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Abstract. Emotions are an important aspect of human intelligence and have been shown to play a
significant role in the human decision-making process. Researchers in areas such as cognitive science,
philosophy, and artificial intelligence have proposed a variety of models of emotions. Most of the pre-
vious models focus on an agent’s reactive behavior, for which they often generate emotions according
to static rules or pre-determined domain knowledge. However, throughout the history of research on
emotions, memory and experience have been emphasized to have a major influence on the emotional
process. In this paper, we propose a new computational model of emotions that can be incorporated
into intelligent agents and other complex, interactive programs. The model uses a fuzzy-logic represen-
tation to map events and observations to emotional states. The model also includes several inductive
learning algorithms for learning patterns of events, associations among objects, and expectations. We
demonstrate empirically through a computer simulation of a pet that the adaptive components of the
model are crucial to users’ assessments of the believability of the agent’s interactions.
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1. Introduction

Emotions, such as anger, fear, relief, and joy, have long been recognized to be
an important aspect of the human mind. However, the role that emotions play in
our thinking and actions has often been misunderstood. Historically, a dichotomy
has been perceived between emotion and reason. Ancient philosophers did not
regard emotion as a part of human intelligence, but rather they viewed emotion
as an impediment—a process that hinders human thought. Plato, for example, said
“passions and desires and fears make it impossible for us to think” (in Phaedo).
Descartes echoed this idea by defining emotions as passions or needs that the body
imposes on the mind, and suggesting that they keep the mind from pursuing its
intellectual process.

More recently, psychologists have begun to explore the role of emotions as a pos-
itive component in human cognition and intelligence [11, 17, 29, 35]. A wide variety
of evidence has shown that emotions have a major impact on memory, thinking, and
judgment [10, 23, 24, 35]. For example, neurological studies by Damasio and others
have demonstrated that people who lack the capability of emotional response of-
ten make poor decisions that can seriously limit their functioning in society [13].
Gardner proposed the concept of “multiple intelligences.” He described personal



220 el-nasr, yen and ioerger

intelligence as a specific type of human intelligence that deals with social interaction
and emotions [25]. Later, Goleman coined the phrase “emotional intelligence” in
recognition of the current view that emotions are actually an important part of
human intelligence [26].

Many psychological models have been proposed to describe the emotional pro-
cess. Some models focus on the effect of motivational states, such as pain or hunger.
For example, Bolles and Fanslow proposed a model to account for the effect of pain
on fear and vice versa [9]. Other models focus on the process by which events trigger
certain emotions; these models are called “event appraisal” models. For example,
Roseman et al. developed a model to describe emotions in terms of distinct event
categories, taking into account the certainty of the occurrence and the causes of an
event [67]. Other models examine the influence of expectations on emotions [57].
While none of these models presents a complete view, taken as a whole, they sug-
gest that emotions are mental states that are selected on the basis of a mapping that
includes a variety of environmental conditions (e.g., events) and internal conditions
(e.g., expectations, motivational states).

Inspired by the psychological models of emotions, Intelligent Agents researchers
have begun to recognize the utility of computational models of emotions for improv-
ing complex, interactive programs. For example, interface agents with a model of
emotions can form a better understanding of the user’s moods, emotions and pref-
erences and can thus adapt itself to the user’s needs [40]. Software agents may use
emotions to facilitate the social interactions and communications between groups
of agents [14], and thus help in coordination of tasks, such as among cooperating
robots [76]. Synthetic characters can use a model of emotion to simulate and ex-
press emotional responses, which can effectively enhance their believability [3–5].
Furthermore, emotions can be used to simulate personality traits in believable
agents [69].

One limitation that is common among the existing models is the lack of adapt-
ability. Most of the computational models of emotions were designed to respond
in pre-determined ways to specific situations. The dynamic behavior of an agent
over a sequence of events is only apparent from the change in responses to situ-
ations over time. A great deal of psychological evidence points to the importance
of memory and experience in the emotional process [37, 52]. For example, classical
conditioning was recognized by many studies to have major effects on emotions [9,
37]. Consider a needle that is presented repeatedly to a human subject. The first
time the needle is introduced, it inflicts some pain on the subject. The next time the
needle is introduced to the subject, he/she will typically expect some pain; hence
he/she will experience fear. The expectation and the resultant emotion are experi-
enced due to the conditioned response. Some psychological models explicitly use
expectations to determine the emotional state, such as Ortony et al.’s model [52].
Nevertheless, classical conditioning is not the only type of learning that can induce
or trigger expectations. There are several other types of learning that need to be
incorporated to produce a believable adaptive behavior, including learning about
sequences of events and about other agents or users.

In this paper, we propose a new computational model of emotions called
FLAME, for “Fuzzy Logic Adaptive Model of Emotions.” FLAME is based on
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several previous models, particularly those of Ortony et al. [52] and Roseman
et al.’s [67] event-appraisal models, and Bolles and Fanselow’s [9] inhibition model.
However, there are two novel aspects of our model. First, we use fuzzy logic to
represent emotions by intensity, and to map events and expectations to emotional
states and behaviors. While these mappings can be represented in other formalisms,
such as the interval-based approach used by the OZ project [59], we found that
fuzzy logic allowed us to achieve smooth transitions in the resultant behavior with
a relatively small set of rules. Second, we incorporate machine learning methods
for learning a variety of things about the environment, such as associations among
objects, sequences of events, and expectations about the user. This allows the agent
to adapt its responses dynamically, which will in turn increase its believability.

To evaluate the capabilities of our model, we implemented a simulation of a pet
named PETEEI—a PET with Evolving Emotional Intelligence. We performed an
ablation experiment in which we asked users to perform tasks with several varia-
tions of the simulation, and then we surveyed their assessments of various aspects
of PETEEI’s behavior. We found that the adaptive component of the model was
critical to the believability of the agent within the simulation. We argue that such
a learning component would also be equally important in computational models of
human emotions, though they would need to be extended to account for interac-
tions with other aspects of intelligence. We then address some limitations of the
model and discuss some directions for future research on FLAME.

2. Previous work

Models of emotion have been proposed in a broad range of fields. In order to
review these models, we have grouped them according to their focus, including
those emphasizing motivational states, those based on event appraisals, and those
based on computer simulations. In the next few sections, we will discuss examples
of each of these types of models.

2.1. Motivational states

Motivational states are any internal states that promote or drive the subject to take
a specific action. In this paper, we consider hunger, fatigue, thirst, and pain as
motivational states. These states tend to interrupt the brain to call for an important
need or action [9]. For example, if a subject is very hungry, then his/her brain will
direct its cognitive resources to search for food, which will satisfy the hunger. Thus,
these states have a major impact on the mind, including the emotional process and
the decision-making process, and hence behavior.

Models of motivational states, including pain, hunger, and thirst, were explored
in various areas of psychology and neurology [72]. Most of these models tend to
formulate the motivational states as a pure physiological reaction, and hence the
impact that these motivational states have on other processes, such as emotions,
has not been well established. A model was proposed by Bolles and Fanselow [9] to
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explore the relationship between motivational states and emotional states, specifi-
cally between “fear” and “pain.” Their idea was that motivational states sometimes
inhibit or enhance emotional states. For example, a wounded rat that is trying to es-
cape from a predator is probably in a state of both fear and pain. In the first stage,
fear inhibits pain to allow the rat to escape from its predator. This phenomenon
is caused by some hormones that are released when the subject is in the fear state
[9]. At a later stage, when the cause of the fear disappears (i.e., the rat success-
fully escapes) and the fear level decays, pain will inhibit fear [10], hence causing the
rat to tend to its wounds. In some situations, pain was found to inhibit fear and in
others fear was found to inhibit pain. The model emphasized the role of inhibition
and how the brain could suppress or enhance some motivational states or emotions
over others. This idea was incorporated as part of our model, but covers only one
aspect of the emotional process.

2.2. Appraisal models and expectations

As another approach to understanding the emotional process, some psychologists
tried to formulate emotions in terms of responses to events. The models that
evolved out of this area were called “event appraisal” models of emotions. Roseman
et al. [67] proposed a model that generates emotions according to an event assess-
ment procedure. They divided events into motive-consistent and motive-inconsistent
events. Motive-consistent events are events that are consistent with one of the sub-
ject’s goals. On the other hand, a motive-inconsistent event refers to an event that
threatens one of the subject’s goals. Events were further categorized with respect
to other properties. For example, an event can be caused by other, self or circum-
stance. In addition to the knowledge of the cause, they assessed the certainty of
an event based on the expectation that an event would actually occur. Another
dimension that was used to differentiate some emotions was whether an event is
motivated by the desire to obtain a reward or avoid a punishment. To illustrate the
importance of this dimension, we use “relief” as an example. They defined relief as
an emotion that is triggered by the occurrence of a motive-consistent event which
is motivated by avoiding punishment. In other words, relief can be defined as the
occurrence of an event that avoids punishment. Another important factor that was
emphasized was self-perception. The fact that subjects might regard themselves as
weak in some situations and strong in some others may trigger different emotions.
For example, if an agent expected a motive-inconsistent event to occur with a cer-
tainty of 80% and it regarded itself as weak in the face of this event, then it will
feel fear. However, if the same situation occurred and the agent regarded itself as
strong, then frustration will be triggered [67].

This model, like most of the event appraisal models of emotion, does not provide
a complete picture of the emotional process. The model does not describe a method
by which perceived events are categorized. Estimating the probability of occurrence
of certain events still represents a big challenge. Furthermore, some events are
perceived contradictorily as both motive-consistent and motive-inconsistent. In this
case, the model will produce conflicting emotions. Therefore, a filtering mechanism
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by which emotions are inhibited or strengthened is needed. Moreover, the emotional
process is rather deeply interwoven with the reasoning process, among other aspects
of intelligence, and thus, not only external events, but also internal states trigger
emotions.

