Unsupervised Machine Learning

Lecture notes

Aapo Hyvarinen
University of Helsinki

FExercices and solutions by:
Michael Gutmann and Doris Entner

Version for spring semester 2015



Contents

1 Introduction

2 Review of some basic mathematics

2.1 Linear algebra. . . . . . . . . L
2.1.1 Matrices . . . . .o e e e
2.1.2  Determinant . . . . . ...
213 Inverse. . ...
2.1.4 Orthogonality . . . . . . . . . . e
2.1.5 Eigenvalues and eigenvectors . . . . . . . . ... L oL e

2.2 Probability theory and statistics . . . . . . . . .. oL L
2.2.1 Multivariate probability distributions . . . . . . . .. ... L
2.2.2  Marginal and joint probabilities . . . . . . . ... Lo
2.2.3 Conditional probabilities . . . . . . . . . ..
2.24 Independence . . . . . . . . L
2.2.5 Expectation . . . . . ..o
2.2.6 Parameter estimation and likelihood . . . . . . .. .. oo oo

3 Optimization in real spaces

3.1 Definition and meaning of gradient . . . . . . . ... L oL
3.2 Gradient and optimization . . . . . . . ..o
3.3 Optimization of function of matrix . . . . . . . . .. oL
3.4 Constrained optimization . . . . . . ... e

3.4.1 Projecting back to constraint set . . . . . . ...

3.4.2 Projection of the gradient . . . . . . . . ... L
3.5 Global and local maxima . . . . . . . ... L L
3.6 Stochastic gradient methods . . . . . . . . . ...
3.7 Newton’s method . . . . . . . . . e

3.7.1 Conjugate gradient methods . . . . . . . . . . . ...
3.8 Alternating variables . . . . . . ...

4 Principal component analysis

4.1 Definition of maximization of variance . . . . . . . . . . . . e

11
11
11
11
12
12
12
13
13
14
16
17
18
19

21
21
22
23
23
23
23
24
25
25
27
28

29



CONTENTS

4.2 Solution of PCA using eigenvalue decomposition . . . . . . . . ... ... oo
4.2.1 Definitions . . . . . . L
4.2.2 Covariance matrix . . . . . . . ... L e
4.2.3 Eigenvalues of covariance matrix . . . . . . .. ... oL L
4.2.4  Some properties of principal components . . . . . .. ..o oL oL

4.3 Dimension reduction by PCA . . . . . . . . L
4.3.1 Definition and uniqueness . . . . . . . ... L e e
4.3.2 Proof of optimality of PCA . . . . . . . . . . e
4.3.3 Proportion of variance explained by the components . . . . . . ... ... ... L.

4.4 Tlustration . . . . . . . . L e

4.5 Whitening . . . . . . . . L e
4.5.1 Whitening as normalized decorrelation . . . . . . . .. ... Lo oo
4.5.2  The family of whitening transformations . . . . . . . . ... ... L 000
4.5.3 Whitening exhausts second-order information . . . . . . .. ... L 00000

5 Factor analysis

5.1 Formulation as a generative model . . . . . . ... oL oL
5.2 Gaussianity assumption . . . . ... Lo e e e
5.3 Factor rotation problem . . . . . . ..o
5.4  Least-squares estimation . . . . . . . . .. L L L e

5.4.1 Connection between PCA and FA . . . . . . . . . . ...

5.4.2 Likelihood of the model . . . . . . . . . ..
5.5 Classic factor rotation methods . . . . . . . . . .. oL
5.6 PCA/FA and noise reduction . . . . . . . . . .. L
5.7 Effect of scaling the variables . . . . . . . . . .. o
5.8 Choosing the number of principal components or factors . . . . . . . ... . ... ... oL,

6 Independent Component Analysis: Definition

6.1 Motivation . . . . . . L e
6.1.1 ICA as estimation of a generative model . . . . . . .. .. ... oo oL
6.1.2 Model assumptions in ICA . . . . . . . .. e

6.2 Tlustration of ICA . . . . . . . e

6.3 ICA is stronger than whitening . . . . . . . . . . . .
6.3.1 Uncorrelatedness and independence . . . . . . .. ... L oL e
6.3.2  Whitening is only half ICA . . . . . . . . . . e
6.3.3 Ambiguities of ICA . . . . . . . L L

6.4 Why gaussian variables are forbidden . . . . . . . . . . ...

7 ICA by maximization of non-gaussianity
7.1 Introduction . . . . . . . . . L e e

7.2 “Nongaussian is independent” . . . . . . . . ... oL e

30
30
30
31
31
32
32
32
33
33
34
34
35
35

36
36
36
37
37
37
38
38
40
41
41

42
42
43
43
44
46
46
46
47
48



9

7.3 Measuring nongaussianity by kurtosis . . . ... ..o 0000
7.3.1 Extrema give independent components . . . . . . . .. ... ...
7.3.2 Gradient algorithm using kurtosis . . . . . .. ... ... .. ..

7.3.3 A fast fixed-point algorithm (FastICA) using kurtosis

7.3.4 Examples . . . .. ...
7.4 Estimating several independent components . . . . . . . ... ... ..
7.4.1 Constraint of uncorrelatedness . . . . .. ... .. ... ... ..
7.4.2 Deflationary orthogonalization . . . . .. ... . ... ... ...
7.4.3 Symmetric orthogonalization . . . . ... ... ... ... ....
7.5 ICA and projection pursuit . . . . . . . . .. ... ... ... ...
7.5.1 Searching for interesting directions . . . . . . . .. ... .. ..
7.5.2 Nongaussian is interesting . . . . . . . . ... ... ... L.

ICA by maximum likelihood estimation

8.1 The likelihood of the ICA model . . . . . ... ... ... ... .....
8.1.1 Deriving the likelihood . . . . . . . .. .. ... oL
8.1.2 Estimation of the densities . . . . .. ... .. .. ... .....

8.2 Algorithms for maximum likelihood estimation . . . . ... .. ... ..
8.2.1 Gradient algorithm . . . . . . ... ... oo
8.2.2 The natural gradient algorithm . . . . .. ... ... ... ... .
8.2.3 FastICA . . . . . . . .

8.3 Examples . . . . . ..

8.4 Likelihood vs. kurtosis . . . . . . . ... L o

ICA and unifying information-theoretic approach

9.1 Definition of entropy . . . . . . ... o
9.2 Entropy as a robust non-Gaussianity measure . . . . . . ... . ... ..
9.3 Entropy and likelihood . . . . . . . . ... oo
9.4 Mutual information as measure of dependence . . . . . . . .. ... ...
9.4.1 Definition . . . . ... Lo
9.4.2 Transformation formula for entropy . . . ... .. ... .. ...
9.4.3 Mutual information and likelihood . . . . . .. .. ... .. ...

10 Applications of component analyses

10.1 Denoising and compression by PCA and FA . . . . ... ... ... ...
10.2 Blind separation of brain sources in MEG data . . . . . ... ... ...
10.3 Image feature extraction . . . . . . . . . . .. ... L.
10.3.1 Motivation . . . . . . . ... L
10.3.2 Linear representations . . . . . . . .. ... ... ... ... ...
10.3.3 ICA and Sparse Coding . . . . . . .. .. ... ... ...,
10.3.4 Estimating ICA bases from images . . . . . .. .. .. ... ...

CONTENTS



CONTENTS

11 Sparse coding with overcomplete basis

11.1 Motivation . .. .. ... ..

11.2 Definition of generative model

11.3 Nonlinear computation of the basis coefficients . . . . . . . . . .. ... 0oL

11.4 Estimation of the basis . . . .

11.5 Approach using energy-based models . . . . . . . ... L

11.6 Overcomplete basis from natural images . . . . . . . . . ... L L

12 Clustering

12.1 Definition and motivating applications . . . . . . . . . .. L L

12.2 K-means algorithm . . . . . .
12.2.1 The algorithm . . . .

12.2.2 Definition of objective function for k-means . . . . . . . . . .. ... L

12.3 Gaussian mixture model . . .

12.4 Likelihood of gaussian mixture model . . . . . . . . . .. Lo L

12.5 EM algorithm: a heuristic approach . . . . . . . . . . . .

12.6 EM algorithm: general theory

12.7 Deriving the gaussian mixture case of EM . . . . . . . . ..o Lo

13 Nonlinear projection methods

13.1 Metric (linear) multi-dimensional scaling . . . . . . . . .. .. . . L

13.1.1 Basicidea . . . . . ..

13.1.2 Case of Eulidean distances . . . . . . . . . .

13.2 Nonlinear MDS . . . . . . ..
13.2.1 Kernel PCA . . . . ..
13.2.2 Laplacian eigenmaps .
13.2.3 IsoMap . ... .. ..

13.3 Kohonen’s self-organizing map

14 Short comparison of methods

81
81
81
82
83
83
84

86
86
86
86
88
89
89
90
91
92

93
93
93
93
94
95
95
96
97

100



Preface

These are the lecture notes for the course Unsupervised Machine Learning, lectured by Aapo Hyvérinen at the
University of Helsinki. These lecture notes contain all the material in the lectures (except for parts of some computer
demos) and are hopefully suitable for self-study as well. Exercices with solutions are given in the appendix. Computer
assignments are given separately, and they also contain some essential material.

Copyright notices: Chapters 2, 3 and 4 are based on material from the book Natural Image Statistics, Copyright Springer-
Verlag (©2009. Chapters 6, 7, 8, 9 and 10 are based on material from the book Independent Component Analysis Copyright
Wiley Interscience, (©2001. These lecture notes are intended only for students of the University of Helsinki attending the
above-mentioned course.

Acknowledgments

Thanks to Olli Tapiola for helping with the latexing of the exercice solutions, and Henrik Nyman for extensive corrections on
the manuscript.



Chapter 1

Introduction

Machine learning typically means a situation where a computer or a robot learns from its experiences and observations of the
outside world. The goal of such learning is behaviour which one would call “intelligent”, although intelligence is notoriously
difficult to define precisely.

It is widely believed that learning is necessary for developing an intelligent system. It seems to be too difficult to program
intelligent behaviour in detail, and it is believed that letting the system learn from its experience and observing the world makes
things easier. The outside world contains implicitly a huge amount of information, and if the system can successfully extract
that information (or rather, as some would say, it is able to extract knowledge from that information), it may be able to learn
complex intelligent behaviour based on some relatively simple learning rules.

Learning regularities in the environment is closely related to the goals of statistical science, and that’s why modern machine
learning is heavily using the theory of statistical estimation and modelling. In fact, this course is at the same time a course in
statistics, where it might be called computational data analysis or, historically, multivariate statistics.

Machine learning is usually divided into three parts:

e Supervised learning: we observe input « and output y and the goal is to learn the connection. This includes such topics
as regression, prediction, and classification.

e Reinforcement learning: we have an agent which is in state s, takes action a, receives reward r (or none). The goal is to
learn to take action a in state s to maximize reward. This is rather different from classical statistical theory.

e Unsupervised learning: Observe only x, nothing else. This is closely related to topics such as exploratory data analysis
and data mining. We don’t have separate “inputs” and “outputs”, just a lot of observations of one variable or vector, x.

Some goals of unsupervised learning are the following:

e Visualization: You have 100 variables and 1000 observations. How to plot the data so that you see something? (Figure 1.1)

e Preprocessing for supervised learning: How to find the “relevant” features of the data to improve regression/classification?
(Figure 1.2)

e Noise reduction and feature extraction for e.g. computer vision: You have 1,000,000 variables and your computer cannot
handle it. How to reduce their number? (Again, Figure 1.2)

e Finding interesting components: You have 100 variables and 1000 observations. Can you extract the underlying phenom-
ena in the data, which the scientists are really interested in? (Figure 1.3)

e Dividing you data into groups: You have data on 1,000 items (patients, cell types, genes, or something). Can you divide
them into two distinct groups? (Figure 1.4)

e (Not in this course:) Bayesian/causal networks. How does z affect z2?

There are different theoretical approaches one might use in machine learning in general, and unsupervised learning in particular.
Historically, the oldest is rule-based learning. One tries to learn rules such as “if z; > 0 and x2 < —2, data point belongs to
cluster #2”. This uses classic algorithmics as developed in computer science. More modern approaches then to emphasize
the statistical or probabilistic framework (the two words have basically the same meaning here). In the simplest case, this
might mean computing covariances of the variables and analyzing them. Recently many researchers have advocated a more
strictly probabilistic approach in which we formulate the problem as the estimation of a statistical model, and use the theory
of statistical estimation (often Bayesian) to estimate the model. Thus, unsupervised machine learning is reduce to estimating
a parametric statistical model p(x|@) of the observed data, where 6 is a vector of parameters.

In this course we use a probabilistic approach (more or less strict), which is why the course is, as already mentioned, essentially
a statistics course as well. We also consider real-valued data, not binary or discrete-valued.

7



8 CHAPTER 1. INTRODUCTION

BGD
L ]
HUN P
-PDL IND ﬁ("}"“- SLE
D ; sE ISR e PH'I_EIN
o PN KC.)R DOM EGM‘:‘R BEN kit
ﬁ.g"\ A L *" e GHA . MLI
A%’P . MUS RN . SEN . T
. Ga\ﬁ;":ﬁjpyﬁ N TUN ® CMR Mﬁéq ¢ L
NZL ARE ¢ S\BOL e £ MW |
. PE{ . .VEN:&)&PEH o' ® KEN N(.;A . 'IZ'A
L
i AN & PFWZ\:JE ]\
HKG ﬁﬂ@f" TUR - gwa GIM *
. Tk BRA o *  7MB
L] L L]
LKA
L ]
CHN
L ]

Figure 1.1: An illustration of visualization by projection onto a low-dimensional subspace (S. Kaski, PhD thesis, 1997).
The data consisted of various socioeconomical statistics of different countries, identified by their three-letter acronyms.
The visualization method learned to assign each country to a location on the two-dimensional plane, so that countries
with similar socioeconomic conditions are close to each other.

Figure 1.2: An illustration of dimension reduction as preprocessing for supervised learning (Turk and Pentland,
J. Cogn. Neurosci., 1991). The data consisted of pictures of faces. The number of pixels in the pictures is very large.
Using a method called principal component analysis, the authors found seven features which define a seven-dimensional
subspace. Such a seven-dimensional representation can then be used for face recognition.



Figure 1.3: An illustration of finding interesting underlying phenomena in high-dimensional data (Beckmann et al,
Phil. Trans. Royal Soc. B, 2005). The data consisted of a few hundred brain scans by functional magnetic resonance
imaging. Using a method called independent component analysis, the authors found eight activation patterns. These
activation patterns were proposed to play an essential role in brain activity during rest.

e T o — — 1 4 [ 11 ) J) 1 Il I Il I3 I JRLIE ] Al
Prostate aderocarcinoma

Chron

Ietranwgatie

T
!
h.l
T
i
8

. re P -
&' L] f— ' L | L
Hamd —.— B - —_— — e — E
- T J L 1=
—!_."—ﬁ—_fk"f ———— | — e ——— =
1 : m ] 1] ’ 7_
- I ] —a . - .
= *. L & - 3 e
Gast ] 1 .‘|I B ] — \_ 1 IJ 1
[ 1
" . = . U
- 1 -y '- 1 L ] — [ § 1 3 E
L ' ‘ ]
- ‘m . =
.-l - - u .- q —- i I- E
. "

Figure 1.4: An illustration of grouping or clustering (Myllykangas et al, Oncogene, 2006). Each row in this plot
corresponds to one cancer cell type, and the values on each row are measurements of what is called “DNA copy number
amplification” of different chromosomes. Using a clustering algorithm, five groups of cells with similar properties were
found. The rows have been ordered to reflect this grouping; the clusters are separated by horizontal lines. The rows
at the bottom didn’t fit any groups.



10 CHAPTER 1. INTRODUCTION

Another important point is that we take computations seriously. Sometimes in statistical modelling we only formulate the
statistical principles, give an objective function (such as likelihood) which should be maximized, and ignore the problem of
how it is computationally maximized. In machine learning, we are not satisfied with that but we also develop methods which
do the required computations. This is why optimization theory is essential, and we will develop computational methods for
estimating/optimizing each statistical model considered.



Chapter 2

Review of some basic mathematics

2.1 Linear algebra

2.1.1 Matrices

In matrix algebra, linear transformations and linear systems of equations can be succinctly expressed by matrices. A matrix
M of size n1 X ng2 is a collection of real numbers arranged into n1 rows and no columns. The single entries are denoted by m;
where ¢ is the row and j is the column. Thus,

mi1 mi2 ...  Ming
M = . . (241)
Mnq1 Mnq2 e Mnqing

Consider a vector z in an ny dimensional real space. A linear transformation of the vector z, as defined by the matrix M, is
then denoted by

y =Mz (2.2)
which is basically a short-cut notation for
na
Yi = Zmij2j7 for all 4 (2.3)
j=1

This operation is also the definition of the product of a matrix and a vector.

If we concatenate two linear transformations, defining
s =Ny (2.4)

we get another linear transformation. The matrix P that expresses this linear transformation is obtained by
ni
pi]’ = Znikmkj (25)
k=1
This is the definition of the product of two matrices: the new matrix P is denoted by

P = NM (2.6)

The definition is quite useful, because it means we can multiply matrices and vectors in any order when we compute s. In fact,
we have

s =Ny = N(Mz) = (NM)z (2.7)

Another important operation with matrices is the transpose. The transpose MT of a matrix M is the matrix where the indices
are exchanged: the i, j-th entry of M7 is mj;. A matrix M is called symmetric if m;; = mj;, i.e., if M equals its transpose.

2.1.2 Determinant

The determinant answers the question: how are volumes changed when the data space is transformed by the linear transformation
M? That is, if z takes values in a cube whose edges are all of length one, what is the volume of the set of the values y in
Equation (2.2)7. The answer is given by the absolute value of the determinant, denoted by |det(M)|, or sometimes simply as
M.

Two basic properties of the determinant are very useful.

11



12 CHAPTER 2. REVIEW OF SOME BASIC MATHEMATICS

1. The determinant of a product is the product of the determinants: det(MN) = det(M) det(N). If you think that the first
transformation changes the volume by a factor or 2 and the second by a factor of 3, it is obvious that when you do both
transformation, the change in volume is by a factor of 2 x 3 = 6.

2. The determinant of a diagonal matrix equals the product of the diagonal elements. If you think in two dimensions, a
diagonal matrix simply stretches one coordinate by a factor of, say 2, and the other coordinate by a factor of, say 3, so
the volume of a square of area equal to 1 then becomes 2 x 3 = 6.

(In Section 2.1.4 we will see a further important result on the determinant of an orthogonal matrix).

2.1.3 Inverse

If a linear transformation in Equation (2.2) does not change the dimension of the data the transformation can usually be
inverted. That is, Equation (2.2) can usually be solved for z: if we know M and y, we can compute what was the original z.
This is the case if the linear transformation is invertible — a technical condition that is almost always true.

In matrix algebra, the coefficients needed to solve an equation can be obtained by computing the inverse of the matrix M,
denoted by M™!. So, solving for z in (2.2) we have
z=My (2.8)

A multitude of numerical methods for computing the inverse of the matrix exist.

Note that the determinant of the inverse matrix is simply the inverse of the determinant: det(M™') = 1/det(M). Logically, if
the transformation changes the volume by a factor of 5 (say), then the inverse must change the volume by a factor of 1/5.

The product of a matrix with its inverse equals the identity matriz I:
MM '=M'M=1I (2.9)

The identity matrix is a matrix whose diagonal elements are all ones and the off-diagonal elements are all zero. It corresponds
to the identity transformation, i.e., a transformation which does not change the vector. This means we have

Iz =z (2.10)

for any z.

2.1.4 Orthogonality

A linear transformation, or equivalently a matrix, is called orthogonal if it does not change the norm of the vector. Likewise, a
matrix A is called orthogonal if the corresponding transformation is orthogonal. An equivalent condition for orthogonality is

ATA=1 (2.11)

If you think about the meaning of this equation in detail, you will realize that it says two things: the column vectors of the
matrix A are orthogonal, and all normalized to unit norm. This is because the entries in the matrix AT A are the dot-products
al a; between the column vectors of the matrix A.

Equation (2.11) shows that the inverse of an orthogonal matrix (or an orthogonal transformation) is trivial to compute: we just
need to rearrange the entries by taking the transpose.

The compound transformation of two orthogonal transformation is orthogonal. This is natural since if neither of the transfor-
mations changes the norm of the vector, then doing one transformation after the other does not change the norm either.

The determinant of an orthogonal matrix is equal to plus or minus one. This is because because an orthogonal transformation
does not change volumes, so the absolute value has to be one. The change in sign is related to reflections. Think of multiplying
one-dimensional data by —1: This does not change the “volumes”, but “reflects” the data with respect to 0, and corresponds
to a determinant of —1.

2.1.5 Eigenvalues and eigenvectors
If z fulfills the equation
Mz = Az (2.12)

for some scalar quantity A, z is called an eigenvector of M, and X is called the corresponding eigenvalue. To each eigenvector
corresponds one eigenvalue by definition, but the same eigenvalue can correspond to many eigenvectors.



2.2. PROBABILITY THEORY AND STATISTICS 13

Typically, an n x n matrix will have n linearly independent eigenvectors, although some complicated conditions are necessary for
this to be exactly true. In general, eigenvectors can be complex-valued, but we will in this course always consider eigenvectors
of symmetric matrices, which are guaranteed to be real-valued, and furthermore, orthogonal to each other.

Note that if z is an eigenvector of M, az is also, for any scalar . Thus, the eigenvectors are defined only up to a scaling.
Typically, they are scaled to have unit norm in practical computations, and this is what will always be done in these lecture
notes.

One intuitive definition of an eigenvector is that its “direction” is not changed by the linear transformation M, it is only
rescaled. However, in this course this interpretation is not very useful. Here, the relevant intuitive interpretation of eigenvalues
and vectors is related to the eigenvalue decomposition of a matrix, which will be treated next.

Let us assume that the matrix M is symmetric. Then, we can decompose the matrix into the following product, called the
eigenvalue decomposition:
M = UDU" (2.13)

where U is an orthogonal matrix , and D = diag(A1, ..., Aw) is diagonal. The columns of U are the eigenvectors of M, and the
Ai are the corresponding eigenvalues. Very efficient numerical algorithms exist for computing the eigenvalue decomposition of
a matrix.

The meaning of the eigenvalue decomposition is that by changing the coordinate frame (by U), or rotating the space, any
symmetric matrix can be extremely simplified, making it diagonal.

2.2 Probability theory and statistics

2.2.1 Multivariate probability distributions

In this chapter, we will denote random variables by z1, z2,..., 2, and s1,S2,...,S, for some number n. Taken together, the
random variables z1, z2, . .., 2z, form an n-dimensional random vector which we denote by z:
21
z2
z=1 . (2.14)
Zn
Likewise, the variables s1, s2,..., s, can be collected to a random vector, denoted by s.

A probability distribution of a random vector such as z is usually represented using a probability density function (pdf). The
pdf at a point in the n-dimensional space is denoted by ps.

The definition of the pdf of a multidimensional random vector is a simple generalization of the definition of the pdf of a random
variable in one dimension. Let us first recall that definition. Denote by z a random variable. The idea is that we take a small
number v, and look at the probability that z takes a value in the interval [a,a + v] for any given a. Then we divide that
probability by v, and that is the value of the probability density function at the point a. That is

P(z is in [a,a + v])
v

p=(a) = (2.15)

This principle is illustrated in Fig. 2.1. Rigorously speaking, we should take the limit of an infinitely small v in this definition.

This principle is simple to generalize to the case of an n-dimensional random vector. The value of the pdf function at a point,
say a = (a1, az,...,an), gives the probability that an observation of z belongs to a small neighbourhood of the point a, divided
by the volume of the neighbourhood. Computing the probability that the values of each z; are between the values of a; and
ai + v, we obtain

P(z; is in [as, a; + v] for all 7)

pala) = = (2.16)

where v" is the volume of the n-dimensional cube whose edges all have length v. Again, rigorously speaking, this equation is
true only in the limit of infinitely small v.

A most important property of a pdf is that it is normalized: its integral is equal to one

/pz(a)da =1 (2.17)

This constraint means that you cannot just take any non-negative function and say that it is a pdf: you have to normalize
the function by dividing it by its integral. (Calculating such an integral can actually be quite difficult and sometimes leads to
serious computational problems).



14 CHAPTER 2. REVIEW OF SOME BASIC MATHEMATICS

a a+tv

Figure 2.1: The pdf of a random variable at a point a gives the probability that the random variable takes a value
in a small interval [a,a + v], divided by the length of that interval, i.e. v. In other words, the shaded area, equal to
p(a)v, gives the probability that that the variable takes a value in that interval.

For notational simplicity, we often omit the subscript z. We often also write p(z) which means the value of p, at the point z.
This simplified notation is rather ambiguous because now z is used as an ordinary vector (like a above) instead of a random
vector. However, often it can be used without any confusion.

Example 1 The most classic probability density function for two variables is the gaussian, or normal, distribution. Let us
first recall the one-dimensional gaussian distribution, which in the basic case is given by

1 1,

z) = exp(—=z 2.18

p(e) = = exp(=52) (218)

It is plotted in Fig. 2.2 b). This is the “standardized” version (mean is zero and variance is one), as explained below. The

most basic case of a two-dimensional gaussian distribution is obtained by taking this one-dimensional pdf separately for each

variables, and multiplying them together. (The meaning of such multiplication is that the variables are independent, as will be
explained below.) Thus, the pdf is given by

1 1
p(z1,22) = o exp(fi(zf + zg)) (2.19)

A scatter plot of the distribution is shown in Fig. 2.2 a). The two-dimensional pdf itself is plotted in Fig. 2.2 c).

Example 2 Let us next consider the following two-dimensional pdf:

1, if <1
p(z1,22) = 1 |Z1|J.F|Z2| (2.20)
0, otherwise

This means that the data is uniformly distributed inside a square which has been rotated 45 degrees. A scatter plot of data
from this distribution is shown in Figure 2.3 a).

2.2.2 Marginal and joint probabilities

Consider the random vector z whose pdf is denoted by p,. It is important to make a clear distinction between the joint pdf
and the marginal pdf’s. The joint pdf is just what we called pdf above. The marginal pdf’s are what you might call the
“individual” pdf’s of z;, i.e. the pdf’s of those variables, p.,(z1),pz,(22),... when we just consider one of the variables and
ignore the existence of the other variables.

There is actually a simple connection between marginal and joint pdf’s. We can obtain a marginal pdf by integrating the joint
pdf over one of the variables. This is sometimes called “integrating out”. Consider for simplicity the case where we only have
two variables, z1 and z2. Then, the marginal pdf of z; is obtained by

mxa>=/$4awam2 (2.21)

This is a continuous-space version of the intuitive idea that for a given value of z;, we “count” how many observations we
have with that value, going through all the possible values of z2.! (In this continuous-valued case, no observed values of z; are
likely to be exactly equal to the specified value, but we can use the idea of a small interval centred around that value as in the
definition of the pdf above.)

INote again that the notation in Eq. (2.21) is sloppy, because now z1 in the parentheses, both on the left and the right-hand side,



2.2. PROBABILITY THEORY AND STATISTICS 15

a) 4 : : : b) 05
) 0.4
03
0
02
2 01
/R 0 2 4 L 0 2 4

Figure 2.2: a) Scatter plot of the two-dimensional gaussian distribution in Equation (2.19). b) The one-dimensional
standardized gaussian pdf. As explained in Section 2.2.2, it is also the marginal distribution of one of the variables in
a), and furthermore, turns out to be equal to the conditional distribution of one variable given the other variable. c)
The probability density function of the two-dimensional gaussian distribution.

a) Lbs——————————— b) 15
1

05 1

0 05
-0.5/

-1t °

L . . 05 1 05 0 05 1 15

c) 25— d) 25
ot ] 2
15 — 15
1t ] 1
05t ] 05
o—l L 0
05 1 05 0 05 1 15 095 1 05 0 05 1 15

Figure 2.3: a) scatter plot of data obtained from the pdf in Eq. (2.20). b) marginal pdf of one of the variables in a).
c) conditional pdf of z5 given z; = 0. d) conditional pdf of z5 given z; = .75



16 CHAPTER 2. REVIEW OF SOME BASIC MATHEMATICS

Example 3 In the case of the gaussian distribution in Equation (2.19), we have

1 1 1 1 1 1
p(z1) = /p(zl,zz)dzg = / > exp(—i(zf + 23))dze = T exp(—izf) / N eXp(—gzg)dzg (2.23)

Here, we used the fact that the pdf is factorizable since exp(a + b) = exp(a)exp(b). In the last integral, we recognize the pdf
of the one-dimensional gaussian distribution of zero mean and unit variance given in Equation (2.18). Thus, that integral is
one, because the integral of any pdf is equal to one. This means that the marginal distribution p(z1) is just the the classic
one-dimensional standardized gaussian pdf.

