possible
real values.

Let us denote the matrix of partial derivatives ofF , i.e.
its Jacobian, byK(ξ), with elements defined as:

Kki(ξ) =
∂Fk

∂ξi
, (32)

and the required matrix of second derivatives by

Hki(ξ) =
∂2Fk

∂ξ2i
. (33)

Now, we have

ψi(ξ;θ) =

m
∑

k=1

θkKki(ξ), (34)

and the objective functioñJ in (14) becomes

J̃ (θ) =
1

T

T
∑

t=1

∑

i
[

1

2
(

m
∑

k=1

θkKki(s(t)))
2 +

m
∑

k=1

θkHki(s(t))

]

=
1

2
θT (

1

T

T
∑

t=1

K(s(t))K(s(t))T )θ

+ θT (
1

T

T
∑

t=1

∑

i

Hki(s(t))). (35)

This is a simple quadratic form ofθ. Thus, the minimiz-
ing θ can be easily solved by computing the gradient and
setting it to zero. This giveŝθ is closed form as

θ̂ = −
[

Ê{K(s)K(s)T }
]−1

(
∑

i

Ê{hi(s)}), (36)

whereÊ denotes the sample average (i.e. expectation over
the sample distribution), and the vectorhi(x) is the i-th
column of the matrixH defined in (33).

6. NON-INTEGRABLE DENSITIES

To conclude this review, we point out an interesting prop-
erty of the this theory which has hitherto escaped our at-
tention. The model densities are not only allowed to be
non-normalized (which is merely a computational simpli-
fication), but in fact, there is no need to assume that they
are integrable at all. Consider, for example, the following
model density on the real line:

p(x;µ, σ) = [1 + exp(−
x− µ

σ
)]−1 (37)

with σ > 0. For any values ofµ andσ, we have

lim
x→∞

x = 1 and
∫

p(x;µ, σ)dx = ∞ (38)

However, there is no reason why we could not use this
model in the estimation theory based on score matching.
We can estimate the model parameters by minimization of
(14) without any modification. The geometric interpreta-
tion presented in Section 5 is completely valid, and Fisher
information is well-defined.

This observation greatly relaxes the constraints on the
functional forms that one can use in specifying the mod-
els. In practice, the constraint that the densities must go
to zero at infinity often forces the modeller to change the
algebraically, conceptually, or computationally simplest
functional forms to satisfy this constraint. However, that
may not be necessary using score matching theory.

In our example in (37), it is intuitively clear what the
“meaning” of the density and the parameters is: almost
all the data should have greater values thanµ, andσ ex-
presses how strict this constraint is. Using classic theory,
the modeller would have to figure out some simple way of
making the density go to zero asx → ∞, which would
complicate this model considerably.

Nevertheless, not any function can be used as density
even in score matching. First of all, the density function
must be positive, and their log-derivatives must not grow
too fast, in order to make all the integrals involved in the
objective function finite. A sufficient condition is that the
log-derivatives of the model density are all bounded.

7. CONCLUSION

We started by considering the estimation problem encoun-
tered in Bayesian perception and signal processing: the
estimation of a prior model of a signal, based on a sample
of such signals. Our analysis is based on the assumption
that we can observe a sample of uncorrupted signals to es-
timate the model. The corruption process was assumed to
be additive gaussian noise with infinitesimal variance.

If the objective is to have a prior that is optimal in
Bayesian inference, the optimal estimation method is not
maximum likelihood — at least not in the limit of very
weak signal corruption which we analyzed. Rather, it
turns out to be the “score matching” estimator originally
proposed purely on computational grounds in [3].



The score matching estimator does not require the prob-
ability density to be normalized to unit integral. In con-
trast to maximum likelihood estimation, score matching
thus avoids computational problems related to numerical
integration of the probability density. In fact, the model
densities are not required to be integrable at all. Further-
more, for exponential families, the estimator can be ob-
tained in closed form.

Thus, we see that score matching has also some statis-
tical optimality properties in signal restoration, in addition
to its original motivation, which was computational sim-
plicity.

Moreover, the analysis leads to a new geometric in-
terpretation of statistical estimation as projection, as well
as a new approach to the measurement of how much “in-
teresting structure” there is in a probability distribution,
based on the capacity of denoising using that structure.
For exponential families, the projection is orthogonal.