Ortony et al. [52] developed another event-appraisal model that was similar to
Roseman’s model, but used a more refined notion of goals. They divided goals into
three types: A-goals defined as preconditions to a higher-level goal; I-goals defined
as implicit goals such as life preservation, well being, etc.; and R-goals defined as
explicit short-term goals such as attaining food, sleep, water, etc. They also defined
some global and local variables that can potentially affect the process by which an
emotion is triggered. Local variables were defined to be: the likelihood of an event
to occur, effort to achieve some goal, realization of a goal, desirability for others,
liking of others, expectations, and familiarity. Global variables were defined as sense
of reality, arousal, and unexpectedness. They used these terms to formalize emo-
tions. For example: joy = the occurrence of a desirable event, relief = occurrence
of a disconfirmed undesirable event. Sixteen emotions were expressed in this form,
including relief, distress, disappointment, love, hate and satisfaction [52].

Nevertheless, this model, as Roseman’s model, does not provide a complete pic-
ture of the emotional process. As stated earlier the rules are intuitive and seem to
capture the process of triggering individual emotions well, but often emotions are
triggered in a mixture. The model does not show how to filter the mixture of emo-
tions triggered to obtain a coherent emotional state. Since the model was developed
for understanding emotions rather than simulating emotions, the calculation of the
internal local and global variables, such as the expectation or likelihood of event
occurrence, was not described.

Although Roseman et al.’s [67] and Ortony et al.’s [52] models demonstrated the
importance of expectations, they did not identify a specific link between expec-
tations and the intensity of the emotions triggered. To quantify this relationship,
D. Price and J. Barrell [57] developed an explicit model that determines emotional
intensities based on desires and expectations. They asked subjects questions about
their experiences with various emotions, including anger and depression. They then
developed a mathematical curve that fit the data collected. They generalized their
findings into a quantitative relationship among expectation, desire and emotional
intensity. However, the model did not provide a method for acquiring expectations
and desires. Still, it confirmed the importance of expectation in determining emo-
tional responses, and we were able to use some of their equations in our model.

2.3. Models of emotions in AI

Through the history of Artificial Intelligence (AI) research, many models have been
proposed to describe the human mind. Several models have been proposed to ac-
count for the emotional process. Simon developed one of the earliest models of
emotions in AI [79]. Essentially, his model was based on motivational states, such
as hunger and thirst. He simulated the process in terms of interrupts; thus whenever,
the hunger level, for example, reaches a certain limit, the thought process will be
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interrupted. R. Pfeifer [53] has summarized AI models of emotions from the early
1960’s through the 1980’s. However, since the psychological picture of emotions was
not well developed at that time, it was difficult to build a computational model that
captures the complete emotional process. In more recent developments, models
of emotions have been proposed and used in various applications. For example, a
number of models have been developed to simulate emotions in decision-making or
robot communication [11, 12, 76, 77, 82]. In the following paragraphs, we will de-
scribe applications of models of emotions to various AI fields, including Intelligent
Agents.

Bates’ OZ project. J. Bates built believable agents for the OZ project [4, 5, 60]
using Ortony et al.’s event-appraisal model [52]. The aim of the OZ project was to
provide users with the experience of living in dramatically interesting micro-worlds
that include moderately competent emotional agents. They formalized emotions
into types or clusters, where emotions within a cluster share similar causes. For
example, the distress type describes all emotions caused by displeasing events. The
assessment of the displeasingness of events is based on the agent’s goals. They also
mapped emotions to certain actions.

The model was divided into three major components: TOK, HAP and EM. TOK
is the highest-level agent within which there are two modules: HAP is a planner and
EM models the emotional process. HAP takes emotions and attitudes from the EM
model as inputs and chooses a specific plan from its repository of plans, and carries
it out in the environment. It also passes back to the EM component some infor-
mation about its actions, such as information about goal failures or successes. EM
produces the emotional state of the agent according to different factors, including
the goal success/failure, attitudes, standards and events. The emotional state is de-
termined according to the rules given by Ortony et al.’s [52] model. Sometimes the
emotions in EM override the plan in HAP, and vice versa. The outcome of the se-
lected plan is then fed back to the EM model, which will reevaluate its emotional
status. Thus, in essence, emotions were used as preconditions of plans [60].

Many interesting aspects of emotions were addressed in this project; however
the underlying model still has some limitations. Even though it employed Ortony’s
emotional synthesis process [52], which emphasized the importance of expectation
values, the model did not attempt to simulate the dynamic nature of expectations.
Expectations were generated statically according to predefined rules. Realistically,
however, expectations change over time. For example, a person may expect to pass
a computer science course. However, after taking few computer science courses and
failing them, his/her expectation of passing another computer science course will be
much lower. Therefore, it is very important to allow expectations to change with
experience. In our model, which we discuss in the next section, we incorporated a
method by which the agent can adapt its expectations according to past experiences.

Cathexis model. A model, called Cathexis, was proposed by Velasquez [86] to sim-
ulate emotions using a multi-agent architecture. The model only described basic
emotions and innate reactions; however it presented a good starting point for sim-
ulating emotional responses. Some of the emotions simulated were anger, fear,
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distress/sadness, enjoyment/happiness, disgust, and surprise. The model captures
several aspects of the emotional process, including (1) neurophysiology, which in-
volves neurotransmitters, brain temperatures, etc., (2) sensorimotor aspect, which
models facial expressions, body gestures, postures and muscle action potentials, (3)
a simulation of motivational states and emotional states, and (4) event appraisals,
interpretation of events, comparisons, attributions, beliefs, desires, and memory.
The appraisal model was based on Roseman et al.’s [67] model. The model handles
mixtures of emotions by having the more intense emotions dominate other con-
tradictory ones. In addition, emotions were decayed over time. The model did not
account for the influence of motivational states, such as pain [9]. Moreover, the
model did not incorporate adaptation in modeling emotions. To overcome these
limitations, we used several machine learning algorithms in our model and incor-
porated a filtering mechanism that captures the relations between emotions and
motivational states.

Elliott’s Affective Reasoner. Another multi-agent model, called Affective Reasoner,
was developed by C. Elliott [18, 19]. The model is a computational adaptation of
Ortony et al.’s psychological model [52]. Agents in the Affective Reasoner project
are capable of producing twenty-four different emotions, including joy, happy-for,
gloating, resentment, sorry-for, and can generate about 1200 different emotional
expressions. Each agent included a representation of the self (agent’s identity) and
the other (identity of other agents involved in the situation). During the simulation,
agents judge events according to their pleasantness and their status (unconfirmed,
confirmed, disconfirmed). Joy, for example, is triggered if a confirmed desirable
event occurs. Additionally, agents take into account other agents’ responsibility for
the occurring events. For example, gratitude towards another agent can be trig-
gered if the agent’s goal was achieved, i.e. a pleasant event, and the other agent
is responsible for this achievement. In addition to the emotion generation and ac-
tion selection phases, the model presents another dimension to emotional modeling,
which is social interaction. During the simulation, agents, using their own knowl-
edge of emotions and actions, can infer the other agents’ emotional states from
the situation, their emotional expressions, and their actions. These inferences can
potentially enhance the interaction process [19].

Even though Elliott’s model presents an interesting simulation describing emotion
generation, emotional expressions, and their use in interactions, the model still faces
some difficulties. The model does not address several issues, including conflicting
emotion resolution, the impact of learning on emotions or expectations, filtering
emotions, and their relation to motivational states. Our model, described below,
addresses these difficulties.

Blumberg’s Silas. Another model which is related to our work, is Blumberg’s [8]
model. Blumberg is developing believable agents that model life-like synthetic char-
acters. These agents were designed to simulate different internal states, includ-
ing emotions and personality [8]. Even though he developed a learning model of
both instrumental and classical conditioning, which were discussed in [16], he did
not link these learning algorithms back to the emotional process generation and
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expression [7]. His work was directed toward using learning as an action-selection
method. Even though we are using similar types of learning algorithms (e.g. rein-
forcement learning), our research focuses more on the impact of this and other
types of learning on emotional states directly.

Rousseau’s CyberCafe. To model a believable agent for interacting with humans in
a virtual environment, one will have to eventually consider personality as another
component that has to be added to the architecture of the model. Rousseau has
developed a model of personality traits that includes, but is not limited to, intro-
verted, extroverted, open, sensitive, realistic, selfish, and hostile [69]. The person-
ality traits were described in terms of inclination and focus. For example, an open
character will be greatly inclined to reveal details about him/herself (i.e., high in-
clination in the revealing process), while an honest character will focus on truthful
events when engaging in a revealing process (i.e., high focus on truth). An absent
minded character will be mildly inclined to pay attention to events (i.e., low incli-
nation in the perception process), while a realistic character focuses on the real or
confirmed events. Additionally, they looked at the influence of personality on sev-
eral other processes including moods and behavior [68, 69]. Moods were simulated
as affective states that include happiness, anger, fatigue, and hunger, which are a
combination of emotional and motivational states in our model. Our treatment and
definition of mood, which will be discussed later, is quite different.