Example 4 Going back to our example in Eq. (2.20), we can calculate the marginal pdf of 21 to equal

1-— |Z1|7 if |21| <1
z1) = 2.24

pa (1) {0, otherwise ( )
which is plotted in Fig. 2.3 b), and shows the fact that there is more “stuff” near the origin, and no observation can have an
absolute value larger than one. Due to symmetry, the marginal pdf of z2 has exactly the same form.

2.2.3 Conditional probabilities

Another important concept is the conditional pdf of z2 given z1. This means the pdf of z2 when we have observed the value
of z1. Let us denote the observed value of z1 by a. The conditional pdf is basically obtained by just fixing the value of z1 to a
in the pdf, which gives pz(a, z2). However, this is not enough because a pdf must have an integral equal to one. Therefore, we
must normalize pz(a, z2) by dividing it by its integral. Thus, we obtain the conditional pdf, denoted by p(z2 |21 = a) as

z(a, z
p(z2|z1 =a) = % (2.25)
Note that the integral in the denominator equals the marginal pdf of z; at point a, so we can also write
p(z2] 21 =a) = pa(a,22) (2.26)
=1 (a)
Again, for notational simplicity, we can omit the subscripts and just write
p(za |21 = a) = D@22 (2.27)
p(a)
or, we can even avoid introducing the new quantity a and write
z1, 2
p(z2]|21) = % (2.28)

Example 5 For the gaussian density in Equation (2.19), the computation of the conditional pdf is quite simple, if we use
the same factorization as in Equation (2.23):

L

exp(—327) A=exp(—323) 1 1
p(Z2|Zl) _ p(ZhZQ) — Var - 2 27'r1 . 272 _ exp(f—zg) (229)
p(z1) o exp(—327) V2 2

which turns out to be the same as the marginal distribution of z2. (This kind of situation where p(z2|z1) = p(z2) is related to
independence as discussed in Section 2.2.4 below.)

stands for any value z; might obtain, although the same notation is used for the random quantity itself. A more rigorous notation would
be something like:

Pz (V1) = /pz(v1,v2)dv2 (2.22)

where we have used two new variables, v; to denote the point where we want to evaluate the marginal density, and vz which is the
integration variable. However, in practice we often do not want to introduce new variable names in order to keep things simple, so we use
the notation in Eq. (2.21).



2.2. PROBABILITY THEORY AND STATISTICS 17

Example 6 In our example pdf in Eq. (2.20), the conditional pdf changes quite a lot as a function of the value a of z1. If 21
is zero (i.e. a = 0), the conditional pdf of z2 is the uniform density in the interval [—1,1]. In contrast, if z; is close to 1 (or -1),
the values that can be taken by z2 are quite small. Simply fixing z1 = a in the pdf, we have

1, if |z2| <1 —]q]
a,z2) = 2.30
p(a, z2) {O otherwise ( )

which can be easily integrated:
/p(a,zg)dzg =2(1—al) (2.31)
(This is just the length of the segment in which 23 is allowed to take values.) So, we get

if |2’2| < 17|Zl| (2 32)
0 otherwise

1
p(22]z1) = { .

where we have replaced a by z1. This pdf is plotted for z1 = 0 and z1 = 0.75 in Fig. 2.3 a) and b), respectively.

Generalization to many dimensions The concepts of marginal and conditional pdf’s extend naturally to the case where
we have n random variables instead of just two. The point is that instead of two random variables, z1 and z2, we can have two
random vectors, say z; and z2, and use exactly the same formulas as for the two random variables. So, starting with a random
vector z, we take some of its variables and put them in the vector z;, and leave the rest in the vector zs

. (2) (2.33)

Now, the marginal pdf of z; is obtained by the same integral formula as above:

Pz, (z1) = /pz(zth)sz (2.34)
and, likewise, the conditional pdf of z> given z; is given by:

p(z1,22) (2.35)

p(z2|z1) = o(z0)

Both of these are, naturally, multidimensional pdf’s.

2.2.4 Independence
Let us consider two random variables, z1 and z2. Basically, the variables z; and z2 are said to be statistically independent if
information on the value taken by z; does not give any information on the value of z2, and vice versa.

The idea that z; gives no information on 2z can be intuitively expressed using conditional probabilities: the conditional
probability p(z2 | z1) should be just the same as p(z2):

p(z2|21) = p(22) (2.36)
for any observed value a of z;. This implies
p(z1, 22)
- 2.37
) p(z2) (2.37)
or
p(21, 22) = p(21)p(22) (2.38)

for any values of z1 and z2. Equation (2.38) is usually taken as the definition of independence because it is mathematically so
simple. It simply says that the joint pdf must be a product of the marginal pdf’s. The joint pdf is then called factorizable.

The definition is easily generalized to n variables z1, 22, ..., z,, in which case it is

p(z1,22, ..., 2n) = p(21)p(22) ... p(2n) (2.39)

Example 7 For the gaussian distribution in Equation (2.19) and Fig. 2.2, we have

1 1 1 1
p(z1,22) = \/—2_71_ exp(—izf) X \/—2_71_ exp(—izg) (2.40)

So, we have factorized the joint pdf as the product of two pdf’s, each of which depends on only one of the variables. Thus, z1
and z2 are independent. This can also be seen in the form of the conditional pdf in Equation (2.29), which does not depend on
the conditioning variable at all.



18 CHAPTER 2. REVIEW OF SOME BASIC MATHEMATICS

% 2 0 2 4

Figure 2.4: A scatter plot of the two-dimensional uniform distribution in Equation (2.41)

Example 8 For our second pdf in Eq. (2.20), we computed the conditional pdf p(z2|z1) in Eq. (2.32). This is clearly not the
same as the marginal pdf in Eq. (2.24); it depends on z;. So the variables are not independent. (See the discussion just before
Eqg. (2.30) for an intuitive explanation of the dependencies.)

Example 9 Consider the uniform distribution on a square:

- (2.41)
0, otherwise

L, if [21] < V3 and |z2| < V3
P21, 22) =

A scatter plot from this distribution is shown in Fig. 2.4. Now, z; and z2 are independent because the pdf can be expressed as
the product of the marginal distributions, which are

L if || < V3
p(z1) = { 23’ if |21] = V3 12
0, otherwise

and the same for zs.

2.2.5 Expectation

The expectation of a random vector, or its “mean” value, is, in theory, obtained by the same kind of integral as for a single
random variable

E{z} = /pz(z) z dz (2.43)

The expectation can be computed by taking the expectation of each variable separately, completely ignoring the existence of
the other variables

E{z} [ pzy(21)21 dz1
E{ZQ} fpzz (ZQ)ZQ dzo

Bz =1 . |~ ~ (2.44)
E{Z"} fpzn (Zn)Zn dzn

The expectation of any transformation g, whether one- or multidimensional, can be computed as:
Blg(@)) = [ p-(e(a) da (2.45)

The expectation is a linear operation, which means

E{az + bs} = aE{z} + DE{s} (2.46)



2.2. PROBABILITY THEORY AND STATISTICS 19
for any constants a and b. In fact, this generalizes to any multiplication by a matrix M:
E{Mz} = MFE{z} (2.47)

The expectation is closely related to the average over a sample. Expectations are theoretical quantities which usually cannot
be computed from an observed sample z1,...zx. The expectation can be approximated, however, by the sample average

E{g(Z)}% ~ > g(=) (2.48)

where the approximation becomes exact in the limit of an infinite sample, i.e. an infinite number of observations.

2.2.6 Parameter estimation and likelihood

A statistical model describes the pdf of the observed random vector using a number of parameters. The parameters typically
have an intuitive interpretation. A model is basically a conditional density of the observed data variable, p(z | «), where « is
the parameter. The parameter could be a multidimensional vector as well. Different values of the parameter imply different
distributions for the data, which is why this can also be thought of as a conditional density in Bayesian theory.

For example, consider the one-dimensional gaussian pdf

exp(—%(z — a)?) (2.49)

1
p(z]a) = ——exp(—

Here, the parameter « has an intuitive interpretation as the mean of the distribution. Given «, the observed data variable z
then takes values around «, with variance equal to one.

Typically, we have a large number of observations of the random variable z, which might come from measuring some phenomenon
n times, and these observations are independent. The set of observations is called a sample in statistics.? So, we want to use
all the observations to better estimate the parameters. For example, in the model in (2.49), it is obviously not a very good idea
to estimate the mean of the distribution based on just a single observation.

Estimation has a very boring mathematical definition, but basically it means that we want to find a reasonable approximation
of the value of the parameter based on the observations in the sample. A method (a formula or an algorithm) that estimates «
is called an estimator. The value given by the estimator for a particular sample is called an estimate. Both are usually denoted
by a hat: &.

Assume we now have a sample of n observations. Let us denote the observed values by z(1),z(2),...,2z(n). Because the
observations are independent, the joint probability is simply obtained by multiplying the probabilities of the observations, so
we have

p(2(1),2(2),...,2(n) [a) = p(2(1) | @) x p(2(2) [ @) x ... x p(z(n) | @) (2.50)
This conditional density is called the likelihood. It is often simpler to consider the logarithm, which transforms products into
sums. If we take the logarithm, we have the log-likelihood as

logp(z(1),2(2),...,2(n) |a) =logp(z(1) | a) +logp(2(2) | @) + ...+ logp(z(n) | «) (2.51)

The question is then, How can we estimate a?

One basic principle is mazimum likelihood estimation. It means that we take the value of the parameters which gives the
largest value for the likelihood, when likelihood is considered as a function of the parameters with the sample being fixed. The
maximum likelihood estimator has thus the intuitive interpretation: it gives the parameter value that gives the highest probability
for the observed data.

Sometimes the maximum likelihood estimator can be computed by a simple algebraic formula, but in most cases, the maxi-
mization has to be done numerically. In some cases it is computationally so difficult that other methods are preferred.

In general, estimation can be accomplished by finding some system of equations which the right parameter values fulfill and
then solving it. Of course, this is a very general statement but we will see some examples in this course.

Example 10 In the case of the model in Eq. (2.49), we have

logp(z|a) = f%(z — a)? + const. (2.52)

In signal processing, sampling refers the process of reducing a continuous signal to a discrete signal. For example, an image I(z,y)
with continuous-valued coordinates x and y is reduced to a finite-dimensional vector in which the coordinates x and y take only a limited
number of values (e.g. as on a rectangular grid). These two meanings of the word “sample” need to be distinguished.



20 CHAPTER 2. REVIEW OF SOME BASIC MATHEMATICS

0 1 2 3

Figure 2.5: The exponential pdf in Equation (2.55) plotted for three different values of «, which is equal 1,2, or 3.
The value of « is equal to the value of the pdf at zero.

where the constant is not important because it does not depend on «a. So, we have for a sample

logp(z(1),2(2),...,2(n) |a) = f% Z(z(z) —a)? + const. (2.53)

It can be shown (this is left as an exercise) that this is maximized by

o=

S|

Z (i) (2.54)

Thus, the maximum likelihood estimator is given by the average of the observed values. This is not a trivial result: in some
other models, the maximum likelihood estimator of such a location parameter is given by the median.

Example 11 Here’s an example of maximum likelihood estimation with a less obvious result. Consider the exponential
distribution

p(z|a) = aexp(—az) (2.55)
where z is constrained to be positive. The parameter a determines how likely large values are and what the mean is. Some
examples of this pdf are shown in Fig. 2.5. The log-pdf is given by

log p(z]a) = loga — az (2.56)

so the log-likelihood for a sample equals
logp(2(1),2(2),...,2(n)|a) =nloga — a Z z(1) (2.57)
i=1

To solve for the a which maximizes the likelihood, we take the derivative of this with respect to o and find the point where it
is zero. This gives

g - Z 2(i) =0 (2.58)

from which we obtain 1
=T (2.59)
300, 2(4)

So, the estimate is the reciprocal of the mean of the z in the sample.



Chapter 3

Optimization in real spaces

We start by an outline of classical optimization theory which is needed in this course.

3.1 Definition and meaning of gradient

The gradient method is the most fundamental method for maximizing a continuous-valued, smooth function in a multidimen-
sional space.

We consider the general problem of finding the maximum of a function that takes real values in an n-dimensional real space.
Let us denote the function to be maximized by f(w) where w = (w1, ..., wy) is just an n-dimensional vector. This is usually

written as
max f(w) (3.1)

The function to be optimized is usually called the objective function.

Finding the minimum is just finding the maximum of the negative of the function, so the same theory is directly applicable to
both cases. We consider here maximization because that is what we need mainly later.

The gradient of f, denoted by V f is defined as the vector of the partial derivatives:

of(w)
dwq

Viw) = | (3.2)
9f(w)

Own,

The meaning of the gradient is that it points in the direction where the function grows the fastest. More precisely, suppose we
want to find a vector v which is such that f(w + v) is as large as possible when we constrain the norm of v to be fixed and
very small. Then the optimal v is given by a suitably short vector in the direction of the gradient vector. Likewise, the vector
that reduces the value of f as much as possible is given by —V f(w), multiplied by a small constant. Thus, the gradient is the
direction of “steepest ascent”, and —V f(w) is the direction of steepest descent.

These properties come from the fundamental first-order approximation property (basically, the definition of derivatives):

Fw+e) = f(w) + (Vf(w))" e+ ole) (3.3)

Geometrically, the gradient is always orthogonal to the curves in a contour plot of the function (i.e. to the curves that show
where f has the same value), pointing in the direction of growing f. See Figure 3.1.

The basic principles of optimization theory tell that at the mazimizing points, the gradient is zero; this is a generalization of
the elementary calculus result which says that in one dimension, the minima or maxima of a function are obtained at those
points where the derivative is zero.

For illustration, let us consider the following function:

f(w) = exp(—=5(w1 — 1)* — 10(w2 — 1)?) (3.4)
which is, incidentally, like a gaussian pdf. The function is plotted in Figure 3.1 a). Its maximum is at the point (1,1). The
gradient is equal to

—10(w; — 1) exp(=5(wi — 1)* = 10(w; — 1)2)) (3.5)

Viw) = <f20(w2 — 1) exp(=5(wi — 1)? = 10(wz — 1)*)

21



22 CHAPTER 3. OPTIMIZATION IN REAL SPACES

a) b) 2

0 05 1 15 2

Figure 3.1: The geometrical meaning of the gradient. Consider the function in Equation (3.5), plotted in a). In b),
the closed curves are the sets where the function f has a constant value. The gradient at point (0.5,1.42) is shown
and it is orthogonal to the curve.

Some contours where the function is constant are shown in Fig. 3.1 b). Also, the gradient at one point is shown. We can see
that taking a small step in the direction of the gradient, one gets closer to the maximizing point. However, if one takes a big
enough step, one actually misses the maximizing point, so the step really has to be small.

3.2 Gradient and optimization

The gradient method for finding the maximum of a function consists of repeatedly taking small steps in the direction of the
gradient, V f(w), recomputing the gradient at the current point after each step. We have to take small steps because we know
that this direction leads to an increase in the value of f only locally — actually, we can be sure of this only when the steps are
infinitely small. The direction of the gradient is, of course, different at each point and needs to be computed again in the new
point. The method can then be expressed as

W W+ uVf(w) (3.6)

where the parameter p is a small step size, typically much smaller than 1. The iteration in (3.6) is repeated over and over again
until the algorithm “converges” to a point.

To get some insight to the algorithm, consider the (rather trivial) one-dimensional case. At points where the function is
increasing, the derivative (i.e. gradient) is positive, so the gradient method will tell us to take steps to the right. At points
where the function is decreasing, the derivative/gradient is negative, so it will tell us to move to the left.

When does such an algorithm converge? Obviously, if it arrives at a point where the gradient it zero, it will not move away from
it. This is not surprising since, as pointed out above, optimization theory tells us that at the maximizing points, the gradient
is zero.

In practice, convergence is usually tested by rather heuristic methods: e.g. by looking at the change in w between two subsequent
iterations: if it is small enough, we assume the algorithm has converged.

If the gradient method is used for minimization of the function, as is more conventional in the literature, the sign of the
increment in (3.6) is negative, i.e.

w < w — uVf(w) (3.7)

Choosing a good step size parameter p is crucial. If it is too large, the algorithm will not work at all; if it is too small, the
algorithm will be too slow. One possibility is to adapt the step size during the iterations. At each step, we consider the step
size used in the previous iteration (say po), and a larger one (say 2uo) and a smaller one (110/2). Then, we compute the value
of the objective function that results from using any of these three step sizes in the current step, and choose the step size which
gives the largest value for the objective function, and use it as the po in the next iteration. Of course, many different adaptation
schemes for the step size can be developed.



3.3. OPTIMIZATION OF FUNCTION OF MATRIX 23

3.3 Optimization of function of matrix

Many functions we want to maximize are actually functions of a matrix. However, in this context, such matrices are treated
just like vectors. That is, a n X n matrix is treated as an ordinary n?-dimensional vector; we consider the parameter matrices
as if they had been vectorized. In practice, we don’t need to concretely vectorize the parameter matrices we optimize, but that
is the underlying idea.

For example, consider the following objective function:
T
FW) =% g(wiz) (3:8)
=1 i

where the vectors w; are collected to a single matrix W with each w? giving one row. Then, the gradient can be calculated to

equal
T

> g (Wz)z! (3.9)

t=1

where we use a short-cut notation where the function ¢’ is applied on each element of Wz; separately.

This gradient illustrates some fundamental properties of the gradient: linearity (we can take the gradient “inside” the sum),
the chain rule, and the gradient of a linear function: Vy(w”z) = z.

Thus, a gradient method for maximizing f is given by

W+~ W + M[Z g (Wz,)z] ) (3.10)

t=1

3.4 Constrained optimization

It is often necessary to maximize a function under some constraints. That is, the vector w is not allowed to take any value in
the n-dimensional real space. The most common constraint that we will encounter is that the norm of w is fixed to be constant,
typically equal to one: ||w|| = 1. The set of allowed values is called the constraint set. Some changes are needed in the gradient
method to take such constraints into account, but in the cases that we are interested in, the changes are actually quite simple.

3.4.1 Projecting back to constraint set

The basic idea of the gradient method can be used in the constrained case as well. Only a simple modification is needed: after
each iteration of (3.6), we project the vector w onto the constraint set. Projecting means going to the point in the constraint
set which is closest. Projection to the constraint set is illustrated in Figure 3.2 a).

In general, computing the projection can be very difficult, but in some special cases, it is a simple operation. For example, if
the constraint set consists of vectors with norm equal to one, the projection is performed simply by the division:

w — w/||w|| (3.11)

Another common constraint is orthogonality of a matrix. In that case, the projection onto the constraint set is given by
W« (WWT)~ /2w (3.12)

Here, we see a rather involved operation: the inverse of the square root of the matrix. We shall not go here into details on how
it can be computed; suffice it to say that most numerical software can compute it quite efficiently. The definition will be given
later in Eq. (7.20)."

3.4.2 Projection of the gradient

Actually, an even better method is obtained if we first project the gradient onto the tangent space of the constraint set, and
then take a step in that direction instead of the ordinary gradient direction. This means we find a vector which points in such
a direction that an infinitely small step size does not take us out of the constraint set, yet points in the directions of maximum
ascent among all such directions. What this means is that we compute a direction that is “inside” the constraint set in the sense
that infinitely small changes along that direction do not get us out of the constraint set, yet the movement in that direction
maximally increases the value of the objective function.

1For a proof that this is the orthogonal projection, see http://people.csail.mit.edu/bkph/articles/Nearest_Orthonormal_ Matrix.pdf



24 CHAPTER 3. OPTIMIZATION IN REAL SPACES

a) 15 b) L5

0.5

8

2 s 0 05 1

Figure 3.2: Projection onto the constraint set (a), and projection of the gradient (b). A function (not shown explicitly)
is to be minimized on the unit sphere. a) Starting at the point marked with “o”, a small gradient step is taken, as
shown by the arrow. Then, the point is projected to the closest point on the unit sphere, which is marked by “x”. This
is one iteration of the method. b) The gradient (dashed arrow) points in a direction in which is it dangerous to take
a big step. The projected gradient (solid arrow) points in a better direction, which is “tangential” to the constraint
set. Then, a small step in this projected direction is taken (the step is not shown here).

This improves the method because then we can usually take larger step sizes and obtain larger increases in the objective
function without going in a completely wrong direction as is always the danger when taking large steps. The projection onto
the constraint set has to be done even in this case. Projection of the gradient is illustrated in Figure 3.2 b).

For example, in the case of the unit norm constraint, we have the projected gradient
Viw)=Vf(w)—w Vf(w)w (3.13)

To verify this, compute the dot-product of this gradient with w, and you see it is zero.

When will such a projected gradient method converge? Consider the projected gradient. It can be zero only if either a) the
gradient is zero, or b) the gradient is orthogonal to the tangent plane. In the former case, we are actually at an extremum even
without taking the constraints into account. In the latter case, the conditions for a constrained maximum is usually fulfilled.
They are given in the theory of Lagrangian multipliers, but we will not go into details. Intuitively, it shoudl be clear that at
the optimum, the gradient should be orthogonal to the constraint surface, because that means a linear approximation to the
function stays constant when moving in the constraint surface.

3.5 Global and local maxima

An important distinction is between global and local maxima. Consider the one-dimensional function in Figure 3.3. The global
maximum of the function is at the point x = 6; this is the “real” maximum point where the function attains its very largest
value. However, there are also two local maxima, at x = 2 and x = 9. A local maximum is a point in which the function obtains
a value which is greater than the values in all neighbouring points close-by.

An important point to understand is that the result of a gradient algorithm depends on the initial point, that is, the point
where the algorithm starts in the first iteration. The algorithm only sees the local behaviour of the function, so it will find the
closest local maximum. Thus, if in Figure 3.3, the algorithm is started in the point marked by circles, it will find the global
maximum. In contrast, if it is started in one of the points marked by crosses, it will converge to one of the local maxima.

In many cases, we are only interested in the global maximum. Then, the behaviour of the gradient method can be rather
unsatisfactory, because it only finds a local optimum. This is, actually, the case with most optimization algorithms. So, when
running optimization algorithms, we have to always keep in mind that that algorithm only gives a local optimum, not the global
one.



3.6. STOCHASTIC GRADIENT METHODS 25

167
15;
14¢
13r
12;

117

1% 2 4 6 8 10

Figure 3.3: Local vs. global maxima. The function has a global maximum at z = 6 and two local maxima at z = 2
and x = 9. If a gradient algorithm starts near one of the local maxima (e.g. at the points marked by crosses), it will
get stuck at one of the local maxima and it will not find the global maximum. Only if the algorithm starts sufficiently
close to the global maximum (e.g. at the points marked by circles), it will find the global maximum.

3.6 Stochastic gradient methods

The idea in a stochastic gradient is simple and very general. Assume we want to maximize some expectation, say E{g(w,x)}
where x is a random vector, and w is a parameter vector. The gradient method for maximizing this with respect to w gives

w <+ w+ uE{Vwg(w,x)} (3.14)

where the gradient is computed with respect to w, as emphasized by the subscript in the V operator. Note that we have taken
the gradient inside the expectation operator, which is valid because expectation is basically a sum, and the derivative of a sum
is the sum of the derivatives as noted above.

The stochastic gradient method now proposes that we don’t need to compute the expectation before taking the gradient step.
For each observation x, we can use the gradient iteration given that single observation:

W W+ uVwg(w, x) (3.15)

So, when given a sample of observations of x, we compute the update in Equation (3.15) for each observation separately. This
is reasonable because the update in the gradient will be, on the average, equal to the update in the original gradient with the
expectation given in Equation (3.14). The step size has to be much smaller, though, because of the large random fluctuations
in this “instantaneous” gradient.

For example, consider the iteration in (3.10). The sum over ¢ can be considered an expectation. So, we can develop the
stochastic gradient method

W W + ug'(Wz,)z{ (3.16)

where z; is drawn randomly from our sample at each step.

3.7 Newton’s method

A classic alternative to the gradient method is Newton’s method.

As discussed above, the optima of an objective function are found in points where the gradient is zero. So, optimization can be
approached as the problem of solving a system of equations given by

of _

S (W) =0 (3.17)
(3.18)

of .

o (W) =0 (3.19)

A classic method for solving such a system of equations is Newton’s method. It can be used to solve any system of equations,
but we consider here the case of the gradient. This is why Newton’s method is both a method for solving a system of equations,
and an optimization method.



26 CHAPTER 3. OPTIMIZATION IN REAL SPACES

B
.
/ ‘
.
.
7

Figure 3.4: Tllustration of Newton’s method for solving an equation (which we use in optimization to solve the equation
which says that the gradient is zero). The function is linearly approximated by its tangent. The point where the tangent
intersects with the z-axis is taken as the next approximation of the point where the function is zero.

Basically, the idea is to approximate the function (here: gradient) linearly using its derivatives. In one dimension, the idea is
simply to approximate the graph of the function using its tangent, whose slope is given by the derivative. That is, for a general
function g:

g9(w) = g(wo) + g'(wo) (w — wo) (3.20)
This very general idea of finding the point where the function attains the value zero is illustrated in Figure 3.4.

In our case, g corresponds to the gradient, so we use the derivatives of the gradients, which are second partial derivatives of the
original function f. Also, we need to use a multidimensional version of this approximation. This gives

Vf(w) =~V f(wo)+ H(wo)(w — wo) (3.21)
where the function H, called the Hessian matrix, is the matrix of second partial derivatives:

82 f

H,=—7
* awlawj

(3.22)

Now, we can at every step of the method, find the new point as the one for which this linear approximation is zero. Thus, we
solve

Vf(wo) + H(wo)(w —wo) =0 (3.23)
which gives

w =wo — H(wo) " (Vf(wo)) (3.24)

This is the idea in the Newton iteration. Starting from a random point, we iteratively update w according to Equation (3.24),
i.e. compute the right-hand side for the current value of w, and take that as the new value of w. Using the same notation as
with the gradient methods, we have the iteration

w —w — H(w) ' (Vf(w)) (3.25)

Note that this iteration is related to the gradient method. If the matrix H(wo)™' in Equation (3.24) is replaced by a scalar
step size u, we actually get the gradient method. So, the difference between the methods is threefold:

1. In Newton’s method the direction where w “moves” is not given by the gradient directly, but the gradient multiplied by
the inverse of the Hessian.

2. This “step size” is not always very small: It is directly given by the inverse of the Hessian matrix, and can be quite large.

3. In the gradient method, one can choose between minimization and maximization of the objective function, by choosing
the sign in the algorithm (cf. Equations (3.6) and (3.7)). In the Newton method, no such choice is possible. The algorithm
just tries to find a local extremum in which the gradient is zero, and this can be either a minimum or a maximum.

The Newton iteration has some advantages and disadvantages compared to the basic gradient method. It usually requires a
smaller number of steps to converge. However, the computations needed at each step are much more demanding, because one
has to first compute the Hessian matrix, and then compute H(w)™'(Vf(w)) (which is best obtained by solving the linear
system H(w)v = V f(w)).

In practice, however, the main problem with the Newton method is that its behaviour can be quite erratic. There is no guarantee
any one iteration gives a w which increases f(w). In fact, a typical empirical observation is that for some functions this does
not happen, and the algorithm may completely diverge, i.e. go to arbitrary values of w, eventually reaching infinity. This is



3.7. NEWTON’S METHOD 27

because the step size can be arbitrarily large, unlike in the gradient methods. This lack of robustness is why Newton’s method
is not often used in practice.

As an example of this phenomenon, consider the function

Fw) = exp(~5u?) (3.26)

which has a single maximum as w = 0. The first and second derivatives, which are the one-dimensional equivalents of the
gradient and the Hessian, can be easily calculated as

() = —wexp(— 5% (3:27)
7 (w) = (w* = 1) exp(~ ) (328)

which gives the Newton iteration as
w 4w+ w2w— 7 (3.29)

Now, assume that we start the iteration at any point where w > 1. Then, the change —*- is positive, which means that w

is increased and it moves further and further away from zero! In this case, the method fails completely and w goes to infinity
without finding the maximum at zero. (In contrast, a gradient method, with a reasonably small step size, would find the
maximum.)

However, different variants of the Newton method have proven useful. For example, methods which do something between the
gradient method and Newton’s method (e.g. the Levenberg-Marquardt algorithm) have proven useful in some applications. In
independent component analysis, the FastICA algorithm uses the basic iteration of Newton’s method but with a modification
which takes the special structure of the objective function into account.

