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Ecological approach to receptive fields

• Why are the receptive fields in visual cortex the way they are?
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Classical theories of receptive fields

• Edge detection

• Joint localization in space and frequency

• Texture classification

• But: these give only vague predictions.
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Statistical-ecological approach

• What is important in a real environment?

• Natural images have statistical regularities.

• Can we “explain” receptive fields by basic statistical properties of

natural images?

• Emergence: a lot of precise predictions from only a couple statistical

assumptions.
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Outline of this talk:

• Statistical models that account for some properties of the (primary)

visual cortex.

– simple cells

– complex cells

– topography (spatial organization)

• Multi-layer approach can predict properties beyond V1.
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Linear statistical models of images

= s1· + s2· + · · ·+ sk·

• Denote byI(x,y) the gray-scale values of pixels.

• Model as a linear sum of basis vectors:

I(x,y) = ∑
i

Ai(x,y)si (1)

• What are the“best” basis vectors for natural images?
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Independent Component Analysis(Jutten and H́erault, 1991)

• In ICA, we assume that

– Thesi are mutually statistically independent

– Thesi arenongaussian,e.g. sparse

– For simplicity: the number of basis vectors equals the number of

pixels

• Then, the actualbasis vectors can be estimated,if the data is actually

generated using the linear model (Comon, 1994).

• Thus we get the best basis vectors from one statistical viewpoint.

• Inverting the system:si = ∑x,yWi(x,y)I(x,y), we see that thesi are

linear filter (simple cell) outputs.

7



Sparseness

• A form of nongaussianity often encountered in natural signals

• A random variable is “active” only rarely

gaussian:
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• Outputs of linear filters are usually sparse when input is natural images.
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Sparse coding and ICA

• Sparse coding: Find linear representation

I(x,y) = ∑
i

Ai(x,y)si (2)

so that thesi are as sparse as possible.

• Important property: a given data point is represented usingonly a

limited number of “active” (clearly non-zero) componentssi.

• In contrast to PCA, active components change from image patch to

patch.

• Deep result: For images,ICA is sparse coding.
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ICA / sparse coding of natural images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997)
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ICA of natural images with colour
(Hoyer and Hyv̈arinen, 2000)
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Model II: Independent subspace analysis
• Components estimated from natural images arenot really independent.

• The statistical structure much more complicated (of course!).

• In fact, independent components cannot be found for most kinds of

data: There are not enough free parameters.

• Next, we model some dependencies of simple cell (linear filter) outputs.

• This leads to a model of complex cell receptive fields: insensitivity to

phase of input.
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Independent subspaces
(Hyvärinen and Hoyer, 2000)

• A very basic approach to modelling dependencies.

• Assumption: thesi can be divided into groups or subspaces, such that

– thesi in thesamegrouparedependent on each other

– dependencies betweendifferentgroupsare notallowed.

• We also need to specify the distributions inside the groups

⇒ Inspiration from energy pooling models.
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Energy pooling inside groups
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Independent subspaces of natural image patches

Each group of 4 basis vectors corresponds to one complex cell.
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Model III:
Spatial organization (topography) in V1
• Receptive field properties mostly change continuosly when moving on

the cortical surface.

• Retinotopy: localization changes smoothly.

• Orientation changes smoothly except in “pinwheels”

(Bonhoeffer and Grinvald, 1991; Blasdel, 1992).

• There are low-frequency regions, possibly co-incident with CO blobs

(Tootell et al 1988; Edwards et al, 1995).

• Phase changes randomly (DeAngelis et al, 1999).

• Original inspiration for the Kohonen Map (Kohonen, 1982).
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Topographic ICA (Hyvärinen and Hoyer, 2001)

• Cells (components) are arranged on atwo-dimensional lattice

• Again, simple cell outputs are sparse, but not independent.

• Statistical dependency of components follows topography.
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Topographic ICA on natural image patches

Basic vectors (simple cell RF’s) with spatial organization
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Model IV:
Temporal coherence of simple cell outputs
• In image sequences (video) we can look at the temporal correlations.

• An alternative to sparseness.

• Look at the dependencies ofsi(t) and a lagged versionsi(t −∆t).

• Usinglinearcorrelations gives only Fourier-like receptive fields.

• We propose: Maximize correlation betweens2
i (t) ands2

i (t −∆t).
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Temporal coherence results on natural images
(Hurri and Hyv̈arinen, 2003)

Spatial basis vectors estimated from image sequences.
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Beyond the primary visual cortex

• What the next stage of processing be like?

• To predict this, we can perform ICA on complex cell outputs
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Model V: ICA on complex cell outputs
• Compute complex cell outputs for natural images

+
+

++

−

+

+++

+
+++

+

−
−−−

−−−

−

−−−−−−

+
+
++

+
++S

T
IM

U
LU

S

a

b
+

0

• Do ICA on this complex cell output data.
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ICA on complex cell outputs
(Hyvärinen, Gutmann, Hoyer, 2005)
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Each higher-order cell corresponds to 3 frequency displays
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Emergence of contours and pooling over frequencies

• Elongated contour units

• Classic view emphasizes separate frequency channels: herewe have

pooling of frequency channels

• An example of predictive modelling
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For more information:
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Conclusion

• Properties of visual neurons can be quantitatively modelled by

statistical properties of natural images.

• Simple cell receptive fields can be learned by maximizing

independence / sparseness.

• By modelling dependencies between simple cell ouputs we canmodel

complex cells and topography.

• Instead of sparseness, temporal coherence can be used.

• Modelling complex cell outputs yields frequency-pooling contour

coding units.

• Many more models can be built and properties predicted usingthis

approach.
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