3. Proposed model

3.1. Overview of the model’s architecture

In this section, we describe the details of a new model of emotions called FLAME—
Fuzzy Logic Adaptive Model of Emotions. The model consists of three major com-
ponents: an emotional component, a learning component and a decision-making
component. Figure 1 shows an abstract view of the agent’s architecture. As the fig-
ure shows on the right-hand side, the agent first perceives external events in the
environment. These perceptions are then passed to both the emotional component
and the learning component (on the left-hand side). The emotional component will
process the perceptions; in addition, it will use some of the outcomes of the learn-
ing component, including expectations and event-goal associations, to produce an
emotional behavior. The behavior is then returned back to the decision-making
component to choose an action. The decision is made according to the situation,
the agent’s mood, the emotional states and the emotional behavior; an action is
then triggered accordingly. We do not give a detailed model of the action-selection
process, since there are a number of planning or rational decision-making algo-
rithms that could be used [70]. In the following sections, we describe the emotional
component and learning component in more detail.
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Figure 1. Abstract agent architecture—an overview.

3.2. Emotional component

3.2.1. Overview of the emotional process. The emotional component is shown in
more detail in Figure 2. In this figure, boxes represent different processes within the
model. Information is passed from one process to the other as shown in the figure.
The perceptions from the environment are first evaluated. The evaluation process
consists of two sequential steps. First, the experience model determines which goals
are affected by the event and the degree of impact that the event holds on these
goals. Second, mapping rules compute a desirability level of the event according to
the impact calculated by the first step and the importance of the goals involved.
The event evaluation process depends on two major criteria: the importance of the
goals affected by the event, and the degree by which the event affects these goals.
Fuzzy rules are used to determine the desirability of an event according to these
two criteria.

The desirability measure, once calculated, is passed to an appraisal process to
determine the change in the emotional state of the agent. FLAME uses a combi-
nation of Ortony et al.’s [52] and Roseman et al.’s [67] models to trigger emotions.
An emotion (or a mixture of emotions) will be triggered using the event desirability
measure. The mixture will then be filtered to produce a coherent emotional state.
The filtering process used in FLAME is based on Bolles and Fanselow’s [9] ap-
proach, described in more detail below. The emotional state is then passed to the
behavior selection process. A behavior is chosen according to the situation assess-
ment, mood of the agent, and the emotional state. The behavior selection process
is modeled using fuzzy implication rules. The emotional state is eventually decayed
and fed back to the system for the next iteration. Additionally, there are other paths
by which a behavior can be produced. Some events or objects may trigger a condi-
tioned behavior, and thus these events might not pass through the normal paths of
the emotional component [37].

3.2.2. Use of fuzzy logic. Motivated by the observation that human beings often
need to deal with concepts that do not have well-defined sharp boundaries, Lotfi
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Figure 2. Emotional process component.

A. Zadeh developed fuzzy set theory that generalizes classical set theory to allow
the notion of partial membership [89]. The degree, an object belongs to a fuzzy
set, which is a real number between 0 and 1, is called the membership value in
the set. The meaning of a fuzzy set is thus characterized by a membership function
that maps elements of a universe of discourse to their corresponding membership
values.

Based on fuzzy set theory, fuzzy logic generalizes modus ponens in classical logic
to allow a conclusion to be drawn from a fuzzy if-then rule when the rule’s an-
tecedent is partially satisfied. The antecedent of a fuzzy rule is usually a boolean
combination of fuzzy propositions in the form of “x is A” where A is a fuzzy set.
The strength of the conclusion is calculated based on the degree to which the an-
tecedent is satisfied. A fuzzy rule-based model uses a set of fuzzy if-then rules to
capture the relationship between the model’s inputs and its output. During fuzzy
inference, all fuzzy rules in a model are fired and combined to obtain a fuzzy con-
clusion for each output variable. Each fuzzy conclusion is then defuzzified, resulting
in a final crisp output. An overview of fuzzy logic and its formal foundations can be
found in Yen [87].

FLAME uses fuzzy sets to represent emotions, and fuzzy rules to represent map-
pings from events to emotions, and from emotions to behaviors. Fuzzy logic provides
an expressive language for working with both quantitative and qualitative (i.e., lin-
guistic) descriptions of the model, and enables our model to produce some complex
emotional states and behaviors. For example, the model is capable of handling goals
of intermediate importance, and the partial impact of various events on multiple
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goals. Additionally, the model can manage problems of conflicts in mixtures of
emotions [19]. Though these problems can be addressed using other approaches,
such as functional or interval-based mappings [59, 86], we chose fuzzy logic as a
formalism mainly due the simplicity and the ease of understanding linguistic rules.
We will describe below the fuzzy logic models used in FLAME.

3.2.3. Event evaluation. We use fuzzy rules to infer the desirability of events from
its impact on goals, and the importance of these goals. The impact of an event
on a goal is described using five fuzzy sets: HighlyPositive, SlightlyPositive, NoIm-
pact SlightlyNegative and HighlyNegative (see Figure 3). The importance of a goal is
dynamically set according to the agent’s assessment of a particular situation. The im-
portance measure of a goal is represented by three fuzzy sets: NotImportant, Slight-
lyImportant and ExtremelyImportant (see Figure 4). Finally, the desirability measure
of events can be described as HighlyUndesired, SlightlyUndesired, Neutral, SlightlyDe-
sired, and HighlyDesired (see Figure 5).

Figure 3. Membership functions for event impact.

Figure 4. Membership functions for goal importance.
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Figure 5. Membership functions for event desirability.

To determine the desirability of events based on their impact on goals and the
goals’ importance, we used fuzzy rules of the form given below:

IF Impact�G1; E� is A1
AND Impact�G2; E� is A2
: : :
AND Impact�Gk;E� is Ak

AND Importance�G1� is B1
AND Importance�G2� is B2
: : :
AND Importance�Gk� is Bk

THEN Desirability�E� is C

where k is the number of goals involved. Ai, Bj , and C are represented as fuzzy
sets, as described above. This rule reads as follows: if the goal, G1, is affected by
event E to the extent A1 and goal, G2, is affect by event E to the extent A2, etc.,
and the importance of the goal, G1, is B1 and the importance of goal, G2, is B2,
etc., then the desirability of event E will be C.

We will use an example to illustrate how these fuzzy rules are used in our model.
Consider an agent personifying a pet. An event, such as taking the food dish away
from the pet may affect several immediate goals. For example, if the pet was hungry
and was planning to reach for the food dish, then there will be a negative impact on
the pet’s goal to prevent starvation. It is thus clear that the event (i.e., taking away
the dish) is undesirable in this situation. The degree of the event’s undesirability
is inferred from the impact of the event on the starvation prevention goal and the
importance of the goal. Thus, the rule relevant to this situation is:

IF Impact(prevent starvation, food dish taken away) is HighlyNegative
AND Importance(prevent starvation) is ExtremelyImportant

THEN Desirability(food dish taken away) is HighlyUndesired

There are several different types of fuzzy rule-based models: (1) the Mamdani
model [42], (2) the Takagi-Sugeno model [83], and (3) Kosko’s Standard Ad-
ditive Model [36]. We chose the Mamdani model with centroid defuzzification.
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The Mamdani model uses Sup-Min composition to compute the matching degrees
for each rule. For example, consider the following set of n rules:

If x is Ai Then y is Ci

: : :

If x is An Then y is Cn

where x is an input variable, y is an output variable, Ai and Ci are fuzzy sets,
and i represents the ith rule. Assuming, the input x is a fuzzy set A′, represented
by a membership function µA′ �x� (e.g. degree of impact). A special case of A′ is a
singleton, which represents a crisp (non-fuzzy) input value. Given that, the matching
degree wi between the input µA′ �x� and the rule antecedent µAi

�x� is calculated
using the equation below:

sup
X

�µAi
�x� ∧ µA′ �x��

The ∧ operator takes the minimum of the membership functions and then a sup
operator is applied to get the maximum over all x. The matching degree affects the
inference result of each rule as follows:

µC ′i �y� = wi ∧ µCi�y�

where C ′i is the value of variable y inferred by the ith fuzzy rule. The inference
results of all fuzzy rules in the Mamdani model are then combined using the max
operator ∨ (i.e., the fuzzy disjunction operator in the Mamdani model):

µcomb�y� = µC ′1�y� ∨ µC ′2�y� ∨ : : : ∨ µC ′k�y�

This combined fuzzy conclusion is then defuzzified using the following formula
based on center of area (COA) defuzzification:

yfinal =
∫
µcomb�y�y dy∫
µcomb�y�dy

The defuzzification process will return a number that will then be used as a measure
of the input event’s desirability.

3.2.4. Event appraisals. Once the event desirability is determined, rules are fired
to determine the emotional state, which also takes into account expectations. Ex-
pectation values are derived from the learning model, which is detailed in a later
section. Relationships between emotions, expectations, and the desirability of an
event are based on the definitions presented by Ortony et al. [52] and are given
in Table 1. Fourteen emotions were modeled. Other emotions like love or hate to-
wards another are measured according to the actions of the other and how it helps
the agent to achieve its goals. To implement the rules shown in the table,we need
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Table 1. Rules for generation of emotions

Emotion Rule

Joy Occurrence of a desirable event
Sad Occurrence of an undesirable event
Disappointment Occurrence of a disconfirmed desirable event
Relief Occurrence of a disconfirmed undesirable event
Hope Occurrence of an unconformed desirable event
Fear Occurrence of an unconformed undesirable event
Pride Action done by the agent and is approved by standards
Shame Action done by the agent and is disapproved by standards
Reproach Action is done by the other and is not approved by the agents’

standards
Admiration Action done by the other and is approved by the agents’

standards
Anger Complex emotion; sad+ reproach
Gratitude Complex emotion; joy+ admiration
Gratification Complex emotion; joy+ pride
Remorse Complex emotion; sad+ shame

the following elements:

• the desirability of the event, which is taken from the event evaluation process
discussed in the previous section,
• standards and event judgment, which are taken from the learning process, and
• expectations of events to occur, which are also taken from the learning process.