An alternative viewpoint is that in Newton’s method, we approximated the original function by a quadratic one. In
other words, we use a Taylor expansion

f(w) = f(wo) + V(W) (w — wo) + %(W — wo)" H(wo)(w — wo) (3.30)

and then maximize this quadratic form to obtain the new w, which is given by (3.24). How do we maximize this? The details
are an interesting exercice, but you can just consider the following algebraic extensions of classic derivative formulas:

Vw(x'w) =x (3.31)
Vw(w'Mw) = 2Mw (3.32)
(3.33)

from which you can find the point where the approximation in (3.30) is zero.

3.7.1 Conjugate gradient methods

Conjugate gradient methods are often considered as the most efficient general-purpose optimization methods. The theory is
rather complicated and non-intuitive, so we do not try to explain it in detail.

Conjugate gradient methods try to find a direction which is better than the gradient direction. The idea is illustrated in
Figure. 3.5. While the gradient direction is good for a very small step size (actually, it is still the best for an infinitely small step
size), it is not very good for a moderately large step size. The conjugate gradient method tries to find a better direction based
on information on the gradient directions in previous iterations. In this respect, the method is similar to Newton’s method,
which also modifies the gradient direction.

In fact, conjugate gradient methods do not just take a step of a fixed size in the direction they have found. An essential
ingredient, which is actually necessary for the method to work, is a one-dimension line search. This means that once the
direction, say d, in which w should move has been chosen (using the complicated theory of conjugate gradient methods), many
different step sizes p are tried out, and the best one is chosen. In other words, a one-dimensional optimization is performed on
the function h(y) = f(w + pd), and p maximizing this function is chosen. (Such line search could also be used in the basic
gradient method. However, in the conjugate gradient method it is completely necessary.)

Conjugate gradient methods are thus much more complicated than ordinary gradient methods. This is not a major problem
if one uses a scientific computing environment in which the method is already programmed. Sometimes, the method is much
more efficient than the ordinary gradient methods, but this is not always the case.



28 CHAPTER 3. OPTIMIZATION IN REAL SPACES

16

141

12r

0.6

021

Figure 3.5: A problem with the gradient method. The gradient direction may be very bad for anything but the very
smallest step sizes. Here, the gradient goes rather completely in the wrong direction due to the strongly non-circular
(non-symmetric) structure of the objective function. The conjugate gradient method tries to find a better direction.

3.8 Alternating variables

In some cases, the objective function is such that it depends on two “different” groups of variables, let’s denote them by the
vectors x and y. For example, it could be that x contains parameters whereas y contains latent variables. Then, it may happen
that it is easy to optimize the objective with respect to x when keeping y fized, or vice versa. This can lead to an alternating
variables method, where we alternate between maximization with respect to x and with respect to y. In other words:

x(1+1) argm;}xg(x(i),y(i)) (3.34)
y(@E+1) « argmjuxg(x(i +1),y(@)) (3.35)

where i is the iteration count, and arg max denotes the argument which maximizes the objective function.

A more sophisticated version of this idea is the Expectation-Maximization (EM) algorithm, in which the alternating maximiza-
tion is combined with integration over the posterior of the latent variables. We will see this in Chapter 12.



Chapter 4

Principal component analysis

Assume we have a random vector x. How to characterize the distribution in simple terms? The first, obvious answer is the mean.
To characterize the remaining distribution, you might think of computing the variances of the variables. However, this does not
really characterize a multivariate distribution well in general. Look at Fig. 4.1 and you see that what we would (intuitively) like
to describe is the how the data “cloud” is elongated or directed. Principal component analysis is one answer to this problem.

Let us actually subtract the mean from the random vector, so that each z; has zero mean. Thus, we can better concentrate
on the structure which is there in addition to the mean. In the following, it is assumed that all the variables have zero mean.
Actually, we are dealing with linear combinations of the observed variables, so all these linear combinations also have zero mean.

4.1 Definition of maximization of variance

Principal components are linear combinations s = ZZ w;x; that contain (or “explain”) as much of the variance of the input
data as possible. It turns out that the amount of variance explained is directly related to the variance of the component, as
will be discussed in Section 4.3 below. Thus, the first principal component is intuitively defined as the linear combination of
observed variables, which has the maximum variance. The idea is to find the “main axis” of the data cloud, which is illustrated
in Fig. 4.1.

Some constraint on the weights w;, which we call the principal component weights, must be imposed as well. If no constraint
were imposed, the maximum of the variance would be attained when w; becomes infinitely large (and the minimum would be
attained when all the w; are zero). In fact, just multiplying all the weights in w; by a factor of two, we would get a variance
that is four times as large, and by dividing all the coefficients by two the variance decreases to one quarter.

A natural thing to do is to constrain the norm of the vector w = (w1, ..., wy):

Iwl = [> w?=1 (4.1)

Figure 4.1: Hlustration of PCA. The principal component of this (artificial) two-dimensional data is the oblique axis
plotted. Projection on the principal axis explains more of the variance of the data than projection on any other axis.
It describes the data in some way better than just looking at the variances.

29



30 CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS

For simplicity, we constrain the norm to be equal to one, but any other value would give the same results.

This definition gives only one principal component. Typically, the way to obtain many principal components is by a “deflation”
approach: After estimating the first principal component, we want to find the linear combination of maximum variance under
the constraint that the new combination must be orthogonal to the first one (i.e. the dot-product is zero, as in Equation 4.4).
This will then be called the second principal component. This procedure can be repeated to obtain as many components as
there are dimensions in the data space. To put this formally, assume that we have estimated k principal components, given by
the weight vectors wi,ws ..., wy. Then the k£ 4+ 1-th principal component weight vector is defined by

mv%x var <Z w7,£82> (42)

K3

Iwl = /S w? =1 (43)

ij¢w¢:0for allj=1,...,k (4.4)

under the constraints

4.2 Solution of PCA using eigenvalue decomposition

Here we present the fundamental proof of how PCA is related to eigenvalues of the covariance matrix.

4.2.1 Definitions

The variance of a random variable is defined as
var(z1) = E{z}} — (E{z1})? (4.5)

This can also be written var(z1) = E{(x1 — E{z1})?}, which more clearly shows how variance measures average deviation from
the mean value.

When we have more than one random variable, it is useful to analyze the covariance:
cov(zy,x2) = E{z1z2} — E{x1} EF{x2} (4.6)
which measures how well we can predict the value of one of the variables using a simple linear predictor, as will be seen below.

If the covariance is zero, which is equivalent to saying that the correlation coefficient is zero, the variables are said to be
uncorrelated.

4.2.2 Covariance matrix

The variances and covariances of the elements of a random vector x are often collected to a covariance matriz whose i, j-th
element is simply the covariance of z; and z;:

cov(zi,z1) cov(zi,x2) ... cov(zi,Tn)
cov(zz,z1) cov(za,x2) ... cov(z2,Tn)

ce=| . . (47)
cov(Tn, 1) cov(Tn,x2) ... cov(Tn,Tn)

Note that the covariance of x; with itself is the same as the variance of x;. So, the diagonal of the covariance matrix gives the
variances. The covariance matrix is basically a generalization of variance to random vectors: in many cases, when moving from
a single random variable to random vectors, the covariance matrix takes the place of variance.

In matrix notation, the covariance matrix is simply obtained as a generalization of the one-dimensional definitions in Equa-
tions (4.6) and (4.5) as

C(x) = BE{xx"} — E{x}E{x}" (4.8)
where taking the transposes in the correct places is essential. In most of this book, we will be dealing with random variables
whose means are zero, in which case the second term in Equation (4.8) is zero.

If the variables are uncorrelated, the covariance matrix is diagonal. If they are all further standardized to unit variance, the
covariance matrix equals the identity matrix.



4.2. SOLUTION OF PCA USING EIGENVALUE DECOMPOSITION 31

4.2.3 Eigenvalues of covariance matrix

The important point to note is that the variance of any linear combination can be computed using the covariance matriz of the
data. That is, considering any linear combination w”’x = >; wix; we can compute its variance simply by:

E{(w"x)’} = E{(w"x)(x"w)} = E{w" (xx")w} = w' E{xx"}w = w’ Cw (4.9)
where we denote the covariance matrix by C = E{xx”}. So, the basic PCA problem can be formulated as

max w' Cw (4.10)
wil|wll=1

(We assume here that the mean is zero: E{x} = 0).

A basic concept in linear algebra is the eigenvalue decomposition. The starting point is that C is a symmetric matrix, because

cov(zs, xj) = cov(z;,x;). In linear algebra, it is shown that any symmetric matrix can be expressed as a product of the form:
C =UuDU" (4.11)

where U is an orthogonal matrix , and D = diag(A1, ..., Am) is diagonal. The columns of U are the eigenvectors of C, and the

i are the corresponding eigenvalues. (See Section 2.1.5 for the general definition of eigenvalues and eigenvectors.)

Now, we can solve PCA easily. Lets us make the change of variables v = UTw. Then we have

w' Cw =w'UDU"w = v ' Dv = Z VI (4.12)

7

Because U is orthogonal, ||v| = ||w]|, so the constraint is the same for v as it was for w. Let us make the further change of
variables to m; = v?. The constraint of unit norm of v is now equivalent to the constraints that the sum of the m; must equal
one (they must also be positive because they are squares). Then, the problem is transformed to

max zi:mi)\i (4.13)

m;>0,5°m;

It is rather obvious that the maximum is found when the m; corresponding to the largest A; is one and the others are zero. Let
us denote by i* the index of the maximum eigenvalue. Going back to the w, this corresponds to w being equal to the i*-th
eigenvector, that is, the i*-th column of U. Thus, we see how the first principal component is easily computed by the eigenvalue
decomposition.

Since the eigenvectors of a symmetric matrix are orthogonal, finding the second principal component means maximizing the
variance so that v; is kept zero. This is actually equivalent to making the new w orthogonal to the first eigenvector. Thus,
in terms of m;, we have exactly the same optimization problem, but with the extra constraint that m,~ = 0. Obviously, the
optimum is obtained when w is equal to the eigenvector corresponding to the second largest eigenvalue. This logic applies to
the k-th principal component.

Thus, all the principal components can be found by ordering the eigenvectors u;,i = 1,...,m in U so that the corresponding
eigenvalues are in decreasing order. Let us assume that U is ordered so. Then the i-th principal component s; is equal to

si=u; x (4.14)

Note that it can be proven that the A\; are all non-negative for a covariance matrix.

4.2.4 Some properties of principal components

Uncorrelatedness Using the eigenvalue decomposition, we can prove some interesting properties of PCA. First, the principal
components are uncorrelated, because for the vector of the principal components

s=U"x (4.15)

we have
E{ss"} = E{U"xx"U} = U"E{xx"}U = U"(UDU")U = (U"U)D(U"U) =D (4.16)

because of the orthogonality of U. Thus, the covariance matrix is diagonal, which shows that the principal components are
uncorrelated.

Variances Second, we see that the variances of the principal components are equal to the ;.



32 CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS

Uniqueness The fact that the variances of the principal components are given by A; has an important implication for the
uniqueness of PCA. If two of the eigenvalues are equal, then the variance of those principal components are equal. Then, the
principal components are not well-defined anymore, because we can make a rotation of those principal components without
affecting their variances. This is because if z; and z;+1 have the same variance, then linear combinations such as \/1/_221 +
V/1/2zi41 and \/1/22; — \/1/22;41 have the same variance as well; all the constraints (unit variance and orthogonality) are
still fulfilled, so these are equally valid principal components. In fact, in linear algebra, it is well-known that the eigenvalue
decomposition is uniquely defined only when the eigenvalues are all distinct.

4.3 Dimension reduction by PCA

4.3.1 Definition and uniqueness

One task where PCA is very useful is in reducing the dimension of the data so that the maximum amount of the variance is
preserved.

Consider the following general problem. We have a very large number, say m, of random variables x1,...,z,. Computations
that use all the variables would be too burdensome. We want to reduce the dimension of the data by linearly transforming the
variables into a smaller number, say n, of variables that we denote by z1, ..., zn:
zi:Zwijxj, foralli=1,...,n (4.17)
j=1

The number of new variables n might be only 10% or 1% of the original number m. We want to find the new variables so
that they preserve as much information on the original data as possible. This “preservation of information” has to be exactly
defined. The most wide-spread definition is to look at the squared error that we get when we try to reconstruct the original
data using the z;. That is, we reconstruct x; as a linear transformation &; = >, ajiz;, minimizing the average error

E{Z (:cj;aﬁzi)Q} —E{|x;aizi|2} (4.18)

J

where the a;; are also determined so that they minimize this error. For simplicity, let us consider only transformations for which
the transforming weights are orthogonal and have unit norm:

Zw?j =1, for all ¢ (4.19)
J

Zwijwkj =0, foralli#k (4.20)
J

What is the best way of doing this dimension reduction? The solution is to take as the z; the n first principal components!
Furthermore, the optimal reconstruction weight vectors a; in Equation (4.18) are given by the very same principal components
weights which compute the z;.

The solution is not uniquely defined, though, because any orthogonal transformation of the z; is just as good. This is under-
standable because any such transformation of the z; contains just the same information: we can make the inverse transformation
to get the z; from the transformed ones.

The lack of uniqueness is not very serious in the case of dimension reduction: What matters in the dimension reduction context
is not so much the actual components themselves, but the subspace which they span. The principal subspace means the set of
all possible linear combinations of the n first principal components. It corresponds to taking all possible linear combinations of
the principal component weight vectors w; associated with the n principal components.

The logic of the uniqueness result of PCA tells us when the principal subspace is unique. If the n-th and the (n+ 1)-th principal
components have equal variances, we cannot decide which one to include in the subspace, and thus even the principal subspace
is not unique. But the effect on the whole subspace is usually quite small and can be ignored in practice.

4.3.2 Proof of optimality of PCA

To prove the optimality property of the principal subspace, let us simplify the situation by assuming that at the optimum, the
reconstructing weights A are equal to the transpose of W. Then, the reconstruction X is really an orthogonal projection to a
subspace:

x =W Wx (4.21)



4.4. ILLUSTRATION 33

The objective function can then be manipulated to give
Elx - W'Wx|*> = E {||x|\2 —2x" W Wx + xWTWWTWx} = —B{x"WTWx} + const. (4.22)

where the constant does not depend on W. Denote by tr() the trace, i.e. the sum of diagonal elements of a matrix. Using the
basic identity tr(Mi1M3z) = tr(M2M1), we obtain

E{x"W'Wx} = trace(E{x" W' Wx}) = trace( WCW" ZWZ Cw; (4.23)

where C = E{xx”} is the covariance matrix and w; is the i-th row of W. This is obviously very close to the PCA maximization
problem, expect that we have a matrix W with orthogonal rows instead of a single vector. However, doing the same eigenvalue
decomposition and the same kind of variable transformations V. = WU, we transform the objective to

trace(WCW?) = trace( WUDU" W") = trace(VDV") Z Z v\ = Z A (4.24)

where we have defined ¢; =3, v?j. By orthogonality of V, we have ¢; <1 and Z]. q; = n. Note that in general, ¢; # 1 because
V has fewer rows than columns. Now, we have an optimization problem based on “weighting” as in (4.13). The difference is
that while the total sum of the weight is constrained, also the maximum value for each weight is constrained:

i 4.2
0<gq; <1, qu—nzq ( 5)

Intuitively, it should be clear that the optimum is obtained when we give weight equal to one to the n largest eigenvalues ;.
Going back to the original variables, this means that we take as the rows of W the eigenvectors corresponding to the n largest
eigenvalues of C.

4.3.3 Proportion of variance explained by the components

Above, we saw that the eigenvalues \; of the covariance matrix give the variances of each principal component. Each eigenvalue
is called the amount of the variance “explained” by that component. If we take the n first principal components, they together
“explain” the variance of amount )" | A;. This terminology is motivated by the following connection to reconstruction error:
Combining (4.22) with the solution of (4.25) gives

Ellx - WWx|* = B{|x|*} = >\ (4.26)

i=1

So we see that the reconstruction error is basically the “total variance” E{||x||>} minus the sum of the n first eigenvalues. In
fact, it is equal to the sum of the eigenvalues which were omitted from the PCA, since the total variance Y -, var(x;) is equal to
ZZ’;I i (prove this). Thus, each principal component taken into the low-dimensional representation reduces the reconstruction
error by the amount given by the corresponding eigenvalue. It is this reduction in reconstruction error which is said to be
“explained” by the component.

Typically, this is reported as a percentage of the total variance:

% x 100% (4.27)
i=1

where m is the dimension of the data. This percentage is often reported to show how well PCA represents the data, given the
number of principal components n.

proportion of variance explained =

4.4 Tllustration

We illustrate PCA on an artificial data set, given by the matrix

5 3 0 1 -1 -3 5 0 -4 —4
-2 -1 0 0 1 4 -3 1 5 3
X=|0 1 4 -1 0 5 5 =5 -3 =3 (4.28)
0 2 3 0o -1 3 3 =7 =2 0
3 4 =2 1 3 -3 =3 2 0 0

where each row is one variable and each column is one observation. The eigenvalues of the covariance matrix are:

(25.6351 16.1255 3.0215 0.9756 0.3201) (4.29)



34 CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS

PCA. Black: observations, Red: variables

10

-6+

-8

-10 1 1 1 1 1 1 I I J
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4.2: Tllustration of application of PCA on an artificial data set. Each number in black gives the projection of
one data point, and each axis and number in red gives the projection of one variable. Note that for the purpose of
visibility, the axes representing the variables have been rescaled.

which shows that the first two principal components explain 90.6% of the variance. The corresponding two eigenvectors of the
covariance matrix are

u; = (70.4170 0.3237 —0.6399 —0.5184 O.2075)T (4.30)
and

uz = (0.6393 —0.4736 —0.2777 —0.2841 ().4574)T (4.31)
We can plot each observation by projecting it on the coordinate axes given by u; and uz. That is, a data point x has coordinates

uf'x and ul'x in the plot. See Figure 4.2.

Moreover, we can plot the original variables, simply by using the values in u; and uz. For example, the first variable corresponds
to an axis given by the vector (-0.4170,0.6393), where these numbers are the first entries in the vectors u; and us

We can basically see that similar observations are close to each other, and similar variables are close to each other (and variables
with opposite signs are pointing in opposite directions).

4.5 Whitening

4.5.1 Whitening as normalized decorrelation

Another task for which PCA is quite useful is whitening. Whitening is an important preprocessing method where the variables
x; are transformed to a set of new variables s1,..., s, so that the s; are uncorrelated and have unit variance:

0if i # j

4.32
lifi=j (4.32)

E{SiSj} = {

(It is assumed that all the variables have zero mean.) It is also said that the resulting vector (si1,...,s,) is white.
A central property of whitened data is that the variance is the same in all directions:

var(w’s) =1 for any w : [|w]|| =1 (4.33)
Related properties are considered below.

In addition to the principal components weights being orthogonal, the principal components themselves are uncorrelated, as
was shown in Section 4.2.3. So, after PCA, the only thing we need to do to get whitened data is to normalize the variances of



4.5. WHITENING 35

1,5:||||||||||||||||||||||||||||: ]_.5:||||||||||||||||||||||||||||: 1.5:||||||||||||||||||||||||||||:
) FIOIN: 19
0.5:— = 05:— = 0.5:— L =
3 E 3 E S =

g ] g ] O s ]
~05F 4 -05F 1 -05F o .
_1‘5:IIIIIIIIIIIIIIIIIIIIIIIIIIII: —1. :IIIIIIIIIIIIIIIIIIIIIIIIIIII: _1.5:IIIIIIIIIIIIIIIIIIIIIIIIIIII:
-1.5 0 1.5 -1.5 0 1.5 -1.5 0 1.5

Figure 4.3: Illustration of PCA and whitening. a) The original data “cloud”. The arrows show the principal com-
ponents. The first one points in the direction of the largest variance in the data, and the second in the remaining
orthogonal direction. b) When the data is transformed to the principal components, i.e. the principal components are
taken as the new coordinates, the variation in the data is aligned with those new axes, which is because the principal
components are uncorrelated. ¢) When the principal components are further normalized to unit variance, the data
cloud has equal variance in all directions, which means it has been whitened. The change in the lengths of the arrows
reflects this normalization; the larger the variance, the shorter the arrow. (Note that there is a small error in this plot:
The scales on the axes are wrong because the variances seem to be smaller than one.)

the principal components by dividing them by their standard deviations. Denoting the principal components by y;, this means
we compute
si=—2 (4.34)
var(y,)
to get whitened components s;. Whitening is a useful preprocessing method that is often used before other learning. Whitening
by PCA is illustrated in Figure 4.3.

4.5.2 The family of whitening transformations

It must be noted that there are many whitening transformations. In fact, if the random variables s;,7 = 1...,n are white, then
any orthogonal transformation of those variables is also white (the proof is left as an exercise). Often, whitening is based on
PCA because PCA is a well-known method that can be computed very fast, but it must be kept in mind that PCA is just one
among the many whitening transformations.

Later, we will often use the fact that the connection between orthogonality and uncorrelatedness is even stronger for whitened
data. In fact, if we compute two linear components Zl v;8; and ZZ w;s; from white data, they are uncorrelated only if the two
vectors v and w (which contain the entries v; and w;, respectively) are orthogonal.

In general, we have the following theoretical result. For white data, multiplication by a square matrix gives white components
if and only if the matrix is orthogonal. Thus, when we have computed one particular whitening transformation, we also know
that only orthogonal transformations of the transformed data can be white.

Note here the tricky point in terminology: a matrix if called orthogonal if its columns, or equivalently its rows, are orthogonal,
and the norms of its columns are all equal to one. To emphasize this, some authors call an orthogonal matrix orthonormal. We
stick to the word “orthogonal” here.

4.5.3 Whitening exhausts second-order information

Information contained in the covariance matrix is called “second-order” information. It is often said that whitening exhausts
second-order information. This is natural because it makes the covariance matrix “trivial”, i.e. equal to identity. Another
viewpoint is to consider what happens if we do PCA on whitened data. Basically, there is no point in doing PCA because the
variance is the same in all directions!

After whitening, the only information that is left in the data is of “higher order” (i.e. higher than second). Later, when talking
about independent component analysis, we will see what such higher-order information is.



Chapter 5

Factor analysis

5.1 Formulation as a generative model

Factor analysis (FA) can be seen as a more principled version of PCA in the sense that we do not just arbitrarily decide to look
at direction of maximum variance, but we formulate a statistical model from which such maximization comes out naturally. It
can also be seen as the theoretical bridge between PCA and independent component analysis, which will be the topic later.

In FA, we model the observed data using a model which “generates” it from latent (hidden, hypothetical) variables, as follows

m
x¢:2aijsj+n¢ foralle:=1...n (5.1)
j=1
or in matrix form
m
X:Zaisi+n or x=As+n (5.2)
i=1

Here, we are still assuming that the z; have zero mean, which means we can assume the same of s;. In the model,

e the s; are latent random variables, called factors. They are uncorrelated, and have unit variance by definition; in other
words, s is white. It is essential that the number of factors m is smaller than the number of observed variables.

e the a;; are parameters which tell how “strongly” each factor contributes to each observed variable. These are traditionally
called “factor loadings”.

e the n; are variables which explain the part of the data not explained by the factors. They are uncorrelated of s, and
uncorrelated with each other. We denote the diagonal covariance matrix of n by D. They can be thought of as noise in
many cases. Traditionally, they are called “specific factors” whereas the s; are called “common factors”.

An interesting property of factor loadings is that they give the covariances between the observed variables and the factors:
cov(zi, sj) = aij -

5.2 (Gaussianity assumption

To have a properly defined probability distribution, the assumptions on the correlations given above are not sufficient. We have
to also assume the explicit probability densities for the quantities involved. The classic assumption is that the s and n follow a
joint Gaussian (i.e. normal) distribution. This multivariate Gaussian distribution has a density function equal to

o 1 1 T T 1 1 7 1
p(xl,...,l'n)—Wexp(*g;l&lﬁ[c ]z])*WeXP(*EX C X) (5.3)

where C is a positive-definite parameter matrix (equal to the covariance matrix of the data), C™" is its inverse, and [C™'];; is
the 4, j-th element of the inverse. Thus, the probability distribution is completely characterized by the covariances (as always,
the means are assumed zero here).

In classic factor analysis, it is usually assumed that the interesting structure of the data is in the covariances. In fact, such
methods typically use only information contained in the covariance matrix of the sample. The theoretical justification for

36



5.3. FACTOR ROTATION PROBLEM 37

considering only the sample covariance matrix is that if the data is jointly Gaussian, the covariance matrix of the data contains
all the information on the distribution.’

Covariance-based methods are thus perfectly sufficient if the distribution of the data is gaussian. However, methods based on
the gaussian distribution may neglect some of the most important aspects of the data, as will be seen in the next chapter.

5.3 Factor rotation problem

In fact, under the gaussianity assumption, the estimation of the factor analysis model cannot be unique: there is a rotation
ambiguity, Consider any orthogonal matrix U. We can transform the factors and factor loading matrix by this rotation, and
we get

x = (AU)(U"s) +n (5.4)
Now, s is white, and an orthogonal rotation of a white random vector is still white. On the other hand, the distribution of
a zero-mean Gaussian random vector is completely defined by its covariance. Thus, U”s has exactly the same distribution
as s. This means that there is no way we could distinguish between the models (5.2) and (5.4) (unless we make some more
assumptions, for example on A, which will be considered below).

So, just like in the case of PCA, especially when PCA is defined based on dimension reduction (Section 4.3), we see that FA
really only defines a subspace in the data space, and the actual values in the matrix A are not meaningful.

5.4 Least-squares estimation

The parameters to estimate in the model are basically A and noise covariance D. We know that A can be estimated only up
to a rotation.

A simple estimation method for FA is based on a least-squares (LS) criterion. The fundamental idea is to express the covariance
matrix of x as
cov(x) = AAT +D (5.5)

where D is the covariance matrix of the n;. Thus, FA is seen as approximating the sample covariance. This obviously leads to
the proposal of a LS criterion

Jrs = [[cov(x) — AAT —D|? (5.6)
(In this norm, the matrices are considered as vectors, so the squared norm is just the sum of squares.) Note that this approx-
imation does not make any sense unless the number of factors is small: If the number of factors is the same as the number of
observed variables, the approximation can always be made exact even with a zero D.

5.4.1 Connection between PCA and FA

The LS estimation criterion Jrs shows a direct connection to PCA. If we know the covariance D, the objective can be written
simply as
Jrs = ||(cov(x) — D) — AAT|? (5.7)

Based on the optimal dimension reduction property of PCA, we can prove that this is essentially like PCA but we just apply
the eigen-value decomposition on the matrix cov(x) — D instead of the original covariance matrix. Denote cov(x) — D = C. A
variant of the PCA theory says that the minimum of

Jus = ||C — AAT|? (5.8)

for any given symmetric positive semi-definite matrix C is obtained when the columns of A (which is constrained to have
fewer columns than rows) are the first eigenvectors of C multiplied by some scaling constants. Again, the general proof is very
complicated, but the basic intuition can be obtained by considering the special case of a single factor, m = 1, where we denote
A = a. Consider the norm in (5.8) as a dot-product:

Jis =||C—aa”||> = (C—aa” , C—aa") (5.9)
To manipulate this, we need the fundamental formula for the dot-product between two matrices (Prove it!):
(M1, M2) = tr(M{ Ma) = tr(M;M3) (5.10)

Thus, we obtain
Jrs = tr (CCT +aa’aa” — QCaaT) = |la||* — 2a” Ca + tr(CC) (5.11)

Tt is a sufficient statistics in terms of estimation theory



38 CHAPTER 5. FACTOR ANALYSIS

We recognize the same quadratic form a” Ca which we wanted to mazimize in PCA (in PCA, C was specifically the covariance
matrix). Here, we minimize its negative which is the same. The difference to the PCA case is that in PCA, we constrain
la]| = 1 whereas here, we have instead a penalty term ||a||*. We will not go into details, but it can be proven that the penalty
has the same effect as the norm constraint, and thus minimization of Jrs is equivalent to PCA, i.e. taking as a the eigenvector
of C = cov(x) — D with the largest eigenvalue.

In fact, the connection does not require that we know the noise covariance D. If the noise is white, i.e. D = ¢°I, the eigenvectors
of cov(x) and cov(x) — D are equal (only the eigenvalues are different). Thus, if the noise (or “specific factors”) is white, the
factors and principal components are the same.

The main difference between PCA and FA is thus in the possibility to have different “noise levels” for different observed variables,
i.e. the matrix D might have different values in its diagonal entries. This is useful in some applications, in which, for example,
one sensor can be faulty and thus give a x; which has erroneous values, and even with a very high variance. Moreover, FA gives
a properly defined probabilistic model (a probability density function) of the data. However, PCA is often preferred because of
its simplicity.>

5.4.2 Likelihood of the model

It is also possible to formulate the likelihood of the factor analysis model. However, the formulae get quite complicated and do
not bring anything which is really interesting for us in this context. It can be proven that maximization of likelihood reduces
to PCA under some constraints similar to those we had above but the derivations are more complicated.