An alternative viewpoint on this estimation framework
is provided by [7]. See also [8] for connections to other
methods, and [9] for a practical application of the frame-
work.

A. PROOF OF THEOREM 2

The proof is reproduced from [3]. Definition (12) gives

J (θ) =

∫

p0(ξ)

[

1

2
‖ψ0(ξ)‖

2 +
1

2
‖ψ(ξ;θ)‖2

−ψ0(ξ)
Tψ(ξ;θ)

]

dξ (39)

The first term in brackets does not depend onθ, and can be
ignored. The integral of the second term is simply integral
of the sum of the second terms in brackets in (13). Thus,
the difficult thing to prove is that integral of the third term
in brackets in (39) equals the integral of the sum of the
first terms in brackets in (13). This term equals

−
∑

i

∫

p0(ξ)ψ0,i(ξ)ψi(ξ; θ)dξ

whereψ0,i(ξ) denotes thei-th element of the vectorψ0(ξ).
We can consider the integral for a singlei separately, which
equals

−

∫

p0(ξ)
∂ log p0(ξ)

∂ξi
ψi(ξ;θ)dξ

= −

∫

p0(ξ)

p0(ξ)

∂p0(ξ)

∂ξi
ψi(ξ;θ)dξ

= −

∫

∂p0(ξ)

∂ξi
ψi(ξ;θ)dξ

The basic trick of partial integration needed the proof
is simple: for any one-dimensional pdfp and any function

f , we have
∫

p(x)(log p)′(x)f(x)dx

=

∫

p(x)
p′(x)

p(x)
f(x)dx

=

∫

p′(x)f(x)dx

= −

∫

p(x)f ′(x)dx

under some regularity assumptions that will be dealt with
below.

To proceed with the proof, we need to use a multivari-
ate version of partial integration:

Lemma 1

lim
a→∞,b→−∞

f(a, ξ2, . . . , ξn)g(a, ξ2, . . . , ξn)

− f(b, ξ2, . . . , ξn)g(b, ξ2, . . . , ξn)

=

∫ ∞

−∞

f(ξ)
∂g(ξ)

∂ξ1
dξ1 +

∫ ∞

−∞

g(ξ)
∂f(ξ)

∂ξ1
dξ1

assuming thatf and g are differentiable. The same ap-
plies for all indices ofξi, but for notational simplicity we
only write the casei = 1 here.

Proof of lemma:

∂f(ξ)g(ξ)

∂ξ1
= f(ξ)

∂g(ξ)

∂ξ1
+ g(ξ)

∂f(ξ)

∂ξ1

We can now consider this as a function ofξ1 alone, all
other variables being fixed. Then, integrating overξ1 ∈ R,
we have proven the lemma.

Now, we can apply this lemma onp0 andψ1(ξ;θ)
which were both assumed to be differentiable in the theo-
rem, and we obtain:

−

∫

∂p0(ξ)

∂ξ1
ψ1(ξ;θ)dξ

= −

∫ [∫

∂p0(ξ)

∂ξ1
ψ1(ξ;θ)dξ1

]

d(ξ2, . . . , ξn)

= −

∫ [

lim
a→∞,b→−∞

[p0(a, ξ2, . . . , ξn)ψ1(a, ξ2, . . . , ξn;θ)

− p0(b, ξ2, . . . , ξn)ψ1(b, ξ2, . . . , ξn;θ)]

−

∫

∂ψ1(ξ;θ)

∂ξ1
p0(ξ)dξ1

]

d(ξ2, . . . , ξn)

For notational simplicity, we consider the case ofi = 1
only, but this is true for anyi.

The limit in the above expression is zero for any
ξ2, . . . , ξn,θ because we assumed thatp0(ξ)ψ(ξ;θ) goes
to zero at infinity. Thus, we have proven that

−

∫

∂p0(ξ)

∂ξi
ψi(ξ;θ)dξ =

∫

∂ψi(ξ;θ)

∂ξi
p0(ξ)dξ

that is, integral of the the third term in brackets in (39)
equals the integral of the sum of the first terms in brackets
in (13), and the proof of the theorem is complete.
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