To illustrate the process, we will employ the emotion of relief as an example.
Relief is defined as the occurrence of an disconfirmed undesirable event, i.e. the
agent expected some event to occur and this event was judged to be undesirable, but
it did not occur. The agent is likely to have been in a state of fear in the previous
time step, because fear is defined as expecting an undesirable event to happen. A
history of emotions and perceived events are kept in what is called the short-term
emotional memory. Thus, once a confirmed event occurs, it is checked with the
short-term emotional memory; if a match occurs, a relative emotion is triggered.
For example, if the emotion in the previous time step was fear, and the event did
not occur, then relief will be triggered. The intensity of relief is then measured as
a function of the prior degree of fear.

The quantitative intensities of emotions triggered by these rules can be calculated
using the equations formulated by Price et al. [57]. For example, hope is defined
as the occurrence of an unconfirmed desirable event, i.e. the agent is expecting a
desirable event with a specific probability. Consider a student who is repeating a
course is expecting to get an A grade with a probability of 80%. The hope intensity
is not directly proportional to the expectation value, as might be the case with other
emotions. On the contrary, the higher the certainty, the less the hope [57]. The hope
intensity can be approximated by:

Hope = �1:7× expectation0:5� + �−0:7× desirability�
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Table 2. Calculating intensities of emotions

Emotion Formula for intensity

Joy Joy = �1:7× expectation0:5� + �−0:7× desirability�
Sadness Sad = �2 × expectation2� − desirability
Disappointment Disappointment = Hope× desirability
Relief Relief = Fear × desirability
Hope Hope = �1:7× expectation0:5� + �−0:7× desirability�
Fear Fear = �2 × expectation2� − desirability

Other formulas for emotions in our model are shown in Table 2. The table shows the
method by which intensities are calculated for various emotions given an expectation
value and an event desirability measure.

Emotions such as pride, shame, reproach and admiration, which do not depend
directly on expectations and desirability, are functions of the agent’s standards. The
calculation of the intensity of any of these emotions will depend primarily on the
value of the event according to the agent’s acquired standards. For example, if the
agent learned that a given action, x, is a good action with a particular goodness
value, v, then if the agent causes this action, x, in the future, it will experience the
emotion of pride, with a degree of v.

3.2.5. Emotional filtering. Emotions usually occur in mixtures. For example, the
feeling of sadness is often mixed with shame, anger or fear. Emotions are some-
times inhibited or enhanced by other states, such as motivational states. Bolles and
Fanselow’s [9] work gives an insight on the impact that motivational states may
have on other emotions. In their work the highest intensity state dominates [9].
With emotional states this might not necessarily be the case. For example, a cer-
tain mixture of emotions may produce unique actions or behaviors. In the following
paragraph, we will provide a description of how we simulate the interaction be-
tween the motivational states and the emotional states. We note that, in general,
emotional filtering may be domain-dependent and influenced by other complicated
factors such as personality.

Our method of filtering emotions relies on motivational states. Motivational states
tend to interrupt the cognitive process to satisfy a higher goal. In our simulation of
a pet described in Section 4, these states include, hunger, thirst, pain, and fatigue.
Table 3 shows the different motivational states of the pet that are simulated, and
the factors determining their intensities. These motivational states have different
fuzzy sets representing their intensity level, e.g. LowIntensity, MediumIntensity and
HighIntensity. Once these states reach a sufficient level, say MediumIntensity, they
send a signal to the cognitive process indicating a specific need that has developed.
These motivational states can then block the processing of the emotional component
to produce a plan to enable the agent to satisfy its needs, whether it is water, food,
sleep, etc. The plan depends on the agent’s situation at the particular time. For
example, if the agent already has access to water, then it will drink, but if it does
not have access to water and knows its whereabouts, then it will form a plan to
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Table 3. Calculating the intensity of motivational states in PETEEI

Motivational state Intensity is function of: : :

Pain Number of Hits by user, the intensity of the hits
Tired Amount of movement, time last slept
Thirst Frequency of movement, intensity of movement (running is

higher than walking ..etc.), time last drank, quantity that
was drunk

Hunger Intensity of movement, frequency of movement, time last
ate, the quantity of food eaten

get it. However, if the agent must depend on another agent to satisfy its needs then
it will use the model that it learned about the other agent to try to manipulate it.
It is not always best for the agent to inhibit emotional states to achieve a goal
or satisfy a need. Sometimes the agent will be acting on fear and inhibiting other
motivational states. The emotional process always looks for the best emotion to
express in various situations. In some situations, it may be best if fear inhibits pain,
but in some others it may not [9]. According to Bolles and Fanselow’s model, fear
inhibits pain if (1) the cause of fear is present and (2) the fear level is higher than
the pain level. At a later time step, when the cause of fear disappears, pain will
inhibit the fear. Thus, before inhibiting emotions, we make a situation assessment
and an emotional versus motivational states assessment. Whichever is best for the
agent to act on in the given situation will take precedence, while the others will be
inhibited.

Inhibition can occur directly between emotions as well, i.e. sadness or anger may
inhibit joy or pride in some situations. Some models employ techniques that tend to
suppress weaker opposite emotions [86]. For example, an emotion like sadness will
tend to inhibit joy if sadness was more intense than joy. Likewise, if joy was more
intense than anger or sadness, then joy will inhibit both. In our model, we employ
a similar technique. Thus, if joy was high and sadness was low, then joy will inhibit
sadness. However, we give a slight preference to negative emotions since they often
dominate in situations where opposite emotions are triggered with nearly equal
intensities.

Mood may also aid in filtering the mixture of emotions developed. Negative
and positive emotions will tend to influence each other only when the mood is
on the boundary between states [10]. Moods have been modeled by others, such
as in CyberCafe [68]. However, in these models the mood was treated as a par-
ticular affective state, such as fatigue, hunger, happiness and distress. In contrast,
our model simulates the mood as a modulating factor that can either be positive
or negative. The mood depends on the relative intensity of positive and negative
emotions over the last n time periods. (We used n = 5 in our simulation, because it
was able to capture a coherent mixture of emotional states). Opening up the time
window for tracking moods may cause dilution by more conflicting emotions, while
a very narrow window might not average over enough emotional states to make a
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consistent estimate. We calculate the mood as follows:

mood =


pos if

−1∑
i=−n

I+i >
−1∑
i=−n

I−i

neg otherwise


where I+i is the intensity of positive emotions at time i, and I−i is the intensity
of negative emotions at time i. To illustrate the calculation of the mood, we will
employ the following example. In this example, the mood is negative, resulting from
three negative emotions and two positive emotions all with a medium intensity. The
mixture of the emotions triggered was as follows: (1) a positive emotion, joy, with
a high intensity (0.25) and (2) a negative emotion, anger, with a relatively lower
intensity (0.20). The negative emotion inhibits the positive emotion despite the fact
that the positive emotion was triggered with a higher intensity, because the agent is
in a negative mood. We use a tolerance of ±5% to define the closeness value of two
intensities (through trial and error 5% has been shown to produce adequate results
with the pet prototype). Thus, if one emotion has a value of, l, then any emotions
with a value of l ± 5% will be considered close, and hence will depend on mood to
be the deciding factor.

3.2.6. Behavior selection. Fuzzy logic is used once again to determine a behav-
ior based on a set of emotions. The behavior depends on the agent’s emotional
state and the situation or the event that occurred. For example, consider the fol-
lowing rule:

If Anger is High
AND dish-was-taken-away

THEN behavior is Bark-At-user

The behavior, Bark-At-User, depends on what the user did and the emotional inten-
sity of the agent. If the user did not take the dish away and the agent was angry for
some other reason, it would not necessarily be inclined to bark at the user, because
the user might not be the cause of its anger. Thus, it is important to identify both
the event and the emotion. It is equally important to identify the cause of the event.
To generalize the rule shown above, we used the following fuzzy rules:

IF emotion1 is A1
AND emotion2 is A2
: : :
AND emotionk is Ak

AND Event is E
AND Cause �E;B�

THEN BEHAVIOR is F

where k is the number of emotions involved. A1;A2 and Ak are fuzzy sets defining
the emotional intensity as being HighIntensity, LowIntensity or MediumIntensity. The
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event is described by the variable E and the cause of the event is described by
the variable B. Behaviors are represented as singletons (discrete states), including
Bark-At-User and Play-With-Ball. Likewise, events are simulated as singletons such
as dish-was-taken-away, throw-ball, ball-was-taken-away, etc. In the case of PETEEI,
we are assuming that non-environmental events, such as dish-was-taken-away, throw-
ball, ball-was-taken-away, etc. are all caused by the user. Using the fuzzy mapping
scheme, the behavior with the maximum value will be selected.

To elaborate on how behaviors are selected in the model, we will present an
example involving fear and anger. Consider, for instance, every time you take the
food dish away from the dog you hit it to prevent it from jumping on you and
barking at you after taking its food away. Taking the food dish away produces anger,
because the pet will be experiencing both distress and reproach, and as shown in
Table 1, anger is a compound emotion consisting of both reproach and distress.
The pet will feel reproach because, by nature, it disapproves of the user’s action
(taking the food dish away), and it will be distressed because the event is unpleasant.
Additionally, since the user hits the dog whenever he/she takes the dish away, fear
will be produced as a consequence. Thus, taking the dish away will produce both
anger and fear. Using fuzzy rules, the rule fired will be as follows:

IF Anger is HighIntensity
AND fear is MeduimIntensity
And Event is dish-was-taken-away

THEN BEHAVIOR is growl.