5.5 Classic factor rotation methods

Since the factor analysis does not have a unique solution, many methods have been developed to choose the “best” one among
them. Basically, the methods can be divided into two groups:

e heuristic methods based on simplifying the structure of the factor loading matrix A,

e methods based on statistical properties of the factors. In particular, if the factors are non-Gaussian, the factor rotation
is uniquely defined. This is the basis of independent component analysis, treated later.

Here, we will consider heuristic methods based on the structure of A, typically called “factor rotations” in the literature.

The methods are based on sparsity of A. A more thorough treatment of sparsity will be given in the ICA context, Here, the
basic idea is that as many of the factor loadings a;; as possible should be essentially zero . “Essentially” is here in a purely
intuitive sense and doesn’t have a rigorous definition.

The reason for seeking a rotation which makes many elements in A essentially zero is to make interpretation simpler. Ideally,
after rotation we would have a matrix which shows clear and simple connections between the observed variables and the factors.
For example, assume that the initially estimated matrix A is

—0.9511  0.9511
—1.6435 —1.6435

A=| 23655  2.3655 (5.12)
—2.9154 —2.9154
—3.7010  3.7010

Now, after judiciously chosen rotation, given by AU for some orthogonal matrix U, this matrix in fact becomes

0 1.3450
—2.3243 0
A* = | 3.3453 0 (5.13)
—41230 0
0 5.2340

(of course, the values can become exactly zero only in an artificial example, not with real data.) We see that with the matrix
A”, the interpretation becomes much simpler. In fact, we now can classify the observed variables as related to only one of the
factors: variables x1 and x5 are only related to sz, and the rest are only related to si. Obviously, the interpretation of the
factors is easier.

2A minor difference between the two methods is in scaling of the components: in FA we define their variance to be equal to one, while
in PCA the norms of w; are defined to be one.



5.5. CLASSIC FACTOR ROTATION METHODS 39

Factor analysis with quartimax rotation. Black: observations, Red: variables
10

6 8

-10 | | | | | | | | ]
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 5.1: Illustration of a classic factor rotation.

How do we make a factor rotation? Typically, we maximize a sum of some function of the a;;
Jrot(U) = > G([AU]) (5.14)
1z

where G is a function to be chosen, and A is the initially estimated factor loading matrix, and U is an orthogonal m x m matrix.

The first thing to point out is that we cannot take a quadratic function G(y) = y?, because then J,.o; is constant (Prove it!). A
classic solution is to take the fourth power:

Gly)=y' (5.15)

This is called the quartimaz rotation. The motivation is that the fourth power encourages large absolute values for factor
loadings. Because the sum of squares is constant, such large values imply that some other loadings must be very small,
hopefully very close to zero.

Many other rotations exist as well, but the basic idea is usually the same: making the structure of A as simple as possible.’

Let’s go back to the illustration in Chapter 4. For simplicity, let us assume that the factor matrix A is the same as the principal
components, do A = (u1,uz2). (So, note that we normalize the A as in PCA and not as typically in factor analysis.) We can
rotate the two eigenvectors u; and uz using quartimax to obtain

uj = (—0.7625 0.5724 —0.0865 —0.0191 —0.2882)" (5.16)
and

u; = (—0.0338 0.0377 —0.6922 —0.5909 0.4113)" (5.17)

Again, we can plot each observation by projecting it on the coordinate axes given by uj and u3. Moreover, we can plot the
original variables, simply by using the values in uj and u3. See Figure 5.1 for the results.

The difference to the original PCA case is that now the factors are more aligned with the observed variables. In particular,
factor #1 (horizontal axis) is mainly describing variables #1 and #2, and factor #2 is mainly describing variables #3 and #4.
Variable #5 is, however, partly represented in both factors.

3T'm not completely sure if the rotation given here is exactly what is called the quartimax rotation. One possible difference is in the
way A is normalized: as pointed out above, it can be normalized so that its columns are orthogonal, or so that the s; are white, and this
will change the maxima of the objective function.



40 CHAPTER 5. FACTOR ANALYSIS

I oI, ™™ N
WA P LU

AN 18 N 410
P MM Sl gttt 1 1 TV S P

WA IAA LU N W

Figure 5.2: Hlustration of denoising. Left: some of the original signals. Right: denoised versions of those signals.

5.6 PCA/FA and noise reduction

Often in signal processing applications it is assumed that PCA or FA can reduce noise (e.g. coming from physical measurement
devices). This is based on the assumption that when we compute the projection on the columns of A (or, on the principal
component axes), the noise n is largely projected out. The factors part of the model >, a;s; is then interpreted as corresponding
to the “real” signal in the system, and the n are just noise. Thus, we compute

x=AA"x (5.18)

which is a denoised version of x, with A being estimated by FA or PCA. (We assume here for simplicity that A has orthogonal
columns as typical in PCA, so we can “invert” it by taking the transpose. In FA the normalization is different.)

The point is that we are ignoring the part of the data which is orthogonal to the “signal subspace”, which is spanned by the
columns of A, and estimated by PCA. If the dimension of the signal subspace is small, the total amount of noise in the system
can be reduced quite a lot.

Another interpretation of this operation is that we estimate the factors as § = ATx, and then reconstruct the noise-free data
as X = As.

Consider, for example that there are two “real” factors in a 100-dimensional space. Assume the noise variance is constant for
all ¢ (i.e. noise covariance is identity times a constant). We cannot get rid of the noise which is inside the signal subspace, i.e.
the projection of the noise on the that subspace. But the amount of noise in the signal subspace is only 2% of the total noise
variance, so we get rid of 98% of the noise by doing (5.18).

The reason why this works is that projection is essentially setting most of the coordinates to zero. Consider a coordinate system
Z1,...,2100, in which the two first coordinates are in the signal subspace and the rest in the noise subspace. Assume further
that the noise covariance is of the form oI, in which case the covariance of the noise in this new coordinate system (denote it
by 7; has the same covariance. This means that we have

z21 =81+ n (519)
22 = S9 + N2 (520)
zZ3 = N3 (5.21)
zZ4 = N4 (5.22)
(5.23)

2100 = M100 5.24)

Now, the projection onto the signal subspace means simply setting the z; to zero for all ¢ > 2. This obviously reduces the noise
quite a lot.

This is illustrated in Fig. 5.2. We generated 50 artificial signals according to the factor analysis model (only 5 are plotted to save
space). They really only contain two interesting signals (factors), and the rest is noise. After denoising, the signals underlying
the observed data are more apparent.

Why is it that you cannot just take the mean of all the signals? In some cases this is possible. However, the signals may have
different signs in different signals (the a;; can be negative), and they have different strengths in different signals, so PCA /FA
can find the optimal weighting of the signals.



5.7. EFFECT OF SCALING THE VARIABLES 41

5.7 Effect of scaling the variables

An important question in practice is scaling of the variables. It is important to understand that the results of PCA and FA can
change a lot with scaling.

In particular, it is often useful to rescale all the variables to unit norm, i.e. to standardize them. Then, the covariance matrix
is really the matrix of the correlation coefficients.

If you do PCA on the original covariance matrix (i.e. without scaling the variables) or on the correlation matrix (i.e. standardizing
the variables), are the results same, or is there a simple connection between the components? The answer is “no”.

Consider a diagonal matrix D which rescales the variables to obtain the scaled variables as

y =Dx (5.25)
Let’s do PCA on y. We have
cov(y) = Dcov(x)D (5.26)
and thus the optimization problem
max, w' cov(y)w = nax, w’ [Dcov(x)D]w (5.27)

So, the solution is to do the eigenvalue decompostion on the matrix Dcov(x)D instead of cov(x). Is there a simple connection
between the two eigen-value decompositions? No: The eigenvectors can be quite different. As a simple counterexample,
assume cov(x) is diagonal, with no two diagonal elements equal to each other, and in descending order. Then, the eigenvalue
decomposition is obtained as the vectors

e =(0,0,0,1,0,0,0)" (5.28)

where the 1 is in the i-th place. Now, a general D can change them so that the largest elements become the smallest, and
vice versa. Thus, the last principal component can become the first. In particular, consider what happens if we normalize the
variances to unity. Then cov(y) equals identity. Thus, the eigenvectors are not defined at all.

One interpretation is that scaling of the variables changes the geometry of the space. On the other hand, the constraint of unit
norm is still there, and not changed. So, in the new scaling, the meaning of the constraint of unit norm is no longer the same,
since the constraint is not rescaled with the variables.

So, we see that scaling of the variables can change the principal components quite a lot. In factor analysis, the results can
change or not depending on the particular factor analysis method used.

5.8 Choosing the number of principal components or factors

Another important question in practice is how to choose the number of principal components or factors. This is a very difficult
question to which it is difficult to give any clear answers. In some cases, you know what the right dimension is: for example in
the case of visualization, you usually use two dimensions.

A heuristic solution is to take enough principal components to explain a certain proportion of the variance, for example 90%.

There have been attempts to provide some principled ways of choosing the number of principal components based on (mainly)
Bayesian methods of model selection. However, they are not very often used in practice because they often seem to give bad
answers.



Chapter 6

Independent Component Analysis:
Definition

6.1 Motivation

A classic (if somewhat unrealistic) motivation of independent component analysis (ICA) is the following. Imagine that you are in
a room where three people are speaking simultaneously. (The number three is completely arbitrary, it could be anything larger
than one.) You also have three microphones, which you hold in different locations. The microphones give you three recorded
time signals, which we could denote by x1(t), z2(t) and x3(t), with x1,x2 and z3 the amplitudes, and ¢ the time index. Each of
these recorded signals is a weighted sum of the speech signals emitted by the three speakers, which we denote by s1(t), s2(t),
and s3(t). We could express this as a linear equation:

:El(t) = ansl(t) + a1282(t) -+ a1383(t) (61)
x2(t) = a2151(t) + a22s2(t) + azsss(t)
z3(t) = as151(t) + asz2s2(t) + aszss(t)

where the a;; with 4,5 = 1,...;3 are some parameters that depend on the distances of the microphones from the speakers. It
would be very useful if you could now estimate the original speech signals s1(t), s2(¢), and s3(t), using only the recorded signals
x;(t). This is called the cocktail-party problem. For the time being, we omit any time delays or other extra factors from our
simplified mixing model.

As an illustration, consider the waveforms in Fig. 6.1. The original speech signals could look something like those on the left,
and the mixed signals could look like those in the middle. The problem is to recover the “source” signals on the left using only
the data in the middle column.

Actually, if we knew the mixing parameters a;;j, we could solve the linear equation in (6.1) simply by inverting the linear system.

L L L L L L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

05 . . . . .
0 500 1000 1500 2000 2500 3000 P 5
1
off f 0 {
oll [
- . . . . . 5 . . . . .
-1 L L L L L 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
0 500 1000 1500 2000 2500 3000 2 5
1
0
0
1 . . X . . 5 . . . . .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

L L L L L
[ 500 1000 1500 2000 2500 3000

Figure 6.1: Left: The original audio signals. Middle: The observed mixtures of the original signals. Right: The
estimates of the original signals, obtained by ICA using only the observed signals in the middle. The original signals
were very accurately estimated, up to multiplicative signs.

42



6.1. MOTIVATION 43

The point is, however, that here we know neither the a;; nor the s;(t), so the problem is considerably more difficult.

One approach to solving this problem would be to use some information on the statistical properties of the signals s;(¢) to
estimate both the a;; and the s;(¢). Actually, and perhaps surprisingly, it turns out that it is enough to assume that s1(¢), s2(t),
and s3(t) are, at each time instant t, statistically independent. This is not an unrealistic assumption in many cases, and it need
not be exactly true in practice. Independent component analysis can be used to estimate the a;; based on the information of
their independence, and this allows us to separate the three original signals, s1(t), s2(t), and s3(t), from their mixtures, x1(t),
x2(t), and z2(t).

Figure 6.1, on the right gives the three signals estimated by the ICA methods discussed in the next chapters. As can be seen,
these are very close to the original source signals (the signs of some of the signals are reversed, but this has no significance.)
These signals were estimated using only the mixtures in the middle column, together with the very weak assumption of the
independence of the source signals.

Independent component analysis was originally developed to deal with problems that are closely related to the cocktail-party
problem. It has been found out that the cocktail-party problem with real audio signals is actually much more difficult due to
time delays, echos and reverberation in the room. At the same time, it has become clear that this principle has a lot of other
interesting applications as well, some of which are considered in Chapter 10.

6.1.1 ICA as estimation of a generative model

To rigorously define ICA, we can use a statistical latent variables model, which is very closely related to the factor analysis
model. We observe n random variables x1, ..., ,, which are modeled as linear combinations of n random variables s1, ..., sp:

Ti = ai181 + 282 + ... + ainsn, foralli=1,...,n (6.4)
where the aij,4,j = 1,...,n are some real coefficients. Note the basic differences to the factor analysis model

1. The number of components (factors) is equal to the number of observed variables. This is basically assumed for the sake
of mathematical simplicity: the matrix A is then invertible. It is related to the idea that we are estimating a factor
rotation after PCA/FA, so we don’t want to reduce the dimension of the data anymore.

2. There is no noise term. This is partly justified by the large number of components: some of them can be noise whereas
others are more interesting components

In addition, the statistical assumptions on the components are quite different, as will be discussed in the next subsection.

Note that we have here dropped the time index ¢ that was used in the previous section. This is because in the basic ICA model,
we assume that each mixture x; as well as each independent component s; is a random variable, instead of a proper time signal
or time series.

ICA is very closely related to the method called blind source separation (BSS) or blind signal separation. A “source” means
here an original signal, i.e., independent component, like the speaker in the cocktail-party problem. “Blind” means that we
know very little, if anything, of the mixing matrix, and make very weak assumptions on the source signals. ICA is one method,
perhaps the most widely used, for performing blind source separation.

Using the same vector notation as in factor analysis, the ICA model is written as

X = Zn:aisi (65)
i=1

or
x = As (6.6)

where the matrix A, often called the “mixing” matrix, is square.

6.1.2 Model assumptions in ICA

To make sure that the basic ICA model just given can be estimated, we have to make certain assumptions and restrictions.
1. The independent components are assumed statistically independent.

This is of course where the name of the method comes from. Surprisingly, not much more than this assumption is needed to
ascertain that the model can be estimated. This is why ICA is such a powerful method with applications in many different
areas.

Basically, random variables y1,y2, ..., y» are said to be independent if information on the value of y; does not give any infor-
mation on the value of y; for ¢ # j. Technically, independence can be defined by the probability densities. Let us denote by



44 CHAPTER 6. INDEPENDENT COMPONENT ANALYSIS: DEFINITION

p(y1,y2, ..., yn) the joint probability density function (pdf) of the y;, and by p;(y;) the marginal pdf of y;, i.e., the pdf of y;
when it is considered alone. Then we say that the y; are independent if and only if the joint pdf is factorizable in the following
way:

P(Y1, Y2, - yn) = Pr(y1)p2(y2) P (Yn)- (6.7)

2. The independent components must have nongaussian distributions.

This is what distinguishes ICA from (classical) factor analysis. Intuitively, one can say that the gaussian distributions are “too
simple”. The distribution is completely characterized by the covariance matrix which is not enough to estimate A as we saw
already in Chapter 5, in the form of the factor rotation problem. Thus, ICA is essentially impossible if the observed variables
have gaussian distributions. The reasons will be treated in more detail in Section 6.4 below. Note that in the basic model we
do not assume that we know what the nongaussian distributions of the ICs look like; if they are known, the problem will be
considerably simplified.

3. For simplicity, we assume that the unknown mixing matrix is square and invertible.

In other words, the number of independent components is equal to the number of observed mixtures. This assumption can
sometimes be relaxed. We make it here because it simplifies the estimation very much. Then, after estimating the matrix A,
we can compute its inverse, say B, and obtain the independent components simply by

s =Bx (6.8)

It is also assumed here that the mixing matrix is invertible. If this is not the case, there are redundant mixtures that could be
omitted, in which case the matrix would not be square; then we find again the case where the number of mixtures is not equal
to the number of 1Cs.

Thus, under the preceding three assumptions (or at the minimum, the two first ones), the ICA model is identifiable, meaning
that the mixing matrix and the ICs can be estimated up to some trivial indeterminacies that will be discussed next. We will not
prove the identifiability of the ICA model here, since the proof is quite complicated. On the other hand, in the next chapter we
develop estimation methods, and the developments there give a kind of a nonrigorous, constructive proof of the identifiability.

6.2 Illustration of ICA

To illustrate the ICA model in statistical terms, consider two independent components that have the following uniform distri-

butions:
Ly if [s;] < V3
p(si)) =423 if |si] < V3 69)
0, otherwise

The range of values for this uniform distribution were chosen so as to make the mean zero and the variance equal to one, as
was agreed in the previous section. The joint density of s1 and s2 is then uniform on a square. This follows from the basic
definition that the joint density of two independent variables is just the product of their marginal densities (see Eq. (6.7)): we
simply need to compute the product. The joint density is illustrated in Fig. 6.2 (left) by showing data points randomly drawn
from this distribution.

Now let us mix these two independent components. Let us take the following mixing matrix:

Ay = (150 120) (6.10)

This gives us two mixed variables, x1 and z2. It is easily computed that the mixed data has a uniform distribution on a
parallelogram, as shown in Fig. 6.2 on the right. Note that the random variables z; and x> are not independent anymore; an
easy way to see this is to consider whether it is possible to predict the value of one of them, say x2, from the value of the
other. Clearly, if 1 attains one of its maximum or minimum values, then this completely determines the value of x2. They
are therefore not independent. (For variables s1 and s2 the situation is different: from Fig. 6.2 on the left it can be seen that
knowing the value of s1 does not in any way help in guessing the value of s3.)

The problem of estimating the data model of ICA is now to estimate the mixing matrix A using only information contained in
the mixtures x; and x2. Actually, from Fig. 6.2 you can see an intuitive way of estimating A: The edges of the parallelogram
are in the directions of the columns of A. This means that we could, in principle, estimate the ICA model by first estimating
the joint density of x1 and x2, and then locating the edges. So, the problem seems to have a solution.

On the other hand, consider a mixture of ICs with a different type of distribution, called supergaussian. Supergaussian random
variables typically have a pdf with a peak at zero. The marginal distribution of such an IC is given in Fig. 6.3. The joint
distribution of the original independent components is given in Fig. 6.4 on the left, and the mixtures are shown in Fig. 6.4 on
the right. Here, we see some kind of edges, but in very different places this time.



6.2. ILLUSTRATION OF ICA 45

Figure 6.2: Left: The joint distribution of the independent components s; and so with uniform distributions. Horizontal
axis: s1, vertical axis: so. Right: The joint distribution of the observed mixtures x; and x5. Horizontal axis: 1,
vertical axis: x3. (Not in the same scale)

Figure 6.3: The density of one supergaussian independent component. The gaussian density if give by the dashed line
for comparison.

Figure 6.4: Left: The joint distribution of the independent components s; and s, with supergaussian distributions.
Horizontal axis: s1, vertical axis: ss. Right: The joint distribution of the observed mixtures x; and x2, obtained from
supergaussian independent components. Horizontal axis: x1, vertical axis: xo.



46 CHAPTER 6. INDEPENDENT COMPONENT ANALYSIS: DEFINITION

In practice, however, locating the edges would be a very poor method because it only works with variables that have very special
distributions. For most distributions, such edges cannot be found; we use only for illustration purposes distributions that visually
show edges. Moreover, methods based on finding edges, or other similar heuristic methods, tend to be computationally quite
complicated, and unreliable.

What we need is a method that works for any distributions of the independent components, and works fast and reliably. Such
methods are treated later. In the rest of this chapter, however, we discuss the connection between ICA and whitening.

6.3 ICA is stronger than whitening

Given some random variables, it is straightforward to linearly transform them into uncorrelated variables, as shown in Section 4.5.
Therefore, it would be tempting to try to estimate the independent components by such a method, which is typically a form of
whitening, and often implemented by principal component analysis. In this section, we show that this is not possible, and discuss
the relation between ICA and decorrelation methods. It will be seen that whitening is, nevertheless, a useful preprocessing
technique for ICA.

6.3.1 Uncorrelatedness and independence

Two random variables y1 and y2 are said to be uncorrelated, if their covariance is zero:

cov(yi,y2) = E{y1y2} — E{y1} E{y2} =0 (6.11)

In these lecture notes, all random variables are assumed to have zero mean, unless otherwise mentioned. Thus, covariance is
equal to = E{y1y2}.

If random variables are independent, they are uncorrelated. This is because if the y1 and y2 are independent, then for any two
functions, h1 and h2, we have

E{h1(y1)h2(y2)} = E{h1(y1)} E{h2(y2)} (6.12)
Taking h1(y1) = y1 and h2(y2) = y2, we see that this implies uncorrelatedness.
On the other hand, uncorrelatedness does not imply independence. For example, assume that (y1,y2) are discrete valued and

follow such a distribution that the pair are with probability 1/4 equal to any of the following values: (0, 1), (0,—1),(1,0), and
(—=1,0). Then y1 and y2 are uncorrelated, as can be simply calculated. On the other hand,

Blyut =0 # 7 = B} B{u3) (6.13)

so the condition in Eq. (6.12) is violated, and the variables cannot be independent.

6.3.2 Whitening is only half ICA

Now, suppose that the data in the ICA model is whitened. Whitening transforms the mixing matrix into a new one, A. We
have from (6.6)

z = VAs = As (6.14)
One could hope that whitening solves the ICA problem, since whiteness or uncorrelatedness is related to independence. This is,
however, not so. Uncorrelatedness is weaker than independence, and is not in itself sufficient for estimation of the ICA model.
To see this, consider an orthogonal transformation U of z:

y =Uz (6.15)
Due to the orthogonality of U, we have
E{yy"} = E{Uzz"U"} = UIU" =1 (6.16)
In other words, y is white as well. Thus, we cannot tell if the independent components are given by z or y using the
whiteness property alone. Since y could be any orthogonal transformation of z, whitening gives the ICs only up to an orthogonal
transformation. This is not sufficient in most applications. Note that this is just a restatement of the factor rotation problem,
or the non-uniqueness of whitening, which were discussed earlier.

On the other hand, whitening is useful as a preprocessing step in ICA. The utility of whitening resides in the fact that the new
mizing matriz A = VA is orthogonal. This can be seen from

E{zz"} = AE{ss"}JA" = AA" =1 (6.17)

This means that we can restrict our search for the mixing matrix to the space of orthogonal matrices. Instead of having to
estimate the n? parameters that are the elements of the original matrix A, we only need to estimate an orthogonal mixing



6.3. ICA IS STRONGER THAN WHITENING 47

Figure 6.5: The joint distribution of the whitened mixtures of uniformly distributed independent components.

matrix A. An orthogonal matrix contains n(n — 1)/2 degrees of freedom. For example, in two dimensions, an orthogonal
transformation is determined by a single angle parameter. In larger dimensions, an orthogonal matrix contains only about half
of the number of parameters of an arbitrary matrix.

Thus one can say that whitening solves half of the problem of ICA. Because whitening is a very simple and standard procedure,
much simpler than any ICA algorithms, it is a good idea to reduce the complexity of the problem this way. The remaining half
of the parameters has to be estimated by some other method; several will be introduced in the next chapters.

From the viewpoint of factor analysis, we can thus say that ICA is a method for solving the factor rotation problem. In ICA,
we solve it using the statistical properties of the data, instead of assuming a simple structure for A as in classic factor rotation
methods.

A graphical illustration of the effect of whitening can be seen in Fig. 6.5, in which the data in Fig. 6.2 has been whitened.
The square defining the distribution is now clearly a rotated version of the original square in Fig. 6.2. All that is left is the
estimation of a single angle that gives the rotation.

In most ICA estimation methods treated below, we will assume that the data has been preprocessed by whitening.

6.3.3 Ambiguities of ICA

Although ICA solves the factor rotation problem, it is easy to see that the following ambiguities or indeterminacies will necessarily
hold:

1. We cannot determine the variances (energies) of the independent components.

The reason is that, both s and A being unknown, any scalar multiplier in one of the sources s; could always be canceled by
dividing the corresponding column a; of A by the same scalar, say a;:

x = 3 (—a) (sia) (6.18)

— Q4

7
As a consequence, we may quite as well fix the magnitudes of the independent components. Since they are random variables,
the most natural way to do this is to assume that each has unit variance: E{s?} = 1. Then the matrix A will be adapted in
the ICA solution methods to take into account this restriction. Note that this still leaves the ambiguity of the sign: we could
multiply an independent component by —1 without affecting the model. This ambiguity is, fortunately, insignificant in most
applications.

2. We cannot determine the order of the independent components.

The reason is that, again both s and A being unknown, we can freely change the order of the terms in the sum in (6.5), and call
any of the independent components the first one. Formally, a permutation matrix P and its inverse can be substituted in the
model to give x = AP7'Ps. The elements of Ps are the original independent variables s;, but in another order. The matrix
AP~ is just a new unknown mixing matrix, to be solved by the ICA algorithms.

Without loss of generality, we can assume that both the mixture variables and the independent components have zero mean.
If the assumption of zero mean is not true, we can do some preprocessing to make it hold. This is possible by centering the
observable variables, i.e., subtracting their sample mean.



48 CHAPTER 6. INDEPENDENT COMPONENT ANALYSIS: DEFINITION

Figure 6.6: The multivariate distribution of two independent gaussian variables.

6.4 Why gaussian variables are forbidden

Whitening also helps us understand why gaussian variables are forbidden in ICA. Assume that the joint distribution of two ICs,
s1 and sg, is gaussian. This means that their joint pdf is given by

1 57+ s3 ! _Hs||2

P(s1,52) = 5 exp(—

5 ) = 5o exp(=5) (6.19)

Now, assume that the mixing matrix A is orthogonal. For example, we could assume that this is so because the data has been
whitened. Then, also x is gaussian, and white, as shown above. This means that its covariance matrix is equal to identity.
Thus, by definition, we get the joint density of the mixtures x1 and x2 as density is given by

1]
5 )

p(1,22) = = exp(— (6.20)

27
and we see that the orthogonal mixing matrix does not change the pdf, since it does not appear in this pdf at all. The original
and mixed distributions are identical. Therefore, there is no way how we could infer the mixing matrix from the mixtures.

The phenomenon that the orthogonal mixing matrix cannot be estimated for gaussian variables is related to the property
that uncorrelated jointly gaussian variables are necessarily independent. Thus, the information on the independence of the
components does not get us any further than whitening.

Graphically, we can see this phenomenon by plotting the distribution of the orthogonal mixtures, which is in fact the same
as the distribution of the ICs. This distribution is illustrated in Fig. 6.6. The figure shows that the density is rotationally
symmetric. Therefore, it does not contain any information on the directions of the columns of the mixing matrix A. This is
why A cannot be estimated.

Thus, we are back to the factor rotation problem: in the case of gaussian independent components, we can only estimate the
ICA model up to an orthogonal transformation. In other words, the matrix A is not identifiable for gaussian independent
components.

What happens if we try to estimate the ICA model and some of the components are gaussian, some nongaussian? In this case,
we can estimate all the nongaussian components, but the gaussian components cannot be separated from each other. In other
words, some of the estimated components will be arbitrary linear combinations of the gaussian components. Actually, this
means that in the case of just one gaussian component, we can estimate the model, because the single gaussian component does
not have any other gaussian components that it could be mixed with.



Chapter 7

ICA by maximization of non-gaussianity

7.1 Introduction

Here, we introduce a simple and intuitive principle for estimating the model of independent component analysis (ICA). This is
based on maximization of nongaussianity.

Nongaussianity is actually of paramount importance in ICA estimation. Without nongaussianity the estimation is not possible
at all, as shown in Chapter 6. Therefore, it is not surprising that nongaussianity could be used as a leading principle in ICA
estimation. This is at the same time probably the main reason for the rather late resurgence of ICA research: In most of classic
statistical theory, random variables are assumed to have gaussian distributions, thus precluding methods related to ICA.

We start by intuitively motivating the maximization of nongaussianity by the central limit theorem. As a first practical measure
of nongaussianity, we introduce the fourth-order cumulant, or kurtosis. Using kurtosis, we derive practical algorithms by gradient
and fixed-point methods. Finally, we discuss the connection between these methods and the technique called projection pursuit.

7.2 “Nongaussian is independent”

The central limit theorem is a classic result in probability theory. It says that the distribution of a sum of independent random
variables tends toward a gaussian distribution, under certain conditions. Loosely speaking, a sum of two independent random
variables usually has a distribution that is closer to gaussian than any of the two original random variables.

Let us now assume that the data vector x is distributed according to the ICA data model:
x = As (7.1)

i.e., it is a mixture of independent components. For pedagogical purposes, let us assume in this motivating section that all the
independent components have identical distributions. Estimating the independent components can be accomplished by finding
the right linear combinations of the mixture variables, since we can invert the mixing as

s=A'x (7.2)

Thus, to estimate one of the independent components, we can consider a linear combination of the x;. Let us denote this by
y=blx = >, bizi, where b is a vector to be determined. Note that we also have y = bTAs. Thus, y is a certain linear
combination of the s;, with coefficients given by bTA. Let us denote this vector by q. Then we have

y=b'x=q's=) qs (7.3)

If b were one of the rows of the inverse of A, this linear combination b?x would actually equal one of the independent
components. In that case, the corresponding q would be such that just one of its elements is 1 and all the others are zero.

The question is now: How could we use the central limit theorem to determine b so that it would equal one of the rows of the
inverse of A ? In practice, we cannot determine such a b exactly, because we have no knowledge of matrix A, but we can find
an estimator that gives a good approximation.

Let us vary the coefficients in q, and see how the distribution of 4 = q”'s changes. The fundamental idea here is that since a
sum of even two independent random variables is more gaussian than the original variables, y = q”'s is usually more gaussian
than any of the s; and becomes least gaussian when it in fact equals one of the s;. (Note that this is strictly true only if the s;
have identical distributions, as we assumed here.) In this case, obviously only one of the elements ¢; of q is nonzero.

49



50 CHAPTER 7. ICA BY MAXIMIZATION OF NON-GAUSSIANITY

Figure 7.1: Left: The joint distribution of two independent components with uniform densities. Right: The estimated
density of one uniform independent component, with the gaussian density (dashed curve) given for comparison.

Figure 7.2: Left: The joint density of two whitened mixtures of independent components with uniform densities.
Right: The marginal density of one of the whitened mixtures. It is closer to the gaussian density (given by the dashed
curve) than the density of an independent component shown in Fig. 7.1.

We do not in practice know the values of q, but we do not need to, because q”'s = b?x by the definition of . We can just let
b vary and look at the distribution of b7 x.

Therefore, we could take as b a vector that mazimizes the nongaussianity of b”x. Such a vector would necessarily correspond
to a q = ATb, which has only one nonzero component. This means that y = bTx = qT's equals one of the independent
components! Maximizing the nongaussianity of b x thus gives us one of the independent components.

In fact, the optimization landscape for nongaussianity in the n-dimensional space of vectors b has 2n local maxima, two for
each independent component, corresponding to s; and —s; (recall that the independent components can be estimated only up
to a multiplicative sign).

We can illustrate the principle of maximizing nongaussianity by simple examples. Let us consider two independent components
that have uniform densities. Their joint distribution is illustrated in Fig. 7.1 (left), in which a sample of the independent
components is plotted on the two-dimensional (2-D) plane. Figure 7.1 (right) also shows a histogram estimate of the uniform
densities. These variables are then linearly mixed, and the mixtures are whitened as a preprocessing step. Whitening was
explained earlier; let us recall briefly that it means that x is linearly transformed into a random vector

z=Vx = VAs (7.4)

whose correlation matrix equals unity: E{zz”} = I. Thus the ICA model still holds, though with a different mixing matrix.
(Even without whitening, the situation would be similar.) The joint density of the whitened mixtures is given in Fig. 7.2. It is
a rotation of the original joint density.

Now, let us look at the densities of the two linear mixtures z; and z2. One of them is estimated in Fig. 7.2, on the right. One can
clearly see that the densities of the mixtures are closer to a gaussian density than the densities of the independent components
shown in Fig. 7.1. Thus we see that the mixing makes the variables closer to gaussian. Finding the rotation that rotates the
square in Fig. 7.2 back to the original ICs in Fig. 7.1 would give us the two maximally nongaussian linear combinations with
uniform distributions.

A second example with very different densities shows the same result. In Fig. 7.3, the joint distribution of very supergaussian
independent components is shown. The marginal density of a component is estimated in Fig. 7.3. The density has a large peak



7.3. MEASURING NONGAUSSIANITY BY KURTOSIS 51

Figure 7.3: Left: The joint distribution of the two independent components with supergaussian densities. Right: The
estimated density of one supergaussian independent component.

Figure 7.4: Left: The joint distribution of two whitened mixtures of independent components with supergaussian
densities. Right: The marginal density of one of the whitened mixtures in Fig. 7.4. It is closer to the gaussian density
(given by dashed curve) than the densities of the independent components.

at zero, as is typical of supergaussian densities (see below). Whitened mixtures of the independent components are shown in
Fig. 7.4 on the left. The densities of two linear mixtures are given in Fig. 7.4 on the right. They are clearly more gaussian
than the original densities, as can be seen from the fact that the peak is much lower. Again, we see that mixing makes the
distributions more gaussian.

To recapitulate, we have formulated ICA estimation as the search for directions that are maximally nongaussian: Each local
maximum gives one independent component. Our approach here is somewhat heuristic, but it will be seen in the next section
that it has a perfectly rigorous justification. From a practical point of view, we now have to answer the following questions:
How can the nongaussianity of b”x be measured? And how can we compute the values of b that maximize (locally) such a
measure of nongaussianity? The rest of this chapter is devoted to answering these questions.

7.3 Measuring nongaussianity by kurtosis

7.3.1 Extrema of kurtosis give independent components
Kurtosis and its properties

To use nongaussianity in ICA estimation, we must have a quantitative measure of nongaussianity of a random variable, say y.
In this section, we show how to use kurtosis, a classic measure of nongaussianity, for ICA estimation. Kurtosis is the name
given to the fourth-order cumulant of a random variable.



52 CHAPTER 7. ICA BY MAXIMIZATION OF NON-GAUSSIANITY

Figure 7.5: Left: The density function of the Laplacian distribution, which is a typical supergaussian distribution. For
comparison, the gaussian density is given by a dashed curve. Both densities are normalized to unit variance. Right:
The density function of the uniform distribution, which is a typical subgaussian distribution.

The kurtosis of y, denoted by kurt(y), is defined by
kurt(y) = E{y"} — 3(E{y*})? (7.5)

Remember that all the random variables here have zero mean; in the general case, the definition of kurtosis is slightly more
complicated. To simplify things, we can further assume that y has been normalized so that its variance is equal to one:
E{y*} = 1. Then the right-hand side simplifies to E{y*} — 3. This shows that kurtosis is simply a normalized version of the
fourth moment E{y"}.

For a gaussian y, the fourth moment equals 3(E{y*})?, which can be shown by integration by parts:

1 13—y

(B = [ o= expl—gv’) = 0-o* [ —=30" Fexp(-5-0") = 30"} (76)

Thus, kurtosis is zero for a gaussian random variable. For most (but not quite all) nongaussian random variables, kurtosis is
nonzero.

Kurtosis can be both positive or negative. Random variables that have a negative kurtosis are called subgaussian, and those with
positive kurtosis are called supergaussian. In statistical literature, the corresponding expressions platykurtic and leptokurtic are
also used. Supergaussian random variables have typically a “spiky” probability density function (pdf) with heavy tails, i.e., the
pdf is relatively large at zero and at large values of the variable, while being small for intermediate values. A typical example
is the Laplacian distribution, whose pdf is given by

1
= —ex —\/5 7.7
p(y) 7 p(—=V2[yl) (7.7)
Here we have normalized the variance to unity; this pdf is illustrated in Fig. 7.5. Subgaussian random variables, on the other
hand, have typically a “flat” pdf, which is rather constant near zero, and very small for larger values of the variable. A typical
example is the uniform distribution, whose density is given by

ply) = {7 it lyl < V3 (7.8)

0, otherwise
which is normalized to unit variance as well; it is illustrated in Fig. 7.5.

Typically nongaussianity is measured by the absolute value of kurtosis. The square of kurtosis can also be used. These measures
are zero for a gaussian variable, and greater than zero for most nongaussian random variables. There are nongaussian random
variables that have zero kurtosis, but they can be considered to be very rare.

Kurtosis, or rather its absolute value, has been widely used as a measure of nongaussianity in ICA and related fields. The main
reason is its simplicity, both computational and theoretical. Computationally, kurtosis can be estimated simply by using the
fourth moment of the sample data (if the variance is kept constant). Theoretical analysis is simplified because of the following
linearity property: If z1 and z2 are two independent random variables, it holds

kurt(z1 + z2) = kurt(z1) + kurt(zz) (7.9)
and
kurt(azi) = o'kurt(z:) (7.10)

where « is a constant. These properties can be easily proven using the general definition of cumulants (which we do not go
through in this course), but they can also be directly shown using the definition. These properties are to be compared with the
corresponding properties of variance; the additivity is then true for any uncorrelated variables.



7.3. MEASURING NONGAUSSIANITY BY KURTOSIS 53

Figure 7.6: The optimization landscape of kurtosis. The thick curve is the unit sphere, and the thin curves are the
contours where F' in (7.12) is constant.

Optimization landscape in ICA

To illustrate in a simple example what the optimization landscape for kurtosis looks like, and how independent components
could be found by kurtosis minimization or maximization, let us look at a 2-D model x = As. Assume that the independent
components s1, s2 have kurtosis values kurt(s1), kurt(sz2), respectively, both different from zero. Recall that they have unit
variances by definition. We look for one of the independent components as y = b7 x.

Let us again consider the transformed vector ¢ = ATb. Then we have y = bTx = b7 As = q¥'s = q151 + ¢252. Now, based on
the additive property of kurtosis, we have

kurt(y) = kurt(qis1) + kurt(gzs2) = gikurt(s1) + gakurt(s2) (7.11)

On the other hand, we made the constraint that the variance of y is equal to 1, based on the same assumption concerning si, sa.
This implies a constraint on q: F{y*} = ¢ + ¢5 = 1. Geometrically, this means that vector q is constrained to the unit circle
on the 2-D plane.

The optimization problem is now: What are the maxima of the function |kurt(y)| = |gikurt(s1) + gakurt(s2)| on the unit circle?
To begin with, we may assume for simplicity that the kurtoses are equal to 1. In this case, we are simply considering the
function

Fla)=ai +a (7.12)

Some contours of this function, i.e., curves in which this function is constant, are shown in Fig. 7.6. The unit sphere, i.e., the
set where ¢ + g3 = 1, is shown as well. This gives the ”optimization landscape” for the problem.

It is not hard to see that the maxima are at those points where exactly one of the elements of vector q is zero and the other
nonzero; because of the unit circle constraint, the nonzero element must be equal to 1 or —1. But these points are exactly the
ones when y equals one of the independent components +s;, and the problem has been solved.

If the kurtoses are both equal to —1, the situation is similar, because taking the absolute values, we get exactly the same function
to maximize. Finally, if the kurtoses are completely arbitrary, as long as they are nonzero, more involved algebraic manipulations
show that the absolute value of kurtosis is still maximized when y = bTx equals one of the independent components.

Sketch of the proof We provide a sketch of a geometric proof of the fundamental maximality property of kurtosis. More
precisely, we prove that the maxima of the function

F(q) = [kurt(q”s)| = |gikurt(s1) 4+ gakurt(s2)] (7.13)

in the constraint set ||q||> = 1 are obtained when only one of the components of q is nonzero. For simplicity, we consider here
the 2-D case, and assume that both of the kurtoses are positive. We make the change of variables t; = ¢?. The geometrical
form of the constraint set of t = (¢1,t2) is then the line segment connecting the points (0,1) and (1,0). Note that the objective
function is now quadratic. The geometrical shape of the set F'(t) = const. is an ellipse. If you draw the constraint set and some
of the ellipses, it is not very difficult to see that the maximum of F(t) is obtained when one of the ¢; is one and the other one
is zero. This proves the maximality property if the kurtoses are both positive.

Now we see the utility of preprocessing by whitening. For whitened data z, we seek for a linear combination w’z that maximizes



54 CHAPTER 7. ICA BY MAXIMIZATION OF NON-GAUSSIANITY

kurtosis
&
o

0.5 1 2 25 3 35

15
angle of w

Figure 7.7: We search for projections (which correspond to points on the unit circle) that maximize nongaussianity,
using whitened mixtures of uniformly distributed independent components. Left: The projections can be parameterized
by the angle. (The particular direction shown is arbitrary and not the optimum.) Right: The values of kurtosis for
projections as a function of the angle. Kurtosis is minimized, and its absolute value maximized, in the directions of
the independent components.

nongaussianity. This simplifies the situation here, since we have q = (VA)TW and therefore
lal* = (W' VA)(ATVTw) = [lw]* (7.14)

This means that constraining q to lie on the unit sphere is equivalent to constraining w to be on the unit sphere. Thus we
maximize the absolute value of kurtosis of w”z under the simpler constraint that ||w|| = 1. Also, after whitening, the linear
combinations w” z can be interpreted as projections on the line (that is, a 1-D subspace) spanned by the vector w. Each point
on the unit sphere corresponds to one projection.

As an example, let us consider the whitened mixtures of uniformly distributed independent components in Fig. 7.2. We search
for a vector w such that the linear combination or projection w”z has maximum nongaussianity, as illustrated in Fig. 7.7. In
this two-dimensional case, we can parameterize the points on the unit sphere by the angle that the corresponding vector w
makes with the horizontal axis. Then, we can plot the kurtosis of w’z as a function of this angle, which is given in Fig. 7.7.
The plot shows kurtosis is always negative, and is minimized at approximately 1 and 2.6 radians. These directions are thus
such that the absolute value of kurtosis is maximized. They can be seen in Fig. 7.7 to correspond to the directions given by the
edges of the square, and thus they do give the independent components.

In the second example, we see the same phenomenon for whitened mixtures of supergaussian independent components. Again,
we search for a vector w such that the projection in that direction has maximum nongaussianity, as illustrated in Fig. 7.8. We
can plot the kurtosis of w” z as a function of the angle in which w points, as given in Fig. 7.8. The plot shows kurtosis is always
positive, and is maximized in the directions of the independent components. These angles are the same as in the preceding
example because we used the same mixing matrix. Again, they correspond to the directions in which the absolute value of
kurtosis is maximized.

7.3.2 Gradient algorithm using kurtosis

In practice, to maximize the absolute value of kurtosis, we would start from some vector w, compute the direction in which
the absolute value of the kurtosis of y = w” z is growing most strongly, based on the available sample z(1), ..., z(T) of mixture
vector z, and then move the vector w in that direction. This idea is implemented in gradient methods and their extensions.

The gradient of the absolute value of kurtosis of w’'z can be simply computed as

dlkurt(w’z)|

D = 4 sign(kurt(w” z))[E{z(w" 2)*} — 3w]|w|?] (7.15)

since for whitened data we have E{(w”z)?} = ||w|/®>. Since we are optimizing this function on the unit sphere |w]|? = 1,
the gradient method must be complemented by projecting w on the unit sphere after every step. This can be done simply by
dividing w by its norm.

Actually, in many applications we know in advance the nature of the distributions of the independent components, i.e., whether
they are subgaussian or supergaussian. Then we can simply plug the correct sign of kurtosis in the algorithm, and avoid its
estimation.



7.3. MEASURING NONGAUSSIANITY BY KURTOSIS 55

kurtosis

0 05 1 25 3 35

15 2
angle of w

Figure 7.8: Again, we search for projections that maximize nongaussianity, this time with whitened mixtures of
supergaussian independent components. Left: The projections can be parameterized by the angle. Right: The values
of kurtosis for projections in different angles as in Fig. 7.8. Kurtosis, as well as its absolute value, is maximized in the
directions of the independent components.

7.3.3 A fast fixed-point algorithm (FastICA) using kurtosis

A common problem with gradient algorithms is that the convergence is slow, and depends on a good choice of the learning rate
sequence. A bad choice of the learning rate can, in practice, destroy convergence. Therefore, some ways to make the learning
radically faster and more reliable would be useful. The fixed-point iteration algorithms offer such an alternative.

To derive a more efficient fixed-point iteration, we note that at a stable point of the gradient algorithm, the gradient must
point in the direction of w, that is, the gradient must be equal to w multiplied by some scalar constant. Only in such a case,
adding the gradient to w does not change its direction, and we can have convergence (this means that after normalization to
unit norm, the value of w is not changed except perhaps by changing its sign). (This can be proven more rigorously using the
technique of Lagrange multipliers.)

Equating the gradient of kurtosis in (7.15) with w times a scalar multiplier, this means that we should have
w o [E{z(w"2)*} — 3||w|*w] (7.16)

where o« means “proportional to”, i.e. equal up to a scalar multiplier. So, this immediately suggests a fixed-point algorithm
where we first compute the right-hand side, and give this as the new value for w:

w — E{z(w"2)*} — 3w (7.17)

This is effectively like taking a gradient step with an infinite step size (cf. exercice with power method).

After every fixed-point iteration, w is divided by its norm to remain on the constraint set. (Thus |[[w|| = 1 always, which is why
it can be omitted from (7.16).) The final vector w gives one of the independent components as the linear combination w”z. In
practice, the expectations in (7.17) must be replaced by their estimates.

Note that convergence of this fixed-point iteration means that the old and new values of w point in the same direction, i.e.,
their dot-product is (almost) equal to 1. It is not necessary that the vector converges to a single point, since w and —w define
the same direction. This is again because the independent components can be defined only up to a multiplicative sign.

Actually, it turns out that such an algorithm works very well, converging very fast. Note that in general, there is no guarantee
that such a fixed-point algorithm would work at all: Here we are basically quite lucky and find a very good fixed-point algorithm
easily.

7.3.4 Examples

Here we show what happens when we run the FastICA algorithm that maximizes the absolute value of kurtosis, using the two
example data sets used in this chapter. First we take a mixture of two uniformly distributed independent components. The
mixtures are whitened, as always in this chapter. The goal is now to find a direction in the data that maximizes the absolute
value of kurtosis, as illustrated in Fig. 7.7.

We initialize, for purposes of the illustration, the vector w as w = (1,0)”. Running the FastICA iteration just two times, we
obtain convergence. In Fig. 7.9 (left), the obtained vectors w are shown. The dashed line gives the direction of w after the first
iteration, and the solid line gives the direction of w after the second iteration. The third iteration did not significantly change



56 CHAPTER 7. ICA BY MAXIMIZATION OF NON-GAUSSIANITY

13 . . . . .
0 0.5 1 15 2 25 3

iteration count

Figure 7.9: Result of FastICA using kurtosis, for ICs with uniform distributions. Left: Dashed line: w after the first
iteration (plotted longer than actual size). Solid line: w after the second iteration. Right: The value of kurtosis shown
as function of iteration count.

5.5

kurtosis

2'50 0.5 1 15 2 25 3

iteration count

Figure 7.10: Result of FastICA with kurtosis, this time for supergaussian ICs. Dash-dotted line: w after the first
iteration (plotted longer than actual size). Solid line: w after the second iteration. Right: The value of kurtosis shown
as a function of iteration count.

the direction of w, which means that the algorithm converged. (The corresponding vector is not plotted.) The figure shows
that the value of w may change drastically during the iteration, because the values w and —w are considered as equivalent.
This is because the sign of the vector cannot be determined in the ICA model.

The kurtoses of the projections w”z obtained in the iterations are also plotted in Fig. 7.9 (right), as a function of iteration
count. The plot shows that the algorithm steadily increased the absolute value of the kurtosis of the projection, until it reached
convergence at the third iteration.

Similar experiments were performed for the whitened mixtures of two supergaussian independent components, which were
illustrated in Fig. 7.8. The obtained vectors are shown in Fig. 7.10. Again, convergence was obtained after two iterations. As
in the preceding experiment, the absolute value of the kurtosis of the projection steadily increased, until it reached convergence
at the third iteration.

In these examples, we only estimated one independent component. Of course, one often needs more than one component.
Figures 7.7 and 7.8 indicate how this can be done: The directions of the independent components are orthogonal in the
whitened space, so the second independent component can be found as the direction orthogonal to the w corresponding to the
estimated independent component. For more dimensions, we need to rerun the algorithm, always constraining the current w
to be orthogonal to the previously estimated vectors w. This will be explained in more detail in Section 7.4.



7.4. ESTIMATING SEVERAL INDEPENDENT COMPONENTS 57
7.4 Estimating several independent components

7.4.1 Constraint of uncorrelatedness

In this chapter, we have so far estimated only one independent component. This is why these algorithms are sometimes called
“one-unit” algorithms. In principle, we could find more independent components by running the algorithm many times and
using different initial points. This would not be a reliable method of estimating many independent components, however.

The key to extending the method of maximum nongaussianity to estimate more independent component is based on the following
property: The vectors w; corresponding to different independent components are orthogonal in the whitened space, as shown
earlier. To recapitulate, the independence of the components requires that they are uncorrelated, and in the whitened space
we have E{(w]z)(w]z)} = w]w;, and therefore uncorrelatedness in equivalent to orthogonality. This property is a direct
consequence of the fact that after whitening, the mixing matrix can be taken to be orthogonal. The w; are in fact by definition
the rows of the inverse of the mixing matrix, and these are equal to the columns of the mixing matrix, because by orthogonality
A~ = AT,

Thus, to estimate several independent components, we need to run any of the one-unit algorithms several times (possibly using
several units) with vectors wi, ..., Wy, and to prevent different vectors from converging to the same maxima we must orthogonalize
the vectors wy, ..., w, after every iteration. We present in the following different methods for achieving decorrelation.

7.4.2 Deflationary orthogonalization

A simple way of orthogonalization is deflationary orthogonalization using the Gram-Schmidt method. This means that we
estimate the independent components one by one. When we have estimated p independent components, or p vectors wi, ..., wp,
we run any one-unit algorithm for wjy1, and after every iteration step subtract from wyy1 the projections (w§+1wj)wj7j =
1,...,p of the previously estimated p vectors, and then renormalize wy41. More precisely, we alternate the following steps:

1. Choose m, the number of ICs to estimate. Set p < 1.
2. Initialize w) (e.g. randomly)

3. Do an iteration of a one-unit algorithm on wy,.

4

. Do the following orthogonalization:
p—1

Wp — Wp — Z(WZWJ')WJ' (7.18)

j=1
5. Normalize w; by dividing it by its norm.
6. If w, has not converged, go back to step 3.

7. Set p < p+ 1. If p is not greater than the desired number of ICs, go back to step 2.

7.4.3 Symmetric orthogonalization

In certain applications, it may be desirable to use a symmetric decorrelation, in which no vectors are “privileged” over others.
This means that the vectors w; are not estimated one by one; instead, they are estimated in parallel. One motivation for this is
that the deflationary method has the drawback that estimation errors in the first vectors are cumulated in the subsequent ones
by the orthogonalization. Another one is that the symmetric orthogonalization methods enable parallel computation of ICs.

Symmetric orthogonalization is done by first doing the iterative step of the one-unit algorithm on every vector w; in parallel,
and afterwards orthogonalizing all the w; by special symmetric methods. In other words:

Choose the number of independent components to estimate, say m.
Initialize the w;, i = 1,...,m (e.g., randomly).
Do an iteration of a one-unit algorithm on every w; in parallel.

Do a symmetric orthogonalization of the matrix W = (w1, ..., W)’ .

Al S

If not converged, go back to step 3.

The symmetric orthogonalization of W can be accomplished, e.g., by the classic method involving matrix square roots,
W (WWT)~1/2w (7.19)
The inverse square root (WW7T)~1/2 is obtained from the eigenvalue decomposition of WW7 = E diag(dy, ..., dm) ET as

(WW7)~Y2 = Ediag(d; '/?, ..., d;,"*) ET (7.20)



58 CHAPTER 7. ICA BY MAXIMIZATION OF NON-GAUSSIANITY

Figure 7.11: An illustration of projection pursuit and the “interesting” directions. The data in this figure is clearly
divided into two clusters. The goal in projection pursuit is to find the projection (here, on the horizontal axis) that
reveals the clustering or other structure of the data.

7.5 ICA and projection pursuit

It is interesting to note how the approach to ICA described in this Chapter makes explicit the connection between ICA and
another technique: projection pursuit.

7.5.1 Searching for interesting directions

Projection pursuit is a technique developed in statistics for finding “interesting” projections of multidimensional data. Such
projections can then be used for optimal visualization of the data, and for such purposes as density estimation and regression.

When projection pursuit is used for exploratory data analysis, we usually compute a couple of the most interesting 1-D
projections. (The definition of interestingness will be treated in the next section.) Some structure of the data can then be
visualized by showing the distribution of the data in the 1-D subspaces, or on 2-D planes spanned by two of the projection pursuit
directions. This method is en extension of the classic method of using principal component analysis (PCA) for visualization, in
which the distribution of the data is shown on the plane spanned by the two first principal components.

An example of the problem can be seen in Fig. 7.11. In reality, projection pursuit is of course used in situations where the
number of dimensions is very large, but for purposes of illustration, we use here a trivial 2-D example. In the figure, the
interesting projection of the data would be on the horizontal axis. This is because that projection shows the clustering structure
of the data. In contrast, projections in very different directions (here, projection on the vertical axis) would show only an
ordinary gaussian distribution. It would thus be useful to have a method that automatically finds the horizontal projection in
this example.

7.5.2 Nongaussian is interesting

The basic question in projection pursuit is thus to define what kind of projections are interesting.

It is usually argued that the gaussian distribution is the least interesting one, and that the most interesting directions are those
that show the least gaussian distribution. One motivation for this is that distributions that are multimodal, i.e., show some
clustering structure, are far from gaussian.

The usefulness of using the most nongaussian projections for visualization can be seen in Fig. 7.11. Here the most nongaussian
projection is on the horizontal axis; this is also the projection that most clearly shows the clustered structure of the data. On
the other hand, the projection on the vertical direction, which is also the direction of the first principal component, fails to
show this structure. This also shows that PCA does not use the clustering structure. In fact, clustering structure is not visible
in the covariance or correlation matrix on which PCA is based.

Thus projection pursuit is usually performed by finding the most nongaussian projections of the data. This is the same thing
that we did in this chapter to estimate the ICA model. This means that all the nongaussianity measures and the corresponding
ICA algorithms presented in this chapter could also be called projection pursuit “indices” and algorithms.

It should be noted that in the formulation of projection pursuit, no data model or assumption about independent components
is made. If the ICA model holds, optimizing the ICA nongaussianity measures produce independent components; if the model
does not hold, then what we get are the projection pursuit directions.



Chapter 8

ICA by maximum likelihood estimation

A very popular approach for estimating the independent component analysis (ICA) model is maximum likelihood (ML) estima-
tion. One interpretation of ML estimation is that we take those parameter values as estimates that give the highest probability
for the observations. Here, we show how to apply ML estimation to ICA estimation.

8.1 The likelihood of the ICA model

8.1.1 Deriving the likelihood

It is not difficult to derive the likelihood in the ICA model. This is based on using the well-known result on the density of a
linear transform, which says that the density p, of the mixture vector

x = As (8.1)

can be formulated as
pa(x) = | det Blps(s) (8.2)

where B = A~!. This is in fact true for a linear transform of any vector and has nothing to do with ICA. Now, when we use
the definition of ICA, we have further

pu(x) = | det B [ [ pi(s) (8.3)

where the p; denote the densities of the independent components. This can be expressed as a function of B = (by, ..., b,)” and
X, giving
pa(x) = | det B [ ps(bTx) (8.4)

Assume that we have T observations of x, denoted by x(1),x(2),...,x(7"). Then the likelihood can be obtained as the product
of this density evaluated at the 7" points. This is denoted by L and considered as a function of B:

£(8) = [T [ »:(b!x(t))| det B (8.5)

Very often it is more practical to use the logarithm of the likelihood, since it is algebraically simpler. This does not make
any difference here since the maximum of the logarithm is obtained at the same point as the maximum of the likelihood. The
log-likelihood is given by

log L(B) = > "logpi(b] x(t)) + T'log | det B (8.6)

t=1 i=1
The basis of the logarithm makes no difference, though in the following the natural logarithm is used.

To simplify notation, we can denote the sum over the sample index ¢ by an expectation operator, and divide the likelihood by
T to obtain

1 n
7 log L(B) = E{> logpi(b{x)} + log | det B (8.7)
i=1
The expectation here is not the theoretical expectation, but an average computed from the observed sample. Of course, in the
algorithms the expectations are eventually replaced by sample averages, so the distinction is purely theoretical.

99



60 CHAPTER 8. ICA BY MAXIMUM LIKELIHOOD ESTIMATION

Figure 8.1: Tllustration of the (negative of) log cosh function (dashed line) and its comparison with the absolute value
function (solid line).