Therefore, the behavior was much less aggressive than with anger alone. In ef-
fect, the fear dampened the aggressive behavior that might have otherwise been
produced.

3.2.7. Decay. At the end of each cycle (see Figure 2), a feedback procedure will
reduce the agent’s emotions and reflect them back to the system. This process is
important for a realistic emotional model. Normally, emotions do not disappear
once their cause has disappeared, but rather they decay through time, as noted in
[86]. However, very few studies have addressed the emotional decay process. In
FLAME, a constant, φ, is used to decay positive emotions, and another constant, δ,
is used to decay negative emotions. Emotions are decayed toward 0 by default. For
example: Iei�t + 1� = φ • Iei�t� for positive emotions, ei. We set φ < δ, to decay
positive emotions at a faster rate, since intuitively negative emotions seem to be
more persistent. This choice was validated by testing the different decay strategies
using an agent-based simulation. These constants, along with the constants used in
the learning algorithm, were passed as parameters to the model. We used trial and
error to find the best settings for these parameters. We found that there was a range
of settings that produced a reasonable behavior for the agent. These ranges were:
0:1 < φ < 0:3 and 0:4 < δ < 0:5.
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3.3. Learning component

3.3.1. Overview of the learning component. Learning and adaptability can have a
major impact on emotional dynamics. For example, classical conditioning was shown
to play a significant role in determining emotional responses [37]. Classical condi-
tioning is not the only type of learning that can impact the emotional process.
In fact, through our research we have discovered many other types of learning to
be important for modeling the emotional intelligence process, including learning
actions that please or displease the user and learning about what events to expect.
Recognizing the importance of each of these types to the emotional process, we
added a learning component to FLAME. To simulate the different learning types,
we employed different inductive techniques, including (1) conditioning to associate
an emotion with an object that had triggered the emotion in the past, (2) reinforce-
ment learning to assess events according to the agent’s goals, (3) a probabilistic
approach to learn patterns of events, and (4) a heuristic approach to learn actions
that please or displease the agent or the user.

3.3.2. Classical conditioning. Associating objects with emotions or with a motiva-
tional state forms a simple type of learning in FLAME. For example, if the agent
experiences pain when an object, g, touches it, then the motivational state of pain
will be associated with the object g. This kind of learning does not depend on the
situation per se, but it depends on the object-emotion/motivational state association.

Each of these associations will have an accumulator, which is incremented by the
repetition and intensity of the object-emotion occurrence. This type of learning will
provide the agent with a type of expectation triggered by the object, rather than the
event. Using the count and the intensity of the emotion triggered, the agent can
calculate the expected intensity of the emotion. We used the formula shown below:

�I�e��o� =
∑

events�i� Ii�e�
no

where events�i� are events that involve the object o, Ii�e� is the intensity of emotion
e in event i, and no is the total number of events involving object o. In essence, the
formula is averaging the intensity of the emotion in the events where the object, o,
was introduced. To illustrate this process we give the following example. Consider
a needle that is introduced to the agent. The first time the needle is introduced it
causes the agent 30% pain. So the agent will associate the needle with 30% pain.
The next time we introduce the needle, the agent will expect pain with a level
of 30%. Let’s say that we introduce the needle 99 more times without inflicting
any pain. Then, the next time the needle is introduced, the agent will expect pain
with a level of �0:3 × 1�/100 = 0:3%. As you can see, the level of expectation of
the intensity of a particular emotion, e, is decreased by the number of times the
object, o, was introduced without inflicting the emotion, e. If, however, we shock
the agent with the needle 90 times (30% of pain each time) and only introduce it
10 times without inflicting any pain, then the expectation of pain will be increased:
�90× 0:3�/100 = 27%.
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Using these associations, emotions can be triggered directly. In the example of
the needle, when the needle is introduced, the emotion of fear will be automati-
cally triggered because the agent will be expecting pain. However, if the object was
associated with sadness or joy, an emotion of sadness or joy might be triggered in
these cases, respectively. The intensity of these emotions will be calculated using
the formula described above.

3.3.3. Learning about impact of events. In addition to direct associations formed
by the classical conditioning paradigm, the agent needs to learn the general impact
of events on its goals. It is often the case that a given event does not have an impact
on any specific goal directly, but instead, some sequence of events may eventually
have an impact on a goal. However, identifying the link between an event and
the affected goals has been noted to be a very complex task [60], since the agent
often does not know the consequences of a given action until a complete sequence
of actions is finished. The agent, therefore, faces the problem of temporal credit
assignment, which is defined as determining which of the actions in a sequence
is responsible for producing the eventual rewards. The agent can potentially learn
this by using reinforcement learning [47]. We will briefly outline a reinforcement
algorithm, namely Q-learning. The reader is referred back to Kaelbling et al. [32]
for more detail. It should be noted that Q-learning is just one approach to learn
about events; other approaches may be used to equally get the desired effect. For
example, Blumberg et al. [8] have developed a model that uses temporal difference
learning to develop a mechanism for classical and instrumental conditioning, which
has been discussed by many psychologists, especially those in the neuroscience and
the animal learning fields, such as Rescorla [61, 62].

To illustrate the solution that reinforcement learning offers to this problem, we
will look at Q-learning in more detail. The agent represents the problem space using
a table of “Q-values” in which each entry corresponds to a state-action pair. The
table can be initially filled with default values (for example, 0). The agent begins
from an initial state s. It takes an action, a, by which it arrives to a new state s′. The
agent may obtain a reward, r, for its action. As the agent explores its environment,
it accumulates observations about various state transitions, along with occasional
rewards. With each transition it updates the corresponding entry in the Q-table
above using the following formula:

Q�s; a� ← r + γmax
a′
Q�s′; a′�

where r is the immediate reward, γ is a discount factor �0 ≤ γ < 1�, and the a′ are
the actions that can be taken from the new state s′. Thus, the Q-value of a state-
action pair depends on the Q-values of the new state. After many iterations, the
Q-values converge to values that represent the expected payoff in the long-run for
taking a given action in a given state, which can be used to make optional decisions.

This basic algorithm is guaranteed to converge only for deterministic Markov
Decision Processes (MDP).1 However, in our application there is an alternation
between actions of the agent and the user, introducing non-determinism. The re-
ward for a given state and action may change according to the user and environment.
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Figure 6. Non-deterministic consequences to agent’s actions introduced by user’s response.

For example, at a state, s0, suppose the agent does an action, a0, and as a conse-
quence the user gives him a positive reward. At a later time step, the agent is in the
same state, s0, so he takes action, a0, again but this time the user decides to reward
him negatively. Therefore, the user introduces a non-deterministic response to the
agent’s actions. In this case, we treat the reward as a probability distribution over
outcomes based on the state-action pair. Figure 6 illustrates this process in more
detail. The agent starts off in state, s0, and takes an action a0. Then the user can
take either action, a1, that puts the agent in state, s1, or action, a2, that puts the
agent in state, s2. The dotted lines show the non-determinism induced by user’s ac-
tions, while the straight black lines shows the state-action transition as represented
in the table. The probability of the user’s actions can be calculated using a count
of the number of times the user did this action given the state-action pair, �s0; a0�,
divided by the number of actions the user took given that the agent was at state, s0,
and did action, a0 x P�s′�s; a�.

To calculate the Q-values given this nondeterministic model, we used the follow-
ing formula:

Qn�s; a� ← E�r�s; a�� + γ∑
s′
P�s′�s; a�max

a′
Q�s′; a′�

where P�s′�s; a� is the probability that was described above, and E�r�s; a�� is the
expected reward (averaged over all previous executions of a in s). The summation
represents the expected maximum Q-value over all possible subsequent states. We
discuss learning the probabilities P�s′�s; a� in the next subsection.

At any given time, the agent will be faced with different actions to take, each
of which will result in different outcomes and different rewards. The formula and
the algorithm described above gives the maximum expected reward, given that the
agent is in a particular state, which is used to decide what the optimal action is to
take. However, since we are trying to simulate a believable agent, we also want to
account for other influences on how humans make decisions, such as the effect of
moods [13]. We incorporated mood by modifying the expectation values of the next
state, s′, given that the agent is in state s. Instead of calculating the value of an
action by maximizing the expected Q-value, we use the mood as a weighting factor
to modify the expected probabilities of new states. As noted in [10], when the agent
is in a positive mood it will tend to be more optimistic, so it will naturally expect
desirable events to occur. To simulate this phenomenon, we altered the expectation
formula described above. In a particular situation, the agent will be looking at
numerous alternative actions, some of which may lead to failure and others may
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lead to success. If the agent’s mood is positive then the agent will be optimistic
and expect the good events to occur with a degree of β more than the bad events
and vice versa. We modified the equation above to include this β value. Thus, the
formula was revised as follows:

Qn�s; a� ← E�r�s; a�� + γ ∑
Match

�1+ β�P�s′�s; a�max
a′
Q�s′; a′�

+ γ ∑
nonMatch

αP�s′�s; a�max
a′
Q�s′; a′�

where Match denotes the states consistent with the particular mood, which was
calculated as the average of the emotions in the last five time steps as described
earlier. For example, if the mood is “good” then the states with a “good” assessment
will fall under the Match category, while the states with a “bad” assessment will fall
under the nonMatch category. We solve for α so that the weights still sum to 1:∑

match

�1+ β�P�s′�s; a� + ∑
nonMatch

αP�s′�s; a� = 1

α = 1∑
nonMatch P�s′�s; a�

�1− �1+ β� ∑
Match

P�s′�s; a��

For all the actions that lead to a state that matches the mood, the value will be
augmented by β. We will give an example to illustrate this idea. Suppose the agent
is trying to decide between two actions. These actions are illustrated in Figure 7. If
it ignores the ball then there is a 70% chance that it will end up in state, s2, which
has a max Q-value of 2.5, but there is also a 30% chance of ending up in state,
s1, which has a max Q-value of −1:5. While if it plays with the ball then there is
an equal chance of getting to state, s4, which has a max Q-value of −3, or state,
s5, which has a max Q-value of 5. Thus, if we use regular probability calculation,
action Ignore(Ball) will have an expected Q-value of 0:3 × −1:5 + 0:7 × 2:5 = 1:3,
and PlayWith(Ball) will have a value of 0:5×−3+ 0:5× 5 = 1. However, if we take
the mood into account, then the calculation will be different because the agent will
expect different outcomes with different moods. For example, if the agent is in a
positive mood, it will expect positive rewards: Give(Food) and Give(Drink) with a
degree β more than the negative rewards: Take(Ball) and Talk(“Bad Boy”). If we
set β to 50%, then Ignore(Ball) will have an expected Q-value of

0:3×−1:5× α+ 0:7× 2:5× �1+ β� = 2:7

where β = 0:5, and α = �1/0:3��1− �1:5× 0:7�� = −0:167 and PlayWith(Ball) will
have a value of

0:5×−3× α+ 0:5× 5× �1+ β� = 3:

where β = 0:5, and α = �1/0:5��1 − �1:5 × 0:5�� = 0:5. Thus, the positive mood
�β = 50%� makes a slight change in the Q-values, causing PlayWith(Ball) to become
more desirable than Ignore(Ball), which could, in turn, affect the triggering of emo-
tions or choice of actions by the agent.
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3.3.4. Forming a user model. The agent needs to know what events to expect, how
likely they are to occur, and how bad or good they are. This information is crucial
for the process of generating emotions. As was discussed in the sections above, the
generation of emotions and emotional intensities relies heavily on expectations via
event appraisals. While some researchers treat this as pre-determined knowledge
built into the agent, we attempt to learn these expectations dynamically.

Since the agent is interacting with the user, the agent will have to learn about
the user’s patterns of behavior. A probabilistic approach is used to learn patterns
based on the frequency with which an action, a1, is observed to occur given that
previous actions a2, etc. have occurred. We focused on patterns of length three, i.e.
three consecutive actions by the user. In the pet domain, actions are simple and
quick, so sequences of one or two actions are often not meaningful. However, to be
realistic, we did not want to require the pet simulation to maintain too many items
in short-term memory (even humans appear to be limited to 7± 2 items [45]). So we
restricted the learning of patterns to sequences of length three. A typical pattern is
illustrated as follows: the owner goes into the kitchen �a1�, takes out the pet’s food
from the cupboard �a2� and feeds the pet �a3�. These three consecutive actions led
to the pet being fed. Thus, if the owner goes to the kitchen again, the pet would
expect to be fed with some probability. In general, learning sequences of actions
can be very useful in predicting a user’s actions.

In FLAME we keep a table of counts which is used to define the conditional
probability p�e3�e1; e2� denoting the probability of an event e3 to occur, given that
events e1 and e2 have just occurred. When a pattern is first observed, an entry is
created in the table that indicates the sequence of three events, with a count of 1.
Then, every time this sequence is repeated, the count is incremented. We can use
these counts to calculate the expected probability of a new event Z occurring, given
that two previous events X and Y occurred. The expected probability of event Z is
calculated as follows:

P�Z�X;Y � = C�X;Y;Z�∑
i C�X;Y; i�

Figure 7. An example of reinforcement learning.
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Cases where experience is limited (e.g. number of relevant observations in low)
can be handled by reducing the probability to be conditioned only on one previous
event. For example, if the sequence Y and Z was observed, then the probability of
event Z occurring is calculated as:

P�Z�Y � =
∑
i C�i; Y;Z�∑

j

∑
i C�i; Y; j�

However, if the prior event Y has never been seen to precede the event Z, the
probability of event Z occurring can be calculated as an unconditioned prior (i.e.,
average probability over all events):

P�Z� =
∑
i; j C�i; j; Z�∑
i; j; k C�i; j; k�

These probabilities allow the agent to determine how likely the user is to take
certain actions, given the events that have recently occurred, which is required for
the reinforcement learning. It should be noted that the patterns discussed above
only account for the user’s actions, since the goal was to adapt to and learn about the
tendencies of the user. A useful but more complex extension would be to interleave
the agent’s reactions in the patterns.

3.3.5. Learning values of actions. The learning algorithms described so far allow
the agent to associate expectations and rewards to events. Although reinforcement
learning can effectively be used to learn about rewards and expectations, which are
used for making decisions to maximize expected payoff in the long-run, it is not
sufficient to simulate emotions such as pride, shame or admiration. Such emotions
seem to be based on a more immediate reflection of the goodness or badness of
actions in the view of other agents or the user. Reinforcement learning, as described
above, tends to produce a selfish agent (an agent looking at the desirability of events
according to his own goals). Such a model is not sufficient to simulate the effects
of emotions in social interaction. For example, it has been hypothesized by some
social psychologists that in relationships, whenever partners feel guilty, they go into
a submissive role, and they will try to make up for what they did wrong [22]. In this
situation they will be using their emotional intelligence to search for an action that
is pleasing to the partner (for example, giving a gift to the partner). Therefore, an
agent that is engaging in social interaction with a user or another agent will have
to use a similar protocol. However, to emulate this protocol, the agent will have to
know what is pleasing and displeasing for other agents or for the user. Therefore, it
would not only need to know how useful or desirable an action is to itself, but how
desirable the action is to others. Additionally, it should be able to assess the values
of its own actions to avoid hurting others.

To learn values of actions, we devised a simple new learning algorithm to associate
the agent’s actions with the user’s feedback. We assume that the user can take some
actions to provide feedback, such as saying “Bad Dog.” The learning algorithm cal-
culates an expected value for each of the agent’s action using this user feedback.
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Figure 8. Modes of learning and their interactions with the emotional component.

The algorithm averages feedback from the user on immediately preceding actions,
accumulated over a series of observations. For example, consider an agent who
takes an action BarkAt(User). The user may as a consequence take actions, such
as YellAt(agent) or Hit(agent). Each user action or feedback is assumed to have a
value assigned in the agent’s knowledge-base according to its impact; for example,
YellAt(agent) might be worth −2 and Hit(agent) might be worth −6. Positive feed-
back are represented by positive numbers and negative feedback are represented
by negative numbers. Using these values, the agent can track the average value of
its own actions. The expected value of an action a is calculated as the sum of the
values of user feedback given after each occurrence of action a over the number of
occurrence of action a, which is formalized as follows:

value�a� = 1
�A�

∑
e∈A

feedback�e+ 1�

where A represents set of events where the agent takes action a, and e + 1 re-
presents user’s response in the next event. The agent can then use this formula
to assess it’s own actions and trigger evaluative emotions, such as pride or shame.
Additionally, it can trigger emotions such as admiration or reproach by assessing
the value of the other agent’s actions according to its own standards. The agent
could also use these expectations to determine actions that will be pleasing to the
user or to other agents.

Figure 8 summarizes the modes of learning and their interactions with the emo-
tional component in the FLAME model.
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4. Simulation and results

4.1. Simulation

In this section, we will describe an implementation of FLAME in an interactive sim-
ulation of a pet. Our simulation is called PETEEI—a PET with Evolving Emotional
Intelligence. We chose to model emotions in a pet based on the following reasons:

• Pets are simpler than humans. They do not require sophisticated planning. Con-
cepts of identity, self-esteem, self-awareness and self-perception do not exist (or
are not as pronounced) in animals. In addition, the goal structure of pets is much
simpler than human’s.
• A pet’s behavior is relatively easy to evaluate. We thought it would be better to

have a model of a pet rather than some other creature, because most people have
expectations about what a pet should or should not do, and our evaluation will
take advantage of this common knowledge.

PETEEI is implemented in Java with a graphical interface. It has five major scenes:
a garden, a bedroom, a kitchen, a wardrobe and a living room. The garden scene is
illustrated in Figure 9a.

In order to anticipate the various behaviors and situations that needed to be
simulated, a list of user actions was defined, and is summarized as follows:

Figure 9. a) User interface for PETEEI.
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• Walk to different scenes: The user can walk from one scene to the next by clicking
on the walk button and then clicking on the direction he wants to go to. The
cursor will then change to an arrow with the destination name on it. For example,
if the user clicked left and if the next scene to the left is the bedroom, then the
cursor will be shaped as an arrow with the word bedroom on it.
• Object manipulation: The user can take objects from a scene. This action will

automatically add the object to the user’s inventory, from which objects can be
taken and introduced to other scenes.
• Talk aloud: The user can initiate a dialogue with objects (including the pet). Talk

is done by selecting words from a predefined set of sentences, which are defined
within the main window of the application. After selecting what the user wants
to say, he/she can then click on talk. This will send a global message to all the
objects within the scene, as if the user were talking aloud.
• Opening and closing doors: The user can open and close doors or other objects

that may be opened or closed in the environment.
• Look at: The user can look at or examine various objects within the scene.
• Touch and hit: The user can also touch or hit any object within the scene.