8.1.2 Estimation of the densities
Problem of semiparametric estimation

Above, we expressed the likelihood as a function of the parameters of the model, which are the elements of the mixing matrix.
For simplicity, we used the elements of the inverse B of the mixing matrix. This is allowed since the mixing matrix can be
directly computed from its inverse.

There is another thing to estimate in the ICA model, though. This is the densities of the independent components. Actually,
the likelihood is a function of these densities as well. This makes the problem much more complicated, because the estimation
of densities is, in general, a nonparametric problem. Nonparametric means that it cannot be reduced to the estimation of a
finite parameter set. In fact the number of parameters to be estimated is infinite, or in practice, very large. Thus the estimation
of the ICA model has also a nonparametric part, which is why the estimation is sometimes called “semiparametric”.

Nonparametric estimation of densities is known to be a difficult problem. Many parameters are always more difficult to estimate
than just a few; since nonparametric problems have an infinite number of parameters, they are the most difficult to estimate.
This is why we would like to avoid the nonparametric density estimation in the ICA. There are two ways to avoid it.

First, in some cases we might know the densities of the independent components in advance, using some prior knowledge on the
data at hand. In this case, we could simply use these prior densities in the likelihood. Then the likelihood would really be a
function of B only. If reasonably small errors in the specification of these prior densities have little influence on the estimator,
this procedure will give reasonable results. In fact, it will be shown below that this is the case.

For example, if we know that the independent component are supergaussian, we could use the Laplacian density, in which case
log pi(s) = —V2|s| — %logZ (8.8)

However, optimization methods may not not work well with such a peaked density, so in practice, it is often preferred to use
log pi(s) = — log cosh(s) (8.9)

This exotic function is actually just a smoother version of the absolute value function. It should be properly normalized so that
the integral of p; is equal to one, and the variance equals one as well, but such normalization has little importance in practice.
The function is illustrated in Fig. 8.1.

A second way to solve the problem of density estimation is to approximate the densities of the independent components by a
family of densities that are specified by a limited number of parameters. If the number of parameters in the density family
needs to be very large, we do not gain much from this approach, since the goal was to reduce the number of parameters to be
estimated. However, if it is possible to use a very simple family of densities to estimate the ICA model for any densities p;, we
will get a simple solution. Fortunately, this turns out to be the case. We can use an extremely simple parameterization of the
pi, consisting of the choice between two densities, i.e., a single binary parameter.

A simple density family

It turns out that in maximum likelihood estimation, it is enough to use just two approximations of the density of an independent
component. For each independent component, we just need to determine which one of the two approximations is better. This
shows that, first, we can make small errors when we fix the densities of the independent components, since it is enough that we
use a density that is in the same half of the space of probability densities. Second, it shows that we can estimate the independent
components using very simple models of their densities, in particular, using models consisting of only two densities.



8.1. THE LIKELIHOOD OF THE ICA MODEL 61

The validity of these approaches is shown in the following theorem.

Theorem 1 Denote by p; the assumed densities of the independent components, and

) B 5 (s
9i(si) = 5~ logpi(si) = 5 (8.10)

Constrain the estimates of the independent components y; = bT x to be uncorrelated and to have unit variance. Assume that the
data follows the ICA model. Then, local mazima of the likelihood of B are obtained at the points where ty; equal the independent
components when sample size T goes to infinity, if the assumed densities p; fulfill

BE{sigi(s:) — gi(s:)} > 0 (8.11)

for all i, where the expectations are taken with respect to the real densities p;.*.

This theorem shows rigorously that small misspecifications in the densities p; do not affect the local consistency of the ML
estimator, since sufficiently small changes do not change the sign in (8.11).

Moreover, the theorem shows how to construct families consisting of only two densities, so that the condition in (8.11) is true
for one of these densities. In principle, if you consider taking —¢g instead of some original g in the theorem, you see that the sign
changes. Thus, we could in principle just use g and —g depending on the distribution to always get a positive sign. However,
this is not directly possible because we have to make sure that g corresponds to the derivative of some log-pdf, so it cannot be
any function. In the following, we consider thus an approach which is slightly modified.

For example, consider the following log-densities:

log pi (s) = a1 — 2log cosh(s) (8.12)
log p; (s) = az — [s°/2 — log cosh(s)] (8.13)

where a1, s are positive parameters that are fixed so as to make these two functions logarithms of probability densities.
Actually, these constants can be ignored in the following. The factor 2 in (8.12) is not important, but it is usually used here;
also, the factor 1/2 in (8.13) could be changed.

The motivation for these functions is that ﬁf is a supergaussian density, because the log cosh function is close to the absolute
value that would give the Laplacian density. The density given by p; is subgaussian, because it is like a gaussian log-density,
—5%/2 plus a constant, that has been somewhat “flattened” by the log cosh function.

Simple computations show that the value of the nonpolynomial moment in (8.11) is for ﬁf
2F{— tanh(s;)s; + (1 — tanh(s;)?)} (8.14)

and for p, it is
E{tanh(s;)s; — (1 — tanh(s;)°)} (8.15)

since the derivative of log cosh equals the tanh function, and the derivative of tanh(s) equals 1 — tanh(s)?, and E{s?} = 1 by
definition. We see that the signs of these expressions are always opposite. Thus, for practically any distributions of the s;, one of
these functions fulfills the condition, i.e., has the desired sign, and estimation is possible. Of course, for some distribution of the
s; the nonpolynomial moment in the condition could be zero, which corresponds to the case of zero kurtosis in cumulant-based
estimation; such cases can be considered to be very rare.

Thus we can just compute the nonpolynomial moments for the two prior distributions in (8.12) and (8.13), and choose the
one that fulfills the stability condition in (8.11). This can be done on-line during the maximization of the likelihood. This
always provides an objective which has the maxima at the independent components, and solves the problem of semiparametric
estimation.

In fact, the nonpolynomial moment in question measures the shape of the density function in much the same way as kurtosis.
For g(s) = —s*, we would actually obtain kurtosis. Thus, the choice of nonlinearity could be compared with the choice whether
to minimize or maximize kurtosis, as encountered earlier. That choice was based on the value of the sign of kurtosis; here we
use the sign of a nonpolynomial moment.

Indeed, the nonpolynomial moment of this chapter is the same as the one encountered in the preceding one when using more
general measures of nongaussianity. However, it must be noted that the set of nonlinearities that we can use here is more
restricted than those used earlier. This is because the nonlinearities ¢g; used must correspond to the derivative of the logarithm
of a probability density function (pdf). For example, we cannot use the function g(s) = s because the corresponding pdf would
be of the form exp(s*/4), and this is not integrable, i.e., it is not a pdf at all.

IThus, in the terminology of estimation theory, the estimator is consistent.



62 CHAPTER 8. ICA BY MAXIMUM LIKELIHOOD ESTIMATION

8.2 Algorithms for maximum likelihood estimation

To perform maximum likelihood estimation in practice, we need an algorithm to perform the numerical maximization of
likelihood. In this section, we discuss different methods to this end. We show how to derive simple gradient algorithms, of
which especially the natural gradient algorithm has been widely used. A version of FastICA is also possible.

8.2.1 Gradient algorithm

The simplest algorithms for maximizing likelihood are obtained by gradient methods. One can easily derive the gradient of the
log-likelihood in (8.7) as:
1 0log L Ti—1 T
— =B E{g(B 1
S EL _ [BT) 7+ B{g(Bx)x"} (5.16)
Here, g(y) = (9i(¥s), ---s gn(yn)) is a component-wise vector function that consists of the so-called (negative) score functions g;
of the distributions of s;, defined as

gi = (logpi)’ = 2. (8.17)

3

This immediately gives the following gradient algorithm for ML estimation:
B« B+u ([BT]’I + E{g(Bx)xT}) (8.18)

for some step size parameter . A stochastic version of this algorithm could be used as well. This means that the expectation
is omitted, and in each step of the algorithm, only one data point is used:

B+ B+ ([BT]’l + g(Bx)xT) (8.19)

This algorithm is often called the Bell-Sejnowski algorithm.

The algorithm in Eq. (8.18) converges very slowly, however, especially due to the inversion of the matrix B that is needed in
every step. Note that here the data does not have to be whitened, so B cannot be constrained to be orthogonal, and the inverse
of B is not trivial to compute. In fact, the convergence can be improved by whitening the data, and especially by using the
natural gradient.

8.2.2 The natural gradient algorithm

The natural (or relative) gradient method simplifies the maximization of the likelihood considerably, and makes it better
conditioned. The principle of the natural gradient is based on the geometrical structure of the parameter space, and is related
to the principle of relative gradient, which uses the Lie group structure of the ICA problem. In the case of basic ICA, both of
these principles amount to multiplying the right-hand side of (8.18) by BT B. Thus, defining y = Bx, we obtain

B« B+ I+ E{g(y)y’' })B (8.20)

This algorithm is also called the infomax algorithm.?

Interestingly, this algorithm can be interpreted as monlinear decorrelation. The idea is that the algorithm converges when
E{g(y)y"} = I, which means that the y; and g;(y;) are uncorrelated for i # j. This is a nonlinear extension of the ordinary
requirement of uncorrelatedness.

In practice, one can use, for example, the two densities described in Section 8.1.2. For supergaussian independent components,
the pdf defined by (8.12) is usually used. This means that the component-wise nonlinearity g is the tanh function:

9" (y) = —2tanh(y) (8.21)

For subgaussian independent components, other functions must be used. For example, one could use the pdf in (8.13), which
leads to

g~ (y) = tanh(y) —y (8.22)

(Another possibility is to use g(y) = —y* for subgaussian components.) These nonlinearities are illustrated in Fig. 8.2.

The choice between the two nonlinearities in (8.21) and (8.22) can be made by computing the nonpolynomial moment:

E{—tanh(s;)s; + (1 — tanh(s;)*)} (8.23)

2Here, “infomax” actually refers to an alternative derivation of the objective function, and not to any particular algorithm, so the
terminology is not very logical.



8.2. ALGORITHMS FOR MAXIMUM LIKELIHOOD ESTIMATION 63

Figure 8.2: The functions g7 in Eq. (8.21) and g~ in Eq. (8.22), given by the solid line and the dashed line, respectively.

1. Center the data to make its mean zero

2. Choose an initial (e.g., random) separating matrix B. Choose initial values of ~;,7 = 1, ..., n, either randomly or
using prior information. Choose the learning rates p and p..

3. Compute y = Bx. Compute y; normalized to unit variane, denote them by g;.

4. If the nonlinearities are not fixed a priori:
(a) update v; = (1 — gy )% + pto B{—tanh(g;)y; + (1 — tanh(g;)?)}.
(b) if 4; > 0, define g; as in (8.21), otherwise define it as in (8.22).

5. Update the separating matrix by
B« B+pull+g(y)y'|B (8.24)

where g(y) = (g1(¥1), s gn(yn))T.

6. If not converged, go back to step 3.

Table 8.1: The on-line stochastic natural gradient algorithm for maximum likelihood estimation. Preliminary whitening
is not shown here, but in practice it is highly recommended. Note that the components may not be properly normalized
to unit variance after the convergence of the algorithm, and such normalization should be done afterwards if needed.

using some estimates of the independent components. If this nonpolynomial moment is positive, the nonlinearity in (8.21)
should be used, otherwise the nonlinearity in (8.22) should be used. This is because of the condition in Theorem 1.

The choice of nonlinearity can be made while running the gradient algorithm, using the running estimates of the independent
components to estimate the nature of the independent components (that is, the sign of the nonpolynomial moment). Note
that the use of the polynomial moment requires that the estimates of the independent components are first scaled properly,
constraining them to unit variance, as in the theorem.

The resulting algorithm is recapitulated in Table 8.1. In this version, whitening and the above-mentioned normalization in the
estimation of the nonpolynomial moments are omitted; in practice, these may be very useful.

8.2.3 FastICA

Likelihood can be maximized by a fixed-point algorithm (FastICA) as well. The derivation of the algorithm is rather complicated,
so we will not go into details. It has the nice feature that it contains the adaptation of the sign considered in Section 8.1.2, so
it can estimate both sub- and supergaussian components. The simplest way of describing the algorithm is by modifying the
iteration in (7.17) so that it takes the form

w  E{zg(w'2)} — BE{¢'(w"z)}w (8.25)

where g is the nonlinear function in the ML estimation framework. If all the components are estimated using the symmetric
orthogonalization approach, this algorithm can be shown to approximately maximize likelihood.



64 CHAPTER 8. ICA BY MAXIMUM LIKELIHOOD ESTIMATION

8.3 Examples

Here we show the results of applying maximum likelihood estimation to the two mixtures introduced in the preceding Chapter.
Here, we use whitened data. This is not strictly necessary, but the algorithms converge much better with whitened data. The
algorithms were always initialized so that B was the identity matrix.

First, we used the natural gradient ML algorithm in Table 8.1. In the first example, we used the data consisting of two
mixtures of two subgaussian (uniformly distributed) independent components, and took the nonlinearity to be the one in (8.21),
corresponding to the density in (8.12). The algorithm did not converge properly, as shown in Fig. 8.3. This is because the
nonlinearity was not correctly chosen. Indeed, computing the nonpolynomial moment (8.23), we saw that it was negative, which
means that the nonlinearity in (8.22) should have been used. Using the correct nonlinearity, we obtained correct convergence,
as in Fig. 8.4. In both cases, several hundred iterations were performed.

Next we did the corresponding estimation for two mixtures of two supergaussian independent components. This time, the
nonlinearity in (8.21) was the correct one, and gave the estimates in Fig. 8.5. This could be checked by computing the
nonpolynomial moment in (8.23): It was positive. In contrast, using the nonlinearity in (8.22) gave completely wrong estimates,
as seen in Fig. 8.6.

In contrast to the gradient algorithm, FastICA effortlessly finds the independent components in both cases. In Fig. 8.7, the
results are shown for the subgaussian data, and in Fig. 8.8, the results are shown for the supergaussian data. In both cases the
algorithm converged correctly, in a couple of iterations.

8.4 Likelihood vs. kurtosis

Since now we have two objectives of estimating ICA (likelihood and kurtosis), it is interesting to compare the advantages of the
two approaches.

On a conceptual level, maximization of non-Gaussianity using kurtosis is simple, and gives an intuitive understanding of the
process. The resulting algorithms are easy to derive as well. However, from the viewpoint of the statistical properties of the
resulting estimators, likelihood tends to be much better.

First, likelihood has smaller asymptotic variance for typical densities of the independent components. Asymptotic variance is
an approximation of the estimation error which is due to the finite sample size. Thus, the estimation errors are likely to be
smaller for likelihood.

Another problem is that kurtosis can be very sensitive to outliers, i.e. observations with very large values, which are likely to
be measurement errors. Assume, for example, that a sample of 1000 values of a random variable (with zero mean and unit
variance, say) contains one value equal to 10. Then the kurtosis equals at least 10*/1000 — 3 = 7, which means that the
single value makes kurtosis large. Thus we see that the value of kurtosis may depend on only a few observations in the tails
of the distribution, which may be erroneous or irrelevant observations. In other words, kurtosis is not a robust measure of
nongaussianity. Likelihood is usually much more robust because it does not typically use fast-growing nonlinear functions such
as the fourth power in kurtosis (although this depends on the model you use for non-Gaussian densities).

It is important to notice that actually likelihood can be interpreted as a measure of non-Gaussianity as well. For lack of time,
this important connection is not treated in detail on this course; see next Chapter for supplementary material. So, the question
is not whether non-Gaussianity or likelihood is a better estimation principle for ICA, but rather what kind of a non-Gaussianity
measure is good. The discussion above points out that the non-Gaussianity measure given by likelihood is statistically better
than the one given by kurtosis.

Note that the choice of the the optimization algorithm (gradient vs. fixed-point) is independent of the choice of the objective
function.



8.4. LIKELIHOOD VS. KURTOSIS 65

Figure 8.3: Problems of convergence with the (natural) gradient method for maximum likelihood estimation. The
data was two whitened mixtures of subgaussian independent components. The nonlinearity was the one in (8.21),
which was not correct in this case. The resulting estimates of the columns of the whitened mixing matrix are shown
in the figure: they are not aligned with the edges of the square, as they should be.

Figure 8.4: The same as in Fig. 8.3, but with the correct nonlinearity, given by (8.22). This time, the natural gradient
algorithm gave the right result. The estimated vectors are aligned with the edges of the square.

Figure 8.5: In this experiment, data was two whitened mixtures of supergaussian independent components. The
nonlinearity was the one in (8.21). The natural gradient algorithm converged correctly.



66 CHAPTER 8. ICA BY MAXIMUM LIKELIHOOD ESTIMATION

Figure 8.6: Again, problem of convergence with the natural gradient method for maximum likelihood estimation. The
nonlinearity was the one in (8.22), which was not correct in this case.

Figure 8.7: FastICA automatically estimates the nature of the independent components, and converges fast to the
maximum likelihood solution. Here, the solution was found in 2 iterations for subgaussian independent components.

Figure 8.8: FastICA this time applied on supergaussian mixtures. Again, the solution was found in 2 iterations.



Chapter 9

ICA and unifying information-theoretic
approach

An important approach for independent component analysis (ICA) estimation is based on information theory. One of the main
utilities of this framework is that it serves as a unifying framework for many estimation principles, in particular maximum
likelihood (ML) estimation and maximization of nongaussianity. In particular, this approach gives a rigorous justification for
the heuristic principle of nongaussianity.

9.1 Definition of entropy

Entropy is the basic concept of information theory. The entropy of a random variable is related to the information that the
observation of the variable gives. The more “random”, i.e., unpredictable and unstructured the variable is, the larger its entropy.
In fact, entropy is closely related to coding length: any regularity, i.e. lack of randomness can be used to reduce coding length.
This is the central idea in information theory, but we will not go in depth to that theory, and we will just use entropy as an
interesting measure of “structure”, loosely defined, in a probability distribution.

For continuous-valued random variables, the entropy is sometimes called differential entropy. The differential entropy H of a
random vector y with density py(n) is defined as

1#(y) =~ [ () logp, (m)n (0.1

A fundamental result of information theory is that a gaussian variable has the largest entropy among all random variables of
equal variance. This means that entropy could be used as a measure of nongaussianity. In fact, this shows that the gaussian
distribution is the “most random” or the least structured of all distributions.

It is not difficult to see what kind of random variables have small differential entropies. They are the ones whose probability
densities take large values, since these give strong negative contributions to the integral in Eq. (9.1). This means that certain
small intervals are quite probable. Entropy is thus small for distributions that are clearly concentrated on certain values, i.e.,
when the variable is clearly clustered, or has a pdf that is very “spiky”. We see that entropy is small when the variable is not
very random, that is, it is typically contained in some limited intervals with high probabilities.

9.2 Entropy as a robust non-Gaussianity measure

In Chapter 7, we showed how to measure nongaussianity by kurtosis, thus obtaining a simple ICA estimation method. However,
kurtosis is not robust against outliers. Thus, other measures of nongaussianity might be better than kurtosis in practice.

Here we shall consider a variant of entropy called negentropy, which is the second important measure of nongaussianity. Its
properties are in many ways opposite to those of kurtosis: It is robust but computationally complicated.

To obtain a measure of nongaussianity that is zero for a gaussian variable and always nonnegative, one often uses a normalized
version of differential entropy, called negentropy. Negentropy J is defined as follows

J(y) = H(ygauss) - H(y) (92)

67



68 CHAPTER 9. ICA AND UNIFYING INFORMATION-THEORETIC APPROACH

where ygauss 1S @ gaussian random variable of the same correlation (and covariance) matrix as y. Due to the above-mentioned
maximality property of the gaussian distribution, negentropy is always nonnegative, and it is zero if and only if y has a gaussian
distribution. Thus, it is a well-defined measure of non-Gaussianity.

The advantages of using negentropy, or equivalently, differential entropy, as a measure of nongaussianity is that it is usually
much more robust against outliers than kurtosis, and it is well justified by statistical theory. In fact, using negentropy is closely
related to likelihood, as we will show next.

9.3 Entropy and likelihood

To see the connection between likelihood and (neg)entropy, consider the expectation of the log-likelihood in (8.6):

%E{log L(B)} = E{logpi(b; x)} + log| det B| (9.3)

=1

If the p; were equal to the actual pdf’s of bYx, the first term would be equal to — > H(biTx). In practice, the connection may
be just as strong. This is because in practice we do not know the distributions of the independent components that are needed
in ML estimation. A reasonable approach would be to estimate the density of b! x as part of the ML estimation method, and
use this as an approximation of the density of s;. Then, the p; in this approximation of likelihood are indeed approximately
equal to the actual pdf’s of bIx.

To develop the connection further, let us further constrain the y; to be uncorrelated and of unit variance, as we did in the
non-gaussianity-based ICA methods. This means E{yy”} = BE{xx”}BT = I, which implies

detT = 1= det(BE{xx" }B") = (det B)(det E{xx"})(det B") (9.4)

and this implies that det B must be constant since det E{xxT} does not depend on B. Moreover, for y; of unit variance, entropy
and negentropy differ only by a constant and the sign, as can be seen in (9.2). Thus we obtain,

%E{log L(B)} = const. — > J(u:) 9.5)

where the constant term does not depend on B. This shows the fundamental relation between negentropy and likelihood.

We see in (9.5) that finding an invertible linear transformation B that maximizes likelihood is roughly equivalent to finding
directions in which the negentropy is maximized. We have seen previously that negentropy is a measure of nongaussianity.
Thus, (9.5) shows that ICA estimation by mazimization of likelihood is equivalent to mazximizing the sum of nongaussianities of
the estimates of the independent components, when the estimates are constrained to be uncorrelated.

Thus, we see that maximum likelihood estimation gives another rigorous justification of our more heuristically introduced idea
of finding maximally nongaussian directions.

In practice, however, there are also some differences between these two criteria.

1. Negentropy, and other measures of nongaussianity, enable the deflationary, i.e., one-by-one, estimation of the independent
components, since we can look for the maxima of nongaussianity of a single projection b”x. This is not possible with
likelihood.

2. A smaller difference is that in using nongaussianity, we force the estimates of the independent components to be uncor-
related. This is not necessary when using likelihood. Thus the optimization space is slightly reduced. This may slightly
deteriorate the quality of the estimator, but in most cases, this deterioration is not significant.

9.4 Mutual information as measure of dependence

9.4.1 Definition

Another motivation for the information-theoretic approach is that it may not be very realistic in many cases to assume that the
data follows the ICA model. Therefore, we would like to develop an approach that does not assume anything about the data.
What we want to have is a general-purpose measure of the dependence of the components of a random vector. Using such a
measure, we could define ICA as a linear decomposition that minimizes that dependence measure. Such an approach can be
developed using mutual information, which is a well-motivated information-theoretic measure of statistical dependence.

Mutual information I between m (scalar) random variables, y;,7 = 1...m is defined as follows

m

I(y17y27'“7yWL) :ZH(yl)_H(y) (96)

i=1



9.4. MUTUAL INFORMATION AS MEASURE OF DEPENDENCE 69

Mutual information is a natural measure of the dependence between random variables. It is always nonnegative, and zero if
and only if the variables are statistically independent.

An intuitive interpretation is that just looking at the H (y;) means considering the structure in the marginal distributions alone,
and neglecting any structure in the dependencies (e.g. correlations) of the variables. In fact, if you assume that the y; are
independent, it is rather easy to show that the H(y) equals the sum of H(y;). The idea is that any correlations can only reduce
H(y), and therefore it cannot be larger than the sum of H(y;).!

Mutual information takes into account the whole dependence structure of the variables, and not just the covariance like whitening
and related methods. Therefore, we can use mutual information as the criterion for finding the ICA representation. This
approach is an alternative to the model estimation approach. We define the ICA of a random vector x as an invertible
transformation:

s =Bx (9.7)

where the matrix B is determined so that the mutual information of the transformed components s; is minimized. If the data
follows the ICA model, this allows estimation of the data model. On the other hand, in this definition, we do not need to assume
that the data follows the model. In any case, minimization of mutual information can be interpreted as giving the maximally
independent components.

9.4.2 Transformation formula for entropy

Consider an invertible transformation of the random vector x, say
y = f(x) (9.8)

In this section, we show the connection between the entropy of y and that of x.

A short, if somewhat sloppy derivation is as follows. Denote by Jf(£) the Jacobian matrix of the function f, i.e., the matrix of
the partial derivatives of f at point £&. The classic relation between the density p, of y and the density p, of x, can then be
formulated as

py(n) = pe(£7" (m))| det JE(E (n))| 7" (9.9)
Now, expressing the entropy as an expectation

H(y) = —E{logpy(y)} (9.10)

we get

E{logpy(y)} = E{log[p. (£ ™" (y))| det JE(E ™' (y))| ']}
= E{log[ps(x)| det Jf(x)|71]} = E{logp.(x)} — E{log |det Jf(x)|} (9.11)

Thus we obtain the relation between the entropies as
H(y) = H(x)+ E{log|det Jf(x)|} (9.12)

In other words, the entropy is increased in the transformation by E{log |det Jf(x)|}.
An important special case is the linear transformation
y =Mx (9.13)

in which case we obtain
H(y) = H(x) + log | det M| (9.14)

This also shows that differential entropy is not scale-invariant. Consider a random variable x. If we multiply it by a scalar
constant, «, differential entropy changes as

H(az) = H(x) + log|«| (9.15)

Thus, just by changing the scale, we can change the differential entropy. This is why the scale of x often is fixed before measuring
its differential entropy.

IThis can be understood from the coding length interpretation of entropy: H(y;) is the coding length of coding the variable y; separately,
where as H(y) is the length of coding the whole vector. Using the whole vector is always better for coding because then the whole structure
of the data is taken into account, and therefore the H(y) is not larger than the sum of the H(y;). If the variables are independent, then
no improvement in coding can be obtained by coding them together, and therefore H(y) is equal to 37", H(y;) , and mutual information
is zero.



70 CHAPTER 9. ICA AND UNIFYING INFORMATION-THEORETIC APPROACH

9.4.3 Mutual information and likelihood

Using the formula for the differential entropy of a transformation we obtain a corresponding result for mutual information. We
have for an invertible linear transformation y = Bx:

I(y1,y2, - yn) = »_ H(b] x) — H(x) — log | det B| (9.16)
i=1

Note that H(x) does not depend on B.

Mutual information and likelihood are intimately connected. To approximate mutual information, we could take a fixed
approximation of the densities y;, and plug this in the definition of entropy. Denote the pdf’s by G;(y;) = logp;:(y:). Then we
could approximate (9.16) as

I(y1,y2, .oy Yn) = — Z E{Gi(yi)} —log|det B| — H(x) (9.17)
i
Now we see that this approximation is equal to the approximation of the likelihood used earlier (except, again, for the global
sign and the additive constant given by H (x)).

Thus, using mutual information does not really lead to new methods but simply shows that using likelihood is approximately
equivalent to minimizing mutual information, which is arguably the most principled measure of dependence of components.



Chapter 10

Applications of component analyses

10.1 Denoising and compression by PCA and FA

These will be treated in computer assignments.

10.2 Blind separation of brain sources in MEG data

The classic application of ICA is in blind source separation. The idea is that each of the independent components corresponds
to a “signal” (i.e. random variable) emitted by an independent source. If such sources are physically independent, i.e. they
“work” independently of each other, the signals emitted are likely to be statistically independent as well.

This is often called “blind source separation”, where “blind” refers to the idea that we don’t know much about the signals. In
fact, in ICA we only assume that they are independent and non-Gaussian, which means we don’t really assume anything on the
actual form of the signals (as opposed to, for example, the assumption that a signal has activity only at the frequency of 10Hz,
which is typical with the data we analyze in this section).

As an example, consider a set of measurement of brain activity by magnetoencephalography (MEG).! It has 122 observed
variables, and 17,730 observations (time points) of each of them. The variables correspond to the measurements of different
sensors of the scalp, and the values of the variables are related to brain activity, or some artifacts produced by muscles, technical
devices or other sources which are not in the brain.

Fig. 10.1 shows a random collection of 10 of such measured variables. What we can see is that there seem to be some underlying
signals which are really mixed in these measurements.

Fig. 10.2 shows the first 10 principal components of the data. The principal components look similar to the original variables.
They don’t seem to “separate” any interesting sources. This is understandable since PCA is essentially a method for factor
analysis for gaussian data, and therefore, the factor rotation remains undetermined.

Fig. 10.3 shows the independent components obtained by applying ICA on the 10 principal components. The components have
been ordered based on their kurtoses, the largest first. We can see clearly that some of the components do separate some signals
which were mixed in many observed signals.