Feedback from the pet consists of barking, growling, sniffing, etc. (only sounds were
used, no animation). In addition, there was a text window that described the pet’s
actions (looking, running, jumping, playing, etc.), and a graphical display of internal
emotional levels (shown in Figure 9b). The graphical display of emotions was used
in the evaluation process for two reasons. First, the pet’s expressions or actions only
represent emotional reactions; there was no planning or extended action involved in
the model simulation. The model as it is produces only emotional behaviors, which
is merely a subset of a more complex behavioral system. Therefore, asking the users
to rate the pet’s believability according to its actions only is insufficient to validate
the hypothesis regarding emotions. Second, we are evaluating the simulation’s emo-
tional generation capability, rather than action selection. The focus of our model
was to simulate emotional states, which could eventually be used in many different
ways in different applications, such as synthetic character simulations, communi-
cation and negotiations in multi-agent systems, etc. Thus, evaluating the agent’s
actions does not suffice to validate the emotional model underneath the agent’s
simulation. In an attempt to validate both the emotional mappings and the action
mappings, we present the user with both aspects and let him/her judge the model.
For a complete list of questions, scenarios and introduction given to the user the
reader is referred to [73].

4.2. Evaluation method

4.2.1. Evaluation protocol and validity. To evaluate the impact of various compo-
nents of FLAME on PETEEI, we chose a method of user assessment in which users
walked through different scenarios with the simulation, and then we gathered feed-
back via a questionnaire [2]. We gave users some predefined sequences of actions
to perform within the simulation. When the users were finished, they were asked
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Figure 9. b) Graphical display of PETEEI’s internal emotional states.

to answer a set of questions. The reason for using questionnaires as our evaluation
method was three-fold. First, questionnaires provide users with structured answers
to the questions that we are looking for. Second, questionnaires can be given to or-
dinary users, as opposed to soliciting more sophisticated feedback from experts (on
pet behavior or social interaction). Finally, having users assess the behavior of a
pet is more convenient than comparing the performance of the simulation to a real
animal under the same experimental conditions. While the results will depend on
the ability of our subjects to accurately judge how realistic the emotional states and
behavior of the pet are, we feel that most people have sufficient common knowledge
to perform this task.

4.2.1.1. Selection of subjects. Participants in the evaluation were recruited by
email from a list of undergraduates that is maintained by the Computer Science
Department at Texas A&M University. We recruited 21 subjects from this pool.
The ages of the subjects were in the range of 18–26 years old. Most of the partici-
pants were first year undergraduates. This source was chosen to reduce the bias due
to the background knowledge of the users within the sample. Users with special-
ized backgrounds might evaluate the simulation according to their own field. For
example, users with a sociology background will look at the social side of the pet,
people with an HCI background will look at the usability side, and people with bi-
ology background might compare the pet to a real animal. In order to diminish this
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effect we selected first year undergraduates who do not have specific background
knowledge tied to any field.

4.2.1.2. Experimental procedure. Participants were asked to meet with the prin-
ciple investigator for a period of two and one-half hours in a computer science lab
at the Texas A&M campus. The participants were first given a fifteen-minute intro-
duction to the system. In this introduction, they were notified that their responses
would be used to further enhance the system, not as a measure of how good the
system is. This way, the users were encouraged to give constructive criticism of the
system, while avoiding assessing the system in an unduly positive fashion because
they were either trying to be nice or were impressed by the interface.

Participants were handed instruction sheets, which walked them through different
scenarios of the simulation, showing them the different aspects of the pet’s behavior.
Eventually, they were asked to fill out a questionnaire about what they observed in
the simulation. While answering the questionnaires, the subjects were asked not to
write their names or mark the papers in any way that might be used to identify
them at a later time period, to ensure the anonymity of response.

The protocol described above was repeated for four different versions of the
system. (1) We evaluated a simulation where the pet produced a set of random
emotions and random behaviors. This version provided a baseline for other exper-
iments. Sometimes users might be impressed by the pictures or sound effects; or
the fact that the pet in the pictures reacts at all to the user’s actions might influ-
ence some users to answer some questions with positive feedback. (2) We evaluated
a non-random version of the system, but with no fuzzy logic or learning, using a
crisp interval mapping instead of fuzzy mapping and constant probabilities for ex-
pectation values. (3) A version with fuzzy logic but no learning was evaluated to
observe the effect of fuzzy logic on the system. (4) A simulation with both fuzzy
logic and learning was then evaluated to determine the advantage of making the
model adaptive.

Due to the limited sample size, we carried out the experiments so that each user
would use and answer questions on all four versions of the system. To eliminate the
effect of users making direct comparisons with other versions they have observed
in the course of the experiment, we employed a counter-balanced Latin square
design, where the order of presentation of the different models was shuffled for the
different users.

4.3. Results

The questionnaires were collected and analyzed for 21 subjects. The questions in
the questionnaire were designed to evaluate the different elements of the model. In
this section, we will present the quantitative results, and we also give some of the
users’ informal comments.

4.3.1. Intelligence. To explore how users perceive PETEEI’s intelligence in the
four models, we asked the users to rate the intelligence of PETEEI based on certain
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definitions, specifically goal-oriented behavior and adaptability. We formulated the
questions as follows:

The concept of intelligence has been defined and redefined many times. For
the purpose of our experiment we will evaluate intelligence from two dif-
ferent perspectives.

A. Intelligence was also defined as exerting behaviors or actions that are
goal oriented.

Do you think that PETEEI has this form of intelligence?
Yes No

If yes, rate your answer in the scale of zero to ten. (0� the pet is
has only minor goal-directed intelligence →10� the pet is very goal-
directly intelligent). Explain your rating.

B. Another definition to intelligence is the ability of the agent or the
subject to adapt to a certain environment or situation.

Do you think that PETEEI has this form of intelligence?
Yes No

If yes, rate your answer in the scale of zero to ten. (0� the pet is
has only minor adaptability →10� the pet is very adaptable). Explain
your rating.

C. Overall how would you rate the pet’s intelligence using the three cri-
teria above? Explain your answer. (0� not intelligent →10� very intel-
ligent).

We used the following formula to calculate the statistical significance of the binary
answers above using a 95% confidence interval:

±1:96

√
p∗�1− p�

n

where n is the sample size, p is the percentage of Yes answers and 1.96 represents
the 2-sided z-score for 95% confidence. For answers on a scale from 0–10, we
calculated the standard error of the mean for a sample size of 21. This measure
was calculated using the following formula:

x̄± σ√
n

where x̄ is the mean, the σ is the standard deviation and n is the size of the sample,
which is 21 in this case.

Table 4 shows the means, standard errors and confidence intervals of the
responses. Figure 10 shows these results graphically. The figure depicts the four
models in different gray shades. The four models depicted in the figure are the
random model, non-fuzzy/non-learning, fuzzy/non-learning, and fuzzy/learning
model, respectively. The figure shows the mean values of the models. The standard
errors are depicted by the error bars.
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Table 4. Intelligence ratings of PETEEI’s intelligence with respect to goal-directed behavior (question
A), adaptation to the environment and situations happening around it (Question B), and overall impres-
sion of PETEEI’s intelligence

Model Question A Question B Overall

Mean Error Mean Error Mean Error

Random 0.14 0.04–0.25 0.33 0.16–0.51 1.143 1–1.29
Non-fuzzy/non-learning 0.3 0.19–0.485 1.1 0.74–1.45 3.19 0.03–3.35
Fuzzy/non-learning 0.5 0.33–0.71 0.5 0.73–1.46 3.05 2.86–3.24
Fuzzy/learning 7 6.57–7.43 5.1 4.49–5.79 7.05 6.86–7.24

Figure 10. Rating on intelligence of PETEEI: a) Do you think PETEEI’s actions are goal oriented?
Rate your answer. b) Do you think that PETEEI has the ability to adapt to the environment? Rate your
answer. c) Rate PETEEI’s overall intelligence.

The intelligence ratings of the random model were 0.14 for goal-oriented
behavior, 0.33 for adaptability, and 1.14 overall. One user rated the pet’s intel-
ligence in the random model as 2 out of 10, and they explained their answer
by saying “PETEEI knew about his surroundings, like he knew if there was wa-
ter around him or not.” These scores for the random model establish a baseline
for the other responses. In contrast, by using the non-fuzzy/non-learning model,
the level of intelligence increased a little bit (significant for overall intelligence,
question C). Interestingly, the addition of fuzzy logic did not further increase the
intelligence ratings based on these definitions. However, the addition of learning to
the model brought about a much more significant increase in the intelligence rat-
ings. The overall intelligence went from around 3.05 to 7.05. A significant increase
was also noted for questions A and B on the goal-oriented and adaptive aspects of
intelligence specifically.

4.3.2. Learning. To gain deeper insight into the impact of the adaptive compo-
nent of FLAME on the believability of the simulation, we asked subjects more di-
rected questions about the learning behavior of PETEEI. These questions examined
subjects’ perceptions of PETEEI’s ability to adapt to its environment and the user,
which requires learning about event probabilities, user tendencies, good and bad
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actions based on user feedback, and associations between events/objects and emo-
tional reactions.2

The questions that were asked of the subjects about the learning behavior of the
model in the simulation were:

Learning can be measured in many different aspects.

A. A subject x can learn about the other people’s behavior to know what to
expect and from whom.

Do you think PETEEI learns about you?
Yes No

If yes, rate your answer in the scale of zero to ten. (0| the pet
learns only a few things about me →10| the pet learns a lot about
me). Explain your rating.

B. A subject could learn more about the environment to plan for his/her
actions.

Do you think PETEEI learns about its environment?
Yes No

If yes, rate your answer in the scale of zero to ten. (0| the pet
learns only a few things about the environment →10| the pet learns
a lot about the environment). Explain your rating.

C. A subject could learn how to evaluate some actions as good or bad ac-
cording to what people say or according to his own beliefs.

Do you think PETEEI learns about good and bad actions?
Yes No

If yes, rate your answer in the scale of zero to ten. (0| the pet
learns about only a few actions →10| the pet learns to assess all its
actions). Explain your rating.