The kurtoses of the components are shown in Fig. 10.4. We can see that they are mainly positive, which is typically the case
in real-world signals. The histograms of the ten first independent components are shown in Fig. 10.5. The histograms show
that in addition to supergaussianity, many of the distributions are asymmetric (also called “skewed”), which is another form of
non-Gaussianity in addition to the sub- and supergaussianity characteristic.

Fig. 10.6 shows some of the independent components obtained by applying ICA on the 30 principal components, which is more
than in above. The components have been ordered based on their kurtoses, the largest first. First, we see that the number of
principal components chosen does have a large effect on ICA. It seems also that there are more components which are clearly
separated, which indicates that 10 may have been too small a dimension to use.

Lavailable as a matlab file at
http://www.cis.hut.fi/projects/ica/eegmeg/MEG_art.gz

71



72 CHAPTER 10. APPLICATIONS OF COMPONENT ANALYSES

Some measured signals (randomly picked)

1000 . T — T T— T — 1 T
_1008| il e ) | e T | 1 <|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5081“"‘“ A A P PR vy A ““WMM‘I
L haniifid o e T T e e, - 1
-500
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

. MWWWWMWWMWWWWW4

2000 4000 6000 8000 10000 12000 14000 16000 18000

1000
0 T T T T 1 e " M R W"“I
~1000 ! 1 1 I 1 ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
2000 T T T T T — — T T
0 * AP <|
~2000 | 1 ! ! ! 1 1 !
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1000 T T T T T T T T
0 — porasha WMW—«I
~1000 ! I ! ! ! | ! !
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

_500 F’WWWWMWWWWWW{

2000 4000 6000 8000 10000 12000 14000 16000 18000

2000 T T T T T
_2008 0 i A i A N YW‘I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
500 T T T T T — T T
_508 I \ | hianiRain e WW<|

2000 4000 6000 8000 10000 12000 14000 16000 18000

_500 Wwwmmmmmmwww{

2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 10.1: Some of the original MEG signals.

Principal components

5000 T T T . T T T T
N " TSR NPT R
_5008 | W | | | | | | ‘I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5000 T T T T T T T T
v e L SR SIS e
_5008 1 | | | | | | | ‘I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5000 T T T T T T T T
o/ Porey F e TN
_5008 M‘ T’Mﬁ | | | | | | ‘I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5000 T T T T T | T T T
_5008 | | ! ! | | ) | L <|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5000 T T T T T T T T
4
_5008 |=~¥ | ! | | ! | ! ! <|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
2000
l T — T —— T\ T T T
_2000 O e | 1 | | ! ! | <|
2000 4000 6000 8000 10000 12000 14000 16000 18000
2000 T T T T T T T
Lk i o | Mlarvir s Y
0 fromsmmsiaioe e i
_2000 | il ! ! f ! !
2000 4000 6000 8000 10000 12000 14000 16000 18000
2000 7 T T T T T T T
_2008 | | | ) 1 | bt | —ﬁl
20000 2000 4000 6000 8000 10000 12000 14000 16000 18000
N T w wr\' T N \ML‘ T M T N “\ N N o T
_2008 i | il - L i | i ek <|

2000 4000 6000 8000 10000 12000 14000 16000 18000
1000 : ” <|
—1000

2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 10.2: The 10 first principal components of the MEG signals.



10.2. BLIND SEPARATION OF BRAIN SOURCES IN MEG DATA

Estimated independent components

28[* T T T T T T T T q
_20| | | ! | | | |
100 2000 4000 6000 8000 10000 12000 14000 16000 18000
T T T T T T T T
_18 ! | | 1 | M v | M q
50 2000 4000 6000 8000 10000 12000 14000 16000 18000
C T T —— T T— T T
_g C | W | | L | | W :|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10 - T T N — T — - T T
_18 M | | | Pl | | | q
50 2000 4000 6000 8000 10000 12000 14000 16000 18000
T ——— T T T T T
FN"" WY bl h s WP TN, LWEE PrTmwa WOy N g iy s A hond o b
_g | f | bl i P | hild 1 1 :|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
101 T — T T —— ™ T —
_lgl'" DM MR A ) N A L :|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10 T T T T T T T T
ok " o " - q
-10 C | | | | T | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

SWWWWWWWW}

2000 4000 6000 8000 10000 12000 14000 16000 18000

0
5
5
gWWmWMwwwmq
5
0
5

2000 4000 6000 8000 10000 12000 14000 16000 18000

e e s aas i

2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 10.3: The independent components computed from 10 principal components.

All kurtoses of components

14 T T T

Figure 10.4: The kurtoses of the independent components computed from 10 principal components.

73



74

CHAPTER 10. APPLICATIONS OF COMPONENT ANALYSES

2t & 53 38 8

Figure 10.5: The histogram of the independent components computed from 10 principal components.

Most kurtotic estimated independent components
20 T T T T T T T T

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

lOE T T T T T T T T
_18 | | | | T‘ | | | :|

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10E T T T T T T T T
0p R e i '“’“”"’q
_10 | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
201 T T T T i T T T
_28[ | | | | " | | | q
l00 2000 4000 6000 8000 10000 12000 14000 16000 18000
T T T T T T T T
— — ]
-10 ! ! | ! X ! !
10 2000 4000 6000 8000 10000 12000 14000 16000 18000
C T T T T T T T —
_18r | ! | ! TN | ! ! :|
100 2000 4000 6000 8000 10000 12000 14000 16000 18000
r T T T T T T T
_18F“’ ! ! ! | ! ! | ! q
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10F q

2000 4000 6000 8000 10000 12000 14000 16000 18000

10 T T T T T T T
_18F~*“*hw~f‘~_' ! ! i e p—— | ,_n_q

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10 T T T " T T T T
_18["— "" | | | | | | | :|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 10.6: The independent components computed from 30 principal components.




10.3. IMAGE FEATURE EXTRACTION 75
10.3 Image feature extraction

10.3.1 Motivation

A fundamental approach in signal processing is to design a statistical generative model of the observed signals. The components
in the generative model then give a representation of the data. Such a representation can then be used in such tasks as
compression, denoising, and pattern recognition. This approach is also useful from a neuroscientific viewpoint, for modeling the
properties of neurons in primary sensory areas.

Here, we consider a certain class of widely used signals, which we call natural images. This means images that we encounter in
our lives all the time; images that depict wild-life scenes, human living environments, etc. The working hypothesis here is that
this class is sufficiently homogeneous so that we can build a statistical model using observations of those signals, and then later
use this model for processing the signals, for example, to compress or denoise them.

We will see that ICA does provide a model that is very similar to the most sophisticated low-level image representations used
in image processing and vision research. ICA gives a statistical justification for using those methods that have often been more
heuristically justified.

10.3.2 Linear representations
Definition

Image representations are often based on discrete linear transformations of the observed data. Consider a black-and-white image
whose gray-scale value at the pixel indexed by x and y is denoted by I(z,y). Many basic models in image processing express
the image I(z,y) as a linear superposition of some features or basis functions a;(x,y):

n

I(z,y) =) ai(z,y)si (10.1)

i=1

where the s; are stochastic coefficients, different for each image I(z,y). Alternatively, we can just collect all the pixel values in
a single vector x = (z1, x2, ..., xm)T, in which case we can express the representation as

x = As (10.2)

just like in basic ICA. We assume here that the number of transformed components equals the number of observed variables,
although this need not be the case in general. This kind of a linear superposition model gives a useful description on a low level
where we can ignore such higher-level nonlinear phenomena as occlusion.

In practice, we may not model a whole image using the model in (10.1). Rather, we apply it on image patches or windows.
Thus we partition the image into patches of, for example, 8 x 8 pixels and model the patches with the model in (10.1). Care
must then be taken to avoid border effects.

Standard linear transformations widely used in image processing are, for example, the Fourier, Haar, Gabor, and cosine trans-
forms. Each of them has its own favorable properties. Recently, a lot of interest has been aroused by methods that attempt to
combine the good qualities of frequency-based methods (Fourier and cosine transforms) with the basic pixel-by-pixel represen-
tation.

Gabor analysis

Gabor functions or Gabor filters are functions that are extensively used in image processing. These functions are localized with
respect to three parameters: spatial location, orientation, and frequency. This is in contrast to Fourier basis function that are
not localized in space, and the basic pixel-by-pixel representation that is not localized in frequency or orientation.

Let us first consider, for simplicity, one-dimensional (1-D) Gabor functions instead of the two-dimensional (2-D) functions used
for images. The Gabor functions are then of the form

g1a(z) = exp(—a®(z — 20)*)[cos(2mB(x — o) + ) + isin(2mB(z — z0) + )] (10.3)
where
e « is the constant in the gaussian modulation function, which determines the width of the function in space.
e 1 defines the center of the gaussian function, i.e., the location of the function.

e [ is the frequency of oscillation, i.e., the location of the function in Fourier space.

7 is the phase of the harmonic oscillation.



76 CHAPTER 10. APPLICATIONS OF COMPONENT ANALYSES

Figure 10.7: A pair of 1-D Gabor functions. These functions are localized in space as well as in frequency. The real
part is given by the solid line and the imaginary part by the dashed line.

Figure 10.8: A pair of 2-D Gabor functions. These functions are localized in space, frequency, and orientation. The
real part is on the left, and the imaginary part on the right. These functions have not been rotated.

Actually, one Gabor function as in (10.3) defines two scalar functions: One as its real part and the other one as its imaginary
part. Both of these are equally important, and the representation as a complex function is done mainly for algebraic convenience.
A typical pair of 1-D Gabor functions is plotted in Fig. 10.7.

Two-dimensional Gabor functions are created by first taking a 1-D Gabor function along one of the dimensions and multiplying
it by a gaussian envelope in the other dimension:

g24(z,y) = exp(—a’(y — y0)*)g1a(x) (10.4)

where the parameter « in the gaussian envelope need not be the same in both directions. Second, this function is rotated by
an orthogonal transformation of (z,y) to a given angle. A typical pair of the real and imaginary parts of a Gabor functions are
shown in Fig. 10.8.

Gabor analysis is an example of multi-resolution analysis, which means that the image is analyzed separately at different
resolutions, or frequencies. This is because Gabor functions can be generated at different sizes by varying the parameter «, and
at different frequencies by varying (.

An open question is what set of values should one choose for the parameters to obtain a useful representation of the data.

10.3.3 ICA and Sparse Coding

The transforms just considered are fixed transforms, meaning that the basis vectors are fixed once and for all, independent of
any data. In many cases, however, it would be interesting to estimate the transform from data. Estimation of the representation
in Eq. (10.1) consists of determining the values of s; and a;(x,y) for all ¢ and (z,y), given a sufficient number of observations
of images, or in practice, image patches I(z,y).



10.3. IMAGE FEATURE EXTRACTION 7

The question is then: What principles should be used to estimate a transform from the data? Our starting point here is a
representation principle called sparse coding that has recently attracted interest both in signal processing and in theories on the
visual system. In sparse coding, the data vector is represented using a set of basis vectors so that only a small number of basis
vectors are activated at the same time.

In a neural network interpretation, each basis vector corresponds to one neuron, and the coefficients s; are given by their
activations. Thus, only a small number of neurons is activated for a given image patch. Thus, the principle of sparse coding
could be expressed by the property that a given neuron is activated only rarely. This means that the coefficients s; have sparse
distributions. The distribution of s; is called sparse when s; has a probability density with a peak at zero, and heavy tails,
which is the case, for example, with the Laplacian (or double exponential) density. In general, sparseness can be equated with
supergaussianity.

In the simplest case, we can assume that the sparse coding is linear, in which case sparse coding fits into the framework used in
this chapter. One could then estimate a linear sparse coding transformation of the data by formulating a measure of sparseness
of the components, and maximizing the measure in the set of linear transformations. In fact, since sparsity is closely related
to supergaussianity, ordinary measures of nongaussianity, such as kurtosis and the approximations of negentropy, could be
interpreted as measures of sparsity as well. Maximizing sparsity is thus one method of maximizing nongaussianity, and we saw
in earlier that maximizing nongaussianity of the components is one method of estimating the ICs. Thus, sparse coding can be
considered as one method for ICA. At the same time, sparse coding gives a different interpretation of the goal of the transform.

10.3.4 Estimating ICA bases from images

Thus, ICA and sparse coding give essentially equivalent methods for estimating features from natural images, or other kinds of
data sets. Here we show the results of such an estimation.

First, we must note that ICA applied to image data usually gives one component representing the local mean image intensity,
often called the DC component. This component normally has a distribution that is not sparse; often it is even subgaussian.
Thus, it must be treated separately from the other, supergaussian components, at least if the sparse coding interpretation is to
be used. Therefore, in all experiments we first subtract the local mean, and then estimate a suitable sparse coding basis for the
rest of the components. Because the data then has lost one linear dimension, the dimension of the data must be reduced, for
example, using principal component analysis (PCA).

Each image was first linearly normalized so that the pixels had zero mean and unit variance. A set of 50,000 image patches
(windows) of 32 x 32 pixels were taken at random locations from the images. From each patch the local mean was subtracted
as just explained. To remove noise, the dimension of the data was reduced to 256. The preprocessed dataset was used as the
input to the FastICA algorithm, using the tanh nonlinearity (i.e. a robust measure of non-gaussianity).

The principal component weights are shown in Fig. 10.9. These are a bit like Fourier basis vectors, i.e. sinusoids. However, the
latter ones look more like noise.

Figure 10.10 shows the ICA basis vectors A;. Alternatively, we can characterize the results by plotting the rows of the inverse
of the mixing matrix: Figure 10.11 shows these “feature detectors”. The basis vectors are clearly localized in space, as well as
in frequency and orientation. Thus the features are closely related to Gabor functions. In fact, one can approximate these basis
functions by Gabor functions, so that for each basis vector one minimizes the squared error between the basis vector and a
Gabor function. This gives very good fits, and shows that Gabor functions are a good approximation. Alternatively, one could
characterize the ICA basis functions by noting that many of them could be interpreted as edges or bars.



78 CHAPTER 10. APPLICATIONS OF COMPONENT ANALYSES

.I‘o ,
-x" -
E X “' EEE EE ‘-l ﬂﬂﬁmﬂ

Figure 10.9: The 320 first principal components weights W, of image patches of size 32 x 32. The order of decreasing
variances is left to right on each row, and top to bottom. For each principal component, the weights are plotted as an
image patch.



79

10.3. IMAGE FEATURE EXTRACTION

1 e P N P R P ML
L (S T ST NN
IIIIIIIIIIIIIHII

LY
, - #
~ ¥

Figure 10.10: The whole set of features A; obtained by ICA. This was accomplished by FastICA with a symmetric

orthogonalization and the tanh nonlinearity



80 CHAPTER 10. APPLICATIONS OF COMPONENT ANALYSES

.
; = A -,
Sy

7 ~
~
-
# \
.

Y
!
-

%
:u.' —
o~

.
.

Figure 10.11: The whole set of feature detectors W; obtained by ICA. Note that due to the lack of orthogonality of
the mixing matrix, the rows of its inverse are not equal to its columns. For an orthogonal matrix, like the one given
by PCA, there is no such difference.



Chapter 11

Sparse coding with overcomplete basis

A variant of ICA which has recently become popular in machine learning is sparse coding with overcomplete basis, also called
(overcomplete) dictionary learning.

11.1 Motivation

An important restriction basic ICA is that the number of components cannot be larger than the dimension of the data. In
the generative models such as ICA, we had to assume that the matrix A is invertible. A matrix can be invertible only if it is
square: thus the number of components cannot be larger than the number of data variables. However, it can be argued that
the number of components or features should be larger than the dimension for certain kinds of data.

11.2 Definition of generative model

Now we define a generative model which has more components than the data has dimensions. In this context, we call the
columns a;of A basis vectors or dictionary atoms/elements. A set of basis vectors which contains more vectors than the space
has dimensions is called an overcomplete basis or overcomplete dictionary.

The definition of a generative model with an overcomplete basis is rather straightforward. We just need to express the image
as a linear superposition

m
X = Zaisi (11.1)
i=1

where the only difference to previous models is that the number of components m is arbitrarily large. We also need to specify
the statistical properties of the components s;. In the basic case, we assume that they are sparse and statistically independent.

For technical reasons, another modification is also usually introduced at this point: we assume that the image is not exactly a
linear sum of the components, but there is noise as well. That is, gaussian noise v is added to each pixel:

m
X = Zaisi+u (11.2)
i=1

This does not change the behaviour of the model very much, especially if the noise level is small, but it simplifies the computations
in this case. (In the case of basic ICA, introduction of noise in the model just complicates things, so it is usually neglected.)

Note that the meaning of overcompleteness changes when the dimension is reduced by PCA. From the viewpoint of statistical
modelling, the dimension of the data is then the dimension given by PCA. So, even a basis which has the same number of
vectors as there are pixels can be called overcomplete, because the number of pixels is larger than the PCA-reduced dimension.

Despite the simplicity of the definition of the model, the overcomplete basis model is much more complicated to estimate.
What is interesting is that it has a richer behaviour than the basic sparse coding and ICA models because it leads to some
nonlinearities in the computation of the components. We will treat this point first.

81



82 CHAPTER 11. SPARSE CODING WITH OVERCOMPLETE BASIS

11.3 Nonlinear computation of the basis coefficients

Consider first the case where the basis vectors a; are given, and we want to compute the coefficients s; for an input data point
(e.g. image) x. The fundamental problem is that the linear system given by the basis vectors a; is not invertible: If one tries to
solve for the s; given an x, there are more unknowns s; than there are equations. So, computation of the s; seems impossible.
Indeed, it is impossible in the sense that even if the data (image) were created as a linear sum of the a; for some coefficient
values s;, we cannot recover those original coefficients from the input data alone, without some further information.

As an illustration, consider an image with two pixels with values (1,1). Assume we use a basis with three vectors: (0,1), (1,0),
and (1,1). Thus, we have
(1,1) = (0,1)s1 + (1,0)s2 + (1, 1)s3 (11.3)

Obviously, we could represent the image by setting s; = 0, s2 = 0, and s3 = 1. But, equally well, we could set s1 = 1, s2 = 1,
and s3 = 0. Even if the image was exactly generated using one of these choices for s;, we cannot tell which one it was by using
information in the image alone. Actually, there is an infinite number of different solutions: you could take any weighted average
with of the two solution just given, and it would be a solution as well.

However, there is a partial solution to this problem. The key is to use sparseness. Since we know that the s; are sparse, we
can try decide to find the sparsest solution. In the illustration above, we would choose the solution s; =0, s2 = 0, and sz = 1
because it is the sparsest possible in the sense that only one coefficient is different from zero.!

There is a clear probabilistic justification for such a procedure. Basically, we can find the most probable values for the coefficients
si, under the assumption that the s; have sparse distributions. This is possible by using conditional probabilities in a manner
similar to Bayes’ rule. Now we will derive the procedure based on probabilistic reasoning. By the definition of conditional pdf’s,
we have

p(slx) = Blex) _ pxjs)p(s) (11.4)

p(x) p(x)

which is the basis for Bayes’ rule. The formula can be simplified because p(x) does not depend on s. Since our goal is to find
the s which maximizes p(s|x), we can just ignore this constant. We can also maximize its logarithm instead because it is often
simpler, and equivalent because logarithm is a strictly increasing function. This gives us the following objective function to

maximize:

log p(x|s) + log p(s) (11.5)
Such estimation of the s is called maximum a posteriori (MAP) estimation.
Now, we have to compute the probabilities log p(x|s) and log p(s) needed. The first thing we consider is the prior distribution
p(s) of the s;. In Bayesian inference, the prior distribution (or prior for short) incorporates the knowledge we have before
making any observations. What prior knowledge do we have here? First, we know that the components are sparse. Second, we

assume that they are independent, which is a simple approximation although it is not terribly precise. Thus, log p(s) is similar
to what was used in ordinary ICA estimation and linear sparse coding. It can be expressed as

m

logp(s) = »_ G(s:) (11.6)

i=1
where the function G is the same kind of function we used in ICA estimation.

To compute p(x|s), we will use the noisy version of the model in Equation (11.2). Assume that we know the variance of
the gaussian noise, and denote it by by o2. Then, the conditional probability of x given all the s; is the gaussian pdf of
v =73 " a;s; — x. By definition of the gaussian pdf, the pdf of a single noise variable is thus

1 1 5
p(vi) = \/—Q—WGXP(*T‘QW) (11.7)

So, the conditional log-pdf for one variable (e.g. pixel) is

1 5 1 1 " 5 1
1 ls) = ——1v2 — Zlog2r = ——[z; — ;i8] — = log 2 11.8
og p(x4[s) 5,3Vi 5 log2m 557 i ;Zlazm] 5 log 2T (11.8)

We assume that the noise is independent in all variables, so the conditional pdf of the whole data vector x is the sum of these
log-pdf’s:

1 - n
log p(x|s) = ~552 Z [|x — Zaisi||2 -3 log 2w (11.9)
x,y =1

The constant %log 27 can be omitted for simplicity.

1 Another solution would be to use the Moore-Penrose pseudo-inverse. However, that method is less justified by statistical principles,
and less useful in practice.



11.4. ESTIMATION OF THE BASIS 83
Putting all this together: To find the most probable s1,..., s, that generated the data, we maximize
1 m 5 m
log p(s|x) = log p(x|s) + log p(s) + const. = ~552 ;; Ix — ; a;si||” + ; G(si) + const. (11.10)

where the “const” means terms which do not depend on s. Maximization of this objective function is usually not possible
in closed form, and numerical optimization methods have to be used. We have here assumed that the a; are known; their
estimation will be considered below.

Maximization of such an objective function leads to a monlinear computation of the components s;. This is in stark contrast to
ordinary (non-overcomplete) models, in which the s; are a linear function of the x.

11.4 Estimation of the basis

Estimation of the basis vectors a; can be performed using the same principle as estimation of the s;. Basically, the solution is
hidden in Equation (11.10). First, note that the pdf in Equation (11.9) depends on the a; as well. So, that equation actually
describes p(x[s,ai,...,a,) instead of just p(x|s). Further, if we backtrack in the logic that lead us to Equation (11.10),
we see that the conditional probability in Equation (11.10), when considered as a function of both s and the a;, is equal to
p(s,ai1,...,an|l), if we assume a flat (constant) prior for the a;. This is the conditional probability of both s and the a;, given
the data x. Thus, the conditional log-pdf can be interpreted as essentially the likelihood of the a;.

Estimation of the a; can now be performed by maximizing the conditional pdf in Equation (11.10) for a sample of images
X1,X2,...,Xr. (Obviously, we cannot estimate a basis from a single image.) As usual, we assume that the images in the sample
have been collected independently from each other, in which case the log-pdf for the sample is simply the sum of the log-pdf.
So, we obtain the final objective function

m

Zlogp(s(t),al, coaml|xe) = fTiQ Z Z |x+ — Zaisi(t)||2 + Z ZG(si(t)) + const. (11.11)

t=1 z,y t=1 i=1

When we maximize this objective function with respect to all the basis vectors a; and cell outputs s;(t) (the latter are different
for each image), we obtain, at the same time, the estimates of the components and the basis vectors.” In other words, we
compute both the nonlinear component values and the columns a;.

11.5 Approach using energy-based models

An alternative approach for estimating an overcomplete representation is the following: We give up a generative model and
concentrate on generalizing the sparseness criteria. Basically, we take the log-likelihood of the basic ICA model, and relax
the constraint that there cannot be too many components in the sense of linear dotproducts we compute. This approach is
computationally more efficient because we do not need to compute the nonlinear estimates of the components s; which requires
another optimization.

Consider the log-likelihood of the basic ICA model, which we reproduce here with slightly different notation

m

log L(v1,...,Vn;21,...,27) = T'log | det (V)| + ZZGi(v?zt) (11.12)

=1 t=1
where z: is the whitened preprocessed data sample, and the v; are the parameter vectors in the preprocessed space.

Now, could we just use the formula in Equation (11.12) with more components than dimensions? Let us denote the dimension
of the data by n. Then, this means that we just take m > n to achieve an overcomplete representation.

Unfortunately, this is not possible. The problem is the term log | det(V)|. The simple reason is that if m > n, the matrix V,
which collects the v; as its rows, would not be square, and the determinant is only defined for a square matrix.

On the other hand, the second term on the right-hand side in Equation (11.12) is just a sum of measures of sparseness of the
components, so this term need not be changed if we want to have an overcomplete representation.

So, we have to understand the real meaning of the term log|det(V)| to obtain a model with an overcomplete representation.
This term is actually the logarithm of what is called the normalization constant or a partition function. It is a function of the
model parameters which makes the pdf of the data fulfill the fundamental constraint that the integral of the pdf is equal to

20ne technical problem with this procedure is that the scales of the independent components are not fixed, which leads to serious
problems. This problem can be solved simply by normalizing the variances of the independent components to be equal to unity at every
optimization step. Alternatively, one can normalize the basis vector a; to unit norm at every step.



84 CHAPTER 11. SPARSE CODING WITH OVERCOMPLETE BASIS

one—a constraint that every pdf must fulfill. A likelihood is nothing else than a pdf interpreted as a function of the parameters,
and computed for the whole sample instead of one observation. So, the likelihood must fulfill this constraint as well.

The normalization constant is, in theory, obtained in a straightforward manner. Let us define the pdf (for one observation) by
replacing the first term in Equation (11.12) by the proper normalization constant, which we denote by Z:

log L(z;v1,...,Vvn) = —logZ(V)—f—ZGi(viTz) (11.13)
i=1
Normalization of the pdf means that we should have

/L(z;vl,...,vn)dz: 1 (11.14)

In the present case, this means

/L(z; Vi,...,Vp)dz = ﬁ /gexp(Gi(v?z))dz =1 (11.15)

So, in principle, we just need to take
Z(V) :/Hexp(Gi(viTz))dz (11.16)
i=1

because this makes the integral in Equation (11.15) equal to one.

However, in practice, evaluation of the integral in Equation (11.16) is extremely difficult even with the best numerical integration
methods. So, the real problem when we take more vectors v; than there are dimensions in the data, is the computation of the
normalization constant.

Estimation of the model by maximization of likelihood requires that we know Z. If we omit Z and maximize only the first
term in Equation (11.13), the estimation goes completely wrong: If the G; have a single peak at zero (like the negative log cosh
function), as we have assumed in earlier chapters, the maximum of such a truncated likelihood is obtained when the v; are all
zero, which is quite absurd!

So, the model becomes much more complicated to estimate since we don’t know how to normalize the pdf as a function of the
vectors v;. This is in stark contrast to the basic case where the number of components equals the number of input variables:
the function Z is simply obtained from the determinant of the matrix collecting all the vectors v;.

Fortunately, there are methods for estimating models in the case where Z cannot be easily computed. First of all, there is a
number of methods for computing Z approximately, so that the maximum likelihood estimation is computationally possible.
However, in our case, it is probably more useful to look at methods which estimate the model directly, avoiding the computation
of the normalization constant. Score matching and contrastive divergence are two methods for estimating such “non-normalized”
models. We will not go into details on those methods here, but just mention that such methods exist.

11.6 Overcomplete basis from natural images

We estimated an overcomplete representation from natural images using the method in Section 11.5. Thus, we defined the
model using the non-normalized log-likelihood in Equation 11.13. We basically used the classic (negative) log cosh function
as G, but we allowed a bit more flexibility by allowing rescaling of the G; by defining Gi(u) = —a;logcosh(u), where a; are
parameters that are estimated at the same time as the v;. We also constrained the norms of the v; to be equal to one. We used
the score matching approach to estimate the parameters without computation of the normalization constant.

To reduce the computational load, we took patches of 16 x 16 pixels. We preprocessed the data just like with ICA, but the
dimension reduction was less strong: we retained 128 principal components, i.e. one half of the dimensions. Then, we estimated a
representation with 512 receptive fields. The representation is thus 4 times overcomplete when compared to the PCA dimension,
and two times overcomplete when compared with the number of pixels.

The resulting receptive fields are shown in Figure 11.1. To save space, only a random sample of 192 receptive fields is shown.
The receptive fields are quite similar to those estimated by basic ICA or sparse coding. Some are more oscillatory, though.



11.6. OVERCOMPLETE BASIS FROM NATURAL IMAGES 85

Figure 11.1: Image features (“receptive fields”) in a four times overcomplete basis for canonically preprocessed data,
estimated using the model in Equation (11.13) and score matching estimation. Only a random sample of the features
is shown to save space.



Chapter 12

Clustering

12.1 Definition and motivating applications

The idea in clustering is to divide the data points into a number of groups, so that points in the same group are “similar”.
Similarity usually means that they are close to each other in the data space.

For a basic example, see Fig. 12.1. Here, the data points marked with x’s and those with o’s clearly form two distinct groups.
With clustering methods, we want to find such structure automatically, and in high-dimensional spaces where we cannot just
plot the data and have a look.

Clustering is also useful even if the data does not easily divide into clusters. Assume you want to represent your continuous-
valued data by integer numbers, for example, to store them in binary format. One approach is to divide it into “clusters”, and
represent each data point by the index of the cluster is “belongs” to. In this case, the idea is often called “quantization”, but the
methods for finding the clustering are usually exactly the same. Some kind of quantization is used by any image compression
algorithm'. But if you have some new kind of data in an n-dimensional space, and existing compression algorithms don’t seem
to be suitable, learning a quantization with the following method is one possibility.

12.2 K-means algorithm

12.2.1 The algorithm

A classic algorithm for clustering is k-means. It goes as follows:

1. Choose the number of clusters to model, k.
2. Choose (usually randomly) the initial values of the cluster centerpoints, w;, i =1,...,k.

3. Repeat until convergence

(a) For each data point x(¢),t =1,...,T, find the closest centerpoint,
min [[w; — (1) (12.1)
7

Denote the index of the closest centerpoint for x(t) by I(t).

(b) Replace each centerpoint w; by the mean of the data points for which the (old) w; was closest, i.e.

Zt:](t):i x(t)

number of data points in sum above

(12.2)

The algorithm is very intuitive and often very fast. It is illustrated in Figs. 12.2-12.4.

1 Although the clusters in such algorithms are often fixed instead of being learned, and the quantization is usually applied on components
vaguely related to PCA and ICA, often separately compressing each component

86



12.2. K-MEANS ALGORITHM 87

Figure 12.1: Hlustration of clustering. The data points marked with x’s and o’s form two distinct groups, i.e. clusters.

4 L L L L L L L L )
-4 -3 -2 -1 0 1 2 3 4 5

Figure 12.2: Illustration of k-means 1. The center points (red balls) are initialized at random initial points. The
closest centerpoints are shown by colouring of the data points.

Figure 12.3: Illustration of k-means 2. The centerpoints after one iteration.



88 CHAPTER 12. CLUSTERING

Figure 12.4: Hlustration of k-means 3. After two iterations, the algorithm has almost converged.

12.2.2 Definition of objective function for k-means

To understand the k-means algorithm, we show next that it is minimizing a reconstruction error, also called quantization error.
Imagine that we replace each data point by some cluster centerpoint. The sum of squared errors incurred in this approximation
is the quantization error. Such an operation is actually widely used in practice when you want to represent continuous-valued
data in binary format.

Let us define the objective function as

J(Wi,. Wiy i(1), . i(T)) =Y (% () — Wil (12.3)

where i(t) is the cluster centerpoint which replaces the data point x(¢). Note that we introduced here the i(t) as additional
arguments of the objective function: their values are free and not defined in any way at this stage.

Now, we prove that J is decreased at every step of the k-means algorithm, unless the algorithm has converged (or there are
points which could be equally well clustered in two different points, which is a rare coincidence). In fact, the algorithm proceeds
by minimizing J alternatively w.r.t. the w and the i(¢).

Consider the step in k-means where the I(¢) are computed. It is rather obvious that given the w;, the best assignment of the
data points to the clusters is to take the cluster whose centerpoint is closest, as in the algorithm. Thus, the definition of I(t) is
the one that minimizes J given the w;.

Next, we need to show that the update of the w; decreases (or does not change) J as well. Again, in fact, it is the optimal
update which finds w; obtaining the smallest J possible for the given I(¢). To show this, we consider the set of points in the
same cluster separately, since the objective function separates to a sum, each depending of one w;. For the points with I(t) = 1,
for example, we need to minimize

Dw) = 3 |x(t) — wil? (12.4)

t:I(t)=1

where we have made the decomposition

= Jiwi) = > Ix(t) - wy|? (12.5)

K g tI(t)=j
We compute the gradient and obtain
Ve, Ji(wi) =2 Y x(t) = w1 =0 (12.6)
t:I(t)=1
& (12.7)
{Number of points for which I(t) = 1} x w; = Z x(t) (12.8)

t:1(t)=1

which is zero at the point where w; is the average of the x(¢) with I(¢) = 1, which is the second update step.



12.3. GAUSSIAN MIXTURE MODEL 89

Thus, we see that in fact, that the algorithm first chooses the optimal i(t), given the w;, and then the optimal w;, given the
i(t). If the algorithm is not in a local minimum, one of these steps must decrease the objective function.?

One utility of such analysis in terms of an objective function is that it indicates that the algorithm is likely to converge to some
point. It cannot, for example, oscillate between two solutions with different values of the objective function because then the
objective function would also oscillate up and down, and we just proved that this is not possible. (If the solutions have the
same value of the objective function, they can be considered equally good.)

Some things are worth mentioning:

e The convergence is local, and the global minimum is not achieved in general. This is similar to any gradient algorithm.

e Determining the correct number of clusters, k, is a very complicated issue. A practical approach would be to try out
different values, and determine for example the one which gives acceptable reconstruction error in the context of vector
quantization, or an intuitive interpretation in the case of exploratory data analysis.

12.3 Gaussian mixture model

The gaussian mixture model is a probabilistic formulation of the clustering problem. It also generalizes the k-means algorithm.

Assume we have observed a number of vectors x(1),...,x(7) as usual, and denote by n the dimension of the data space. We
observe data which comes from a number of clusters. Denote by k the number of clusters. The probabilities that the data
come from each cluster are denoted by 7, c = 1,...k. Obviously, we must have )~ _m. = 1. Inside each cluster, the data has a

gaussian distribution with mean p. and covariance C.. Thus, we have a generative model; the data generating mechanism is
as follows:

1. We choose randomly the cluster index, so that the probability of choosing cluster c is .. Denote the result by r.

2. Generate a data point by drawing a point from a multivariate gaussian distribution with mean w, and covariance C,

Here, r is a latent variable. For each observed data point, we have one realization of the latent variable.

This is a relatively rich clustering model. In addition to the means (centerpoints) of the clusters g, the model allows each
cluster to have its own covariance and prior probability 7.. In particular:

1. Some clusters can have larger probability than others.

2. Some clusters can have larger variance than others: so they are “bigger” in terms of the area in data space which they
cover.

3. The covariance of a cluster need not be diagonal, so a cluster might be elongated in some direction, which is quite different
from the underlying assumptions in the k-means algorithm.

This flexibility is illustrated in Fig. 12.5. The model definition also means that the number of parameters is quite large, so the
model can be difficult to estimate if we don’t have many data points.

The model definition also implies that the most likely cluster for a point need not be the one with the closest centerpoint. This
will be seen in detail in Equation (12.14) below.

12.4 Likelihood of gaussian mixture model

To begin with, we can formulate the likelihood of the model by assuming we observe the latent variables (this is called the
”complete likelihood”). For a single data point, we have the joint distribution

1

1 T~—1 o -
Emaaen G PTG = ) (12.9)

p(x,7|pe, Ceyme,c=1... k) = 5

Note that here we have a joint “pdf” of a discrete and a continuous-valued variable. Intuitively, this should not be difficult to
understand, and a rigorous treatment is possible by noting that for any given r, this is a pdf for x. This gives the likelihood for
the whole observed sample:

p(x(t),r(t),t=1...T|pe,Ce,me,c=1...k)

1 1 T ~—1
= exp(—=(x(t) — w, C, i (x(t) — pr T 12.10
1:[ (2m)"/2 (det Cr(t))% ( 2( (t) ®) (t)( (t) ONLAGIN )

2Tt is perhaps not completely clear what “local minimum” exactly means when we have discrete-valued variables, but maybe the concept
is intuitively clear.



90 CHAPTER 12. CLUSTERING

Figure 12.5: Illustration of a case where the flexibility of the Gaussian mixture model is needed. These clusters have
different probabilities, different numbers of data points, different general “spreads” and different covariance structures.

This is a classic example where we would like to “integrate out” the latent variables. This means that since we don’t observe
the r, we would like to obtain a likelihood which is not a function of the r. It can be obtained by computing the marginal
density of the x according to the general formula of marginal probability

p(x) = /p(xn")dr (12.11)

In this case, since the latent variables are discrete-valued, the integration means in fact a simple summation. So, the likelihood
of the sample is

k
Hp t)| e, 0771'070:1.“]@):1_[219 t),r|ppe, Ceye=1...k)
t r=1
—HZ

1 T ~—1
12 lmexp(_i(x(t)—ﬂr) C. (x(t) — pr))mr (12.12)

So, we can write the log-likelihood for the whole sample as

log p(x(1), .. . X(D)|tte, Coymese = 1...k) = 3 lo Z 5 eXp(fé(x(t) — ) TC x() = o)) (12.13)

7)7/2(det C) 2
Basically, we could thus approach the estimation of the model in three ways:

1. We maximize the log-likelihood in (12.13) by a general-purpose optimization method such as the gradient method. This
poses no particular problems, except for the one we always encounter with the gradient method: choice of step size.

2. In fact, it is not completely necessary to integrate out the latent variables as we did above. We could also maximize the
joint likelihood in Eq. (12.10) with respect to both the parameters and the latent variables r(¢). For this, we could use an
alternating variables approach, see Section 3.8. This is not very difficult, and would lead to an algorithm which is rather
similar to k-means, but we don’t go into details.

3. A third approach, which is by far the most widely-used in the case of the Gaussian mixture model, is the Expectation-
Maximization (EM) algorithm, to be discussed next.

12.5 EM algorithm: a heuristic approach

The EM algorithm is basically a more sophisticated version of the alternating variables method in Section 3.8. In fact, it can
be shown to (locally) maximize the likelihood in (12.13) instead of the complete likelihood (but the proof is quite complicated),
and the likelihood can be considered to be a more principled objective.

The basic idea is that instead of computing just the closest centerpoint like in k-means, we compute the posterior probabilities
that the data point belongs to each cluster, given the observed data. They actually come quite easily from (12.9)

1 1

p(r(t) = c[x(t), pe, Ce, me,c = 1. k) = (2m)7/2(det Oy b exp(—5 (x(t) = pe)” Co ™ (x(t) = pe))me/p(x(2)) (12.14)



12.6. EM ALGORITHM: GENERAL THEORY 91

where we also see the fact mentioned earlier: this posterior probability is not just a function of the distance between the data
points and the centerpoints, but takes into account the covariance structure and the prior probabilities of the clusters.

Here, the division by p(x(t)) is needed to normalize the probabilities. However, it is a bit difficult to compute. Fortunately, we
can normalize these probabilities quite easily after we have computed them. Let us compute

Gr.c = (det C,) 3 eXp(—%(x(t) — pe)TCIN(x(t) — pe)) e (12.15)

for all t and c. Here, we have omitted some constants because they will disappear in the normalization anyway. Now, we
normalize these quantities by

Ge= —th’qct (12.16)
c 4t,c

These ¢* are now properly normalized and give the posterior probabilities in (12.14).

The intuitive idea in EM is that we can use these ¢; . as "soft” cluster memberships to estimate the Gaussian models for each
cluster. This means that given the ¢*, we estimate

1
ﬂc =< - q*,cx t 12.17
S a z 7 ex(t) (12.17)
o 1 « R R
Co= = are(x(t) — fuc)(x(t) — fic)" (12.18)
Zt qt,c t
N 1 *
e == zt: Gi.c (12.19)

where the first update is quite similar to k-means: for each new centerpoint (here: mean of gaussian cluster), we take a weighted
mean of the data points, where the weighting comes from the probability that the datapoint belongs to this cluster. If the
probabilities were zero or one, this would be like k-means. The other two updates generalize k-means to the case where the
clusters have different covariance structures and prior probabilities.

We have now constructed the EM algorithm, which is obtained by repeating (12.15-12.19) until convergence. (To be precise: in
(12.15), the parameters are replaced by their estimates.)

12.6 EM algorithm: general theory

Why is the EM algorithm given above justified? In fact, the EM algorithm is a general principle for designing algorithms for
estimation of latent variable models. For most models, the algorithm is not very useful, but for models involving gaussian
variables, it may provide an interesting algorithm.

In general, consider a latent variables model p(x,s, @) where x is the observed variable vector, s is the vector of latent variables,
and @ is the vector of parameters. For simplicity of exposition, denote by X the matrix which contains all the observations of
x, and likewise for S. The general form of the i-th step of the EM algorithm is:

Expectation step Consider the posterior distribution of the latent variables: p(S|X, 0;—1) where we have used the estimate
of @ from the previous step. Compute the expectation of the log-posterior of 8 with respect to this distribution:

/p(sp(, 0;_1)log p(X,S, 0)dS (12.20)

Maximization step Maximize (12.20) with respect to 0. Take this as the new estimate 6;.

The expectation and maximization steps are iterated until convergence.

If the posterior probabilities of the latent variables were all zero or one (assume for simplicity that they are discrete-valued),
the expectation step would simply mean computing the complete likelihood with the latent variables fixed to their most likely
values. Thus, we would be maximizing the complete likelihood by alternating between the maximization with respect to the
latent variables and the maximization with respect to the parameters. The idea in EM is that it is better to consider the whole
posterior distribution of the latent variables, and integrate over it, instead of just using the most likely values of the latent
variables.



92 CHAPTER 12. CLUSTERING

12.7 Deriving the gaussian mixture case of EM

Now we derive the EM algorithm for Gaussian mixtures based on this general theory. In the gaussian mixture model case, the
latent variables s are r, and the parameter vector 6 consists of the p., Ce.

Computing the ¢; . amounts to computing the posterior of the latent variables 7(t) given the parameters in the previous step.
In fact, the r are independent for different ¢, so its posterior can really be represented, for each ¢, as the set of probabilities
qi.c. Above, these ¢* were indeed derived as the posterior probabilities of p(r|x, ). So, the integral in (12.20) can be computed
as the sum over the different values of r, with these weights. Using the complete likelihood in (12.10), the integral in (12.20)

becomes in this case
> [fé(x(t) — pe)" CI (x(t) — pe) + log me — % log det C — log(2m)"/* | g7 . (12.21)

t,c

To maximize this, for example, with respect to ., we compute the gradient and set it to zero:

S —CoN (1) — pe)gie = 0 (12.22)

which gives as the solution the EM update already given in (12.17). Likewise, maximization with respect to C. gives (12.18); the
calculations are essentially the same as in finding the maximum likelihood estimator for the covariance matrix of the multivariate
Gaussian distribution. For 7., it is more tricky. The derivative of (12.21) with respect to m. is given by

Z ﬂ_iqt*,c = ﬂ_i th*,c (1223)
(& c t

t

However, we are here maximizing under the constraint ) 7. = 1, so we cannot just set this gradient to zero. In the optimization
section, we saw that at the optimum, the gradient should point at a direction which is orthogonal to the constraint surface (this
can be rigorously shown using Lagrangian multipliers). Here, the vector of all ones is orthogonal to the constraint surface. So,
we should have

1 x
LS g=a (12.24)
Te <
for all ¢. This obviously requires
o = —Zf/\qt’c (12.25)

The value of A has to be chosen so that the constraint ) 7w, = 1 is fulfilled: it is easy to verify that A = T fulfills the constraint
because Y _¢i. = 1. Thus, we have proven that (12.19) is the correct EM update.



Chapter 13

Nonlinear projection methods

Here we consider methods which try to find some kind of principal components which can have an arbitrary nonlinear shape,
thus generalizing the theory of (linear) PCA we had in the beginning of this course.

13.1 Metric (linear) multi-dimensional scaling

13.1.1 Basic idea

The basis for many nonlinear methods is multi-dimensional scaling (MDS). This is basically a variant of PCA where the main
difference is that we work on a matrix of distances instead of a covariance matrix or the original data points. That is, the data
we input to the method is a matrix of distances of the data points:

d;j = distance between data point ¢ and j (13.1)
where we use the indices ¢ and j for the observations, instead of ¢t which was used in previous chapters. Now, the goal is to

represent this matrix as a low-rank approximation, i.e. using only a few “components”.

Often, the distances are normalized so that the column and row sums are zero. This can be accomplished by
< 1 1 1
dij = dij — N Zdij N Zdij Nz Zdij (13.2)
i i ij

where N denotes the number of data points, or in general objects whose distances are given (previously, 7" was the number of
data points). It is simple to prove that the row and column sums of d are zero.

A simple approach would now be to compute the eigenvalue decomposition of the matrix of the d. Since the eigen-value
decomposition allows us to compute the best low-rank approximation to any symmetric matrix (it doesn’t have to be a covariance
matrix), we would obtain a low-rank approximation to the distance matrix which is in some way optimal.

13.1.2 Case of Eulidean distances

If the distances given are the ordinary (squared) Euclidean distances in an n-dimensional space, and the data variables has zero
means, it can be shown that in fact, the solution is essentially the same as in PCA. Denote each data point by x; (unlike in
previous chapters!). Then each element is given by

2 2 2 T
dig = |lxi = 3517 = [lxill™ + [1esl” = 23 %; (13.3)

and, in fact, the normalized matrix is
dij = —2x] x; (13.4)

which is left as an exercise. Thus, if we normalize these distances so that each row and column sum is zero, the obtain nothing
else than the matrix X7 X multiplied by some constant. Note, however, that this is not proportional to the covariance matrix,
which is %XXT (in our notation, where each row is one variable and each column an observation).

93



94 CHAPTER 13. NONLINEAR PROJECTION METHODS

081

o
ooo@o o
Q>
06 % “gep%o %, B
0.4t o EP o ]
. s @9%50
02 o i

Figure 13.1: A data cloud whose dependencies cannot be represented using a linear PCA. However, a nonlinear version
might be able to reproduce the shape of the data set quite exactly using a single nonlinear principal component which
follows the U-shape.

Nevertheless, the eigenvalue decomposition of this matrix gives essentially the same as the EVD of the covariance matrix %XXTA
In fact, from the definition of eigenvectors of %XXT7 which give the principal components, we obtain

1 T
NXX W = Aw (13.5)
=
(%XTX) (X"w) = A(X"w) (13.6)

simply by multilying the equation by X* from the left. Thus, each eigenvalue of the covariance matrix is also an eigenvalue
of %XTX. The corresponding eigenvector is X”w (or some rescaled version) which is actually the values of the principal
component wlx collected into a vector. Note that if we normalize the norm of XTw to one, as is typical in eigenvalue
computations, we are normalizing the principal components so that their variances are equal to one, which is different from
when we did in the PCA chapter.

Since %XTX has a dimension of N x N, it has N eigenvalues. However, it has only rank n (the dimension of the data space).

Thus, N —n eigenvalues are zero. This means that in fact, the non-zero eigenvalues of %XTX are exactly those of the covariance
matrix, and the eigenvectors are transformed as described above. However, note the change of sign in (13.4) which means that
the non-zero eigenvalues of d are negative (since the eigenvalues of a covariance matrix are non-negative)! So, we will actually
take the eigenvectors corresponding to the smallest eigenvalues (but largest in absolute value) of %XTX.

How do we then use these eigenvectors? We actually let the eigenvectors of %XTX define the values of the components for
each data point. That is, the value of the k-th component for the i-th data point is given by the i-th entry in the eigenvector
corresponding to the k-th smallest eigenvalue. As we saw before, the eigenvectors are given by XTw; where wy, is the vector
defining the k-th principal component. So, the i-th entry of this eigenvector is x? wy,, which is nothing else than the value of
the k-th principal component for the i-th data point (when the principal components are rescaled as described above). This
may be a bit confusing, but it is important to understand that in MDS, the entries in the eigenvectors directly give the values
of the components for all data points. This is in contrast to basic PCA the eigenvectors give weights with which we multiply
the data variables in order to get the values of the components. In the general case which we consider below, this distinction is
important.

This is called the "metric” version of MDS in the statistical literature. In machine learning it would more often be called
”linear” in the sense that the components now are linear functions of the data points, because they are given by just linear
projections on the eigenvectors like in PCA.

13.2 Nonlinear MDS

The real interest of MDS for us is in the nonlinear case. Consider the data cloud in Figure 13.1. It contains structure which
cannot be meaningfully represented using linear components. However, using a nonlinear transformation, a single component
should be able to represent the data quite well.

Application of linear (metric) MDS, which is the same as PCA, on this data is shown in Fig. 13.2. We computed just one
principal component and colour-coded it so that the colour of each data point shows the value of the principal component at



13.2. NONLINEAR MDS 95

08 =

061

~

0.2

W oo e
2R3 R

.oy
*

»

1 L L L L L L L L L ,
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13.2: Application of metric MDS (=PCA) on the data set in Fig. 13.1. The value of the principal components is
given by the colour code going from blue to red. (Please ignore the numbers next to the color bar, they are completely
arbitrary.)

that data point. We can see that metric MDS is not able to learn the nonlinear structure of the data (which was obvious
anyway), and it is mainly representing the left-right axis.

A simple approach to the nonlinear case would be to take some nonlinear functions of the Euclidean distances. This leads to
different methods: Kernel PCA, Laplacian Eigenmaps, and IsoMap.

13.2.1 Kernel PCA

In kernel PCA, we simply take a nonlinear function of the Euclidean distances, defining
dij = f(llxi = %;]1%) (13.7)
Alternatively we could take d;; = f(x! x;), which leads to yet another class of methods.

The nonlinear function f could be the Gaussian kernel:

1 2
dij = —exp(—5—5[[xi — x4[°) (13.8)
in which case we have to define the value of the parameter o>. We take here the minus sign to have an increasing function of

the Euclidean distances (we could also add 1 to make them non-negative).

The idea here is to look at the local distances only, in the sense that large distances are less important since they are all set
to (almost) a constant, zero. This is in stark contrast to PCA, in which far-away point can have a strong influence since the
squared Euclidean distance grow quadratically when going away from the origin.

So, to do kernel PCA, we compute the eigenvectors corresponding to the largest eigenvalues of the matrix in (13.8). Possibly
we also want to normalize the distance matrix so that the row and column sums are both zero, as proposed above.

The projections of the data points to the components, i.e. the representation of each data point, are then given by the entries in
each eigenvector. That is, when we have computed an eigenvector ey of the matrix of the d;;, we define the nonlinear projection
of the data as

projy, (xi) = exi (13.9)
where ey; is the i-th entry of the eigenvector e,. Thus, the nonlinear function is basically defined at the location of each data
point only.

Application of Kernel PCA on the data in Fig 13.1, including normalization of column and row sums, is shown in Fig. 13.3.
The method does not seem to be able to find the structure with this data.

13.2.2 Laplacian eigenmaps

A very simple modification of kernel PCA often works much better. Tt is known under the name “Laplacian eigenmaps”.*

IThe way I present Laplacian eigenmaps here is rather different from how they are usually presented, but I think that the method I
present here is a special case of the general framework. If you read the original paper, note that here a) the selection of which connections



96 CHAPTER 13. NONLINEAR PROJECTION METHODS

08 | =

061

02 I 40
v,
-
i
of e,
X XY
et 30
ko
-0.2(s o o
<l
ThM e < .
LR R <l

1 L L L L L L L L L ,
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13.3: Application of kernel PCA on the data set in Fig. 13.1. the color code shows the values the nonlinear
principal component for each data point. (Please ignore the numbers next to the color bar, they are completely
arbitrary.) Does not seem to work very well.

061
04r

02r 40

1 L L L L L L L L L ,
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13.4: Application of the modified version of kernel PCA (“Laplacian eigenmaps”) on the data set in Fig. 13.1.
the color code shows the values of the nonlinear principal component for each data point. Now, the method seems to
find the “true” nonlinear component of the data.

Let us normalize the rows of the distance matrix d;; by dividing them by the sums of their entries Zj dij, and let us subtract
1 from each entry in the matrix. Then, we compute the eigenvalue decomposition as with kernel PCA, and it works for this
data, see Figure 13.4.

13.2.3 IsoMap

In Isomap, the idea is to compute the “geodesic” distances instead of the Euclidean ones. The idea is that if you are, for example,
on the surface of a ball (actually, we all are!) the “true” distance from one point to another is not the simple Euclidean distance
but the distance that you have to travel of the surface of the ball. When given a set of data points, we assume they are on
some nonlinear manifold which you can estimate, and then we compute the distances along this manifold. See Fig. 13.5 which
explains the concept better.

The geodesic distances can be computed using shortest-path algorithms. First, you compute the Euclidean distances between
all the data points. Then, you find the shortest path from x; to x; which is obtained so that you only are allowed to move
between the data points, and you are not allowed to move to a data point which is further away from your current data point
than some set threshold. This means you will have to move within the data “cloud”. If there are many data points, it may

are considered is based on the Euclidean distances, b) the generalized eigenvalue computation is transformed to a conventional one by
simple algebraic manipulations, c) the eigenvalues are shifted by subtracting an identity matrix, and d) the uninteresting eigenvalue is
removed by subtracting 1 from all the entries in the matrix.



13.3. KOHONEN’S SELF-ORGANIZING MAP 97

12r
11

1
0.9
0.8
0.7
0.6
0.5

0.4

.31 CE%)

0.2 L L L L L L
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 13.5: ITllustration of geodesic distances. The data set defines implicitly a kind of a manifold, i.e. a nonlinear
structure. The distance between the two red points is more naturally given by the length of the arc (blue) instead of
the length of the line connecting them (green dashed line).

O v rue
0.6
0.4

0.2

1 L L L L L L L L L ,
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13.6: Application of Isomap on the data set in Fig. 13.1.

become too difficult to compute the geodesic distances between all of them. Then, it may be useful to choose some data points
as “landmarks”, and compute the distances of all data points to those landmarks only, or use similar computational shortcuts.

After computing the geodesic distances like this, we just apply MDS on these distances: we center the distances as in (13.2)
and do the eigen-value decomposition of that matrix.

Application of Isomap on the data se Fig 13.1 is shown in Fig. 13.6. It finds correctly the underlying structure in this case.

13.3 Kohonen’s self-organizing map

The self-organizing map (SOM) is another method for nonlinear projection and visualization of high-dimensional data. In
addition it clusters the data.

The parameters in the SOM consists of a number of model vectors, which are like cluster centerpoints. The central idea is that
the model vectors are organized into a meaningful two-dimensional order (grid as in Fig. 13.7). The SOM algorithm learns
the model vectors so that they optimally describe the observed data in two ways: The model vectors provide a meaningful
quantization of the data, and similar model vectors are closer to each other in the grid than the more dissimilar ones. The
latter property is called the preservation of “topography”.

SOM uses a neighborhood function h to express the topography mathematically. It is a decreasing function of the distance



98 CHAPTER 13. NONLINEAR PROJECTION METHODS

Figure 13.7: In SOM, the model vectors w;, which are like cluster centerpoints, are arranged on a grid, for example this
rectangular two-dimensional grid. The grid defines which centerpoints are close to each other (the “neighbourhood”
function), and this affects the learning so that vectors which are close to each other end up representing similar data
points. If the neighbourhood function is binary, it basically says which model vectors are close to each other. The
dashed square in the figure shows the set of model vectors which are close to w;. The lines connecting the adjacent
nodes are another way of showing the grid structure.

between the i-th and j-th model vectors on the topographic grid. In the simplest case, we use a binary h by setting

1, if [|rs — rj])2 <
hij=3 " Iei = 5[]" < e (13.10)
0 otherwise

for some distance «, which could be just 1 or 2. The r; and r; are the locations of the model vectors on the grid (not in the
data space). For example, in Fig. 13.7, the square shows the neighbours of the model vector w;, which are the model vectors
for which the neighbourhood function is equal to one, which are simply called the “neighbours”.

One variant of the SOM algorithm is then obtained as a simple modification of k-means:

1. Initialize the model vectors w; (e.g. randomly).
2. For each data point, find the closest model vector w;.

3. For each model vector w;, collect the set of those data points whose closest model vector was a neighbour of w; or w;
itself.

4. Take for each new model vector the mean over the set collected in step 3.

5. Repeat from step 2 until convergence.

The difference to k-means is in step 3, in which we collect the indices not only of those data points for which w; is closest, but
also of those for which one of the neighbours is the closest. This adds a smoothing effect in the sense that model vectors which
are close to each other on the grid tend to move close to each other in the data space as well.

The output of the SOM is dependent on the initial value (unlike MDS). In Figs 13.8-13.9 we show the results of SOM for
two different initializations. In the first one, it found the right solution, but in the second, it got stuck something like a local
minimum (strictly speaking, we cannot talk about local minima since we are not minimizing a well-defined objective function,
but the same general idea applies here). One way of alleviating the problem of “local minima” is to use a more intelligent
initialization, for example, by PCA.



13.3. KOHONEN’S SELF-ORGANIZING MAP 99

0.8
0.6

0.4

-1 1 1 1 1 1 1 1 1 1 |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13.8: Application of SOM to the same data as above. Here, we arranged the model vectors on a one-dimensional
grid, i.e. in a single “row”, instead of a two-dimensional grid