D. Overall how would you rate the pet’s learning using the four crite-
ria listed above? Explain your answer. (0| does not learn much →10|
learns a lot).

The results, shown in Table 5 and Figure 11, revealed how learning was perceived
by users. Clearly, learning was only perceived when the learning component of the
model was used. The responses for all other versions of the system were under 2.0.
There were some minor differences that can be noted from the table among these
different models; however, the confidence intervals overlap to a great extent, leading
us to believe that users did not perceive significant differences in these models.
In contrast, the learning model was observed to increase the learning perceived
in all questions. In question A (learning about the user), there was an increase
to 7.7; in question B (learning about the environment), there was an increase to
5.95; in question C (learning from feedback), there was an increase to 7.67, and in
question D (overall) there was an increase in the ratings to 7.95. Thus, the learning
component was responsible for the apparent adaptability of the system, and this is
a reflection of the different types of learning which are necessary for a believable
model of emotions.

4.3.3. Behavior. Finally, the users were asked to rate PETEEI in terms of how
convincing the pet’s behavior was. The users were told not to rate it in terms of
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Table 5. User’s evaluations of aspects of learning in various versions of PETEEI: A) about users, B)
about environment, C) about good or bad actions, and D) overall impression that PETEEI learns

Model Question A Question B Question C Question D

Mean Error Mean Error Mean Error Mean Error

Random 0 0–0 0 0–0 0.1 0–0.19 0.24 0.14–0.33
Non-fuzzy/non-learning 0.5 0.18–0.77 0.3 0.05–0.62 0.4 0.08–0.68 0.19 0.67–1.14
Fuzzy/non-learning 0.9 0.45–1.26 0.5 0.16–0.89 0.29 0.05–0.53 1.14 0.8–1.48
Fuzzy/learning 7.7 7.49–7.93 5.95 5.35–5.56 7.67 7.46–7.88 7.95 7.78–8.13

Figure 11. Rating on learning of PETEEI: a) Do you think PETEEI learns about you? Rate your
answer. b) Do you think PETEEI learns about its environment? c) Do you think PETEEI learns about
good and bad actions? d) Rate PETEEI’s overall learning ability.

animation quality or facial expression, but to concentrate on the behavioral and
emotional aspects. We analyzed users’ answers and we present the results in Table 6.

As the table shows, the random model did not convey a realistic or convincing
behavior to the user since the rating was on average 1.0. In contrast, the introduction
of the non-fuzzy/non-learning model improved this measure by about 3.3 units on
average. The fuzzy/non-learning model also improved this measure by 1.1 units.
The fuzzy/learning model further improved this measure by 2.6 to an average of 8.1
units. All of these increases are likely significant.

4.3.4. Summary. We conclude that the introduction of learning improved the sys-
tem and created a closer simulation of the behavior of a real pet. While fuzzy logic
did not contribute significantly in the user evaluations, it provided a better means
of modeling emotions due to its qualitative and quantitative expressiveness. Learn-
ing, on the other hand, was found to be most important for creating the appearance
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Table 6. User’s ratings of how convincing the
behavior of the pet in PETEEI was

Model Behavior

Mean Internal

Random 1.0 0.83–1.17
Non-fuzzy/non-learning 4.33 3.96–4.71
Fuzzy/non-learning 5.43 5.14–5.72
Fuzzy/learning 8.1 7.87–8.32

of intelligence and believability. Even though the pet was not animated, the users
all agreed that the model behind the interface could serve further as a basis to sim-
ulate more believable characters. As a matter of fact, one of our users noted that,
“I like this model better than Petz [a commercial product that simulates believable
pets], because this model shows me more about how the pet learns and displays his
affections to me, while in Petz the dogs just play around without any emotions, or if
there were some, I was not able to determine what emotions the pets were feeling
and how they learned from me.”

5. Discussion

FLAME could be used as a computational model of emotions to enhance a variety
of different computer interfaces or interactive applications. For instance, FLAME
could be used to implement a believable agent in animated character applica-
tions [85], such as interactive theatre productions or role-playing video games. These
often involve simulation of synthetic characters which interact with the user. Typi-
cally such applications are designed using a scenario-driven technique, in which the
animator must anticipate and script responses to all possible sequences of events.
However, there has been recent interest in using intelligent agents to generate
realistic behavior autonomously [8, 40], and a model of emotions, such as FLAME,
could be used to enhance the believability of such character animations [74]. The
utility of a computational model of emotions can also be foreseen in educational
software [20]. The incorporation of more synthetic and emotionally expressive char-
acters has been shown to enhance the learning process in children [38]. FLAME
can also be used as the basis for producing a more responsive tutor agent in train-
ing simulations [65]. Finally, a model of emotions like FLAME could potentially
be used to enhance human-computer interfaces [54]. Much of the work in this area
has focused on inferring the internal states of the user based on what events he/she
has seen on the screen and what actions he/she has taken [6]. FLAME could be
employed as the basis of a user model to also track the user’s likely emotional
state according to these inputs (in addition to implementing a believable agent for
display [34]).

Before porting FLAME to other applications, however, we would need to ad-
dress some of its limitations. Aside from specifying the new goals of the agent,
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some parameters used in the model might need to be adjusted. Through our dis-
cussion of the model, we have introduced many different parameters, including the
decay constant of negative and positive emotions, the impact β of the mood on
expectations, the tolerance degree that measures the closeness of emotions, the
number of pervious time periods for calculating the mood, etc. These parameters
might need to be set to specific values before linking the model to a different appli-
cation. A simple approach would be to implement an experimental version of the
system and then use trial and error over some range of parameter values to deter-
mine the optimal settings. A more sophisticated approach would need to be used
in cases where the values are not independent.

There are many ways in which FLAME could be extended. For example, the
model, as described above, does not incorporate personality. Simulating virtual char-
acters involves more than just simulating emotional behavior; personality is regarded
as one of the most important factors that differentiates people [50], and is thus one
of the most important features that can enhance believability of animated char-
acters [85]. Several researchers within the social agents’ community incorporated
personality in their model [8, 39, 69]. For example, D. Rousseau and B. Hayes-
Roth simulated agents with different personalities by using rules to define different
personality traits [68, 69]. The personality traits they developed include: introverted,
extroverted, open, sensitive, realistic, selfish, and hostile [69]. They described each
trait in terms of the agent’s inclination or focus, which determined aspects of the
agent’s behavior [68].

Personality theory has been addressed within many disciplines. Many approaches
have been proposed to account for individual differences, including evolutionary
constructs, biological and genetic substrates, affective and cognitive constructs, and
the self and the other theory [63]. Recently, strong evidence of the role of moods,
motivations, and experience in shaping personality and individual differences was
found [63]. Therefore, simulating personality may involve exploring the relationship
with other related processes, such as learning, emotions, and cognition. Incorporat-
ing personality into FLAME would be a difficult but important task. One interest-
ing idea is that we might be able to account for some personalities by manipulating
the parameters of the model. For example, a very optimistic person may have a
much larger mood factor β for positive events than negative events. Nevertheless,
additional research needs to be done to explore the relationships among moods,
experience, emotions and personality.

Finally, we note that in many applications an agent rarely acts by itself; rather,
it is often a member of a group of agents that interact with each other to accom-
plish various tasks (e.g., software agents) [27]. To simulate a group of agents that
interact with each other, we would have to extend FLAME to incorporate some of
the social agents concepts. FLAME was designed to model the interaction between
one agent and a user. For an agent to interact with other agents, the architecture
will have to be extended to account for multiple mental models, as was discussed
by Elliott [19]. We will also have to add other aspects that psychologists have iden-
tified to influence emotions and social interactions, including self-evaluation, self-
perception, self-awareness, self-realization and self-esteem [26, 50]. In essence, the
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problem will then be extended from modeling emotions to modeling social behavior
and interactions.

6. Conclusion

In this paper, we have described a new computational model of emotions called
FLAME. FLAME is based on an event-appraisal psychological model and uses
fuzzy logic rules to map assessments of the impact of events on goals into emo-
tional intensities. FLAME also includes several inductive algorithms for learning
about event expectations, rewards, patterns of user actions, object-emotion asso-
ciations, etc. These algorithms can enable an intelligent agent implemented with
FLAME to adapt dynamically to users and its environment. FLAME was used to
simulate emotional responses in a pet, and various aspects of the model were eval-
uated through user-feedback. The adaptive components were found to produce a
significant improvement in the believability of the pet’s behavior. This model of
emotions can potentially be used to enhance a wide range of applications, from
character-based interface agents, to animated interactive video games, to the use of
pedagogical agents in educational software. These could all benefit from the gener-
ation of autonomous believable behavior that simulates realistic human responses
to events in real-time. There are a number of ways in which FLAME could be ex-
tended, such as taking into account personality, self-esteem, social behavior (multi-
agent interactions), etc. Nonetheless, the adaptive capabilities of FLAME represent
a significant improvement in our ability to model emotions, and can be used as the
basis to construct even more sophisticated and believable intelligent systems.

Notes

1. A Markov Decision Process refers to an environment in which rewards and transition probabilities
for each action in each state depend only on that state, and are independent of the previous actions
and states used to get to the current state.

2. We note that for these experiments, an older version of the FLAME model was used [75]. While
most of the learning algorithms were the same as described in Section 3 above, the learning of
action values (i.e., how much the actions please or displease the user) was done using small constant
multipliers to update estimates of action values. This could make a slight difference in the relative
assessment of the quality of actions, but the overall effect should be the same—that actions leading
to positive feedback would become known as pleasing actions and vice versa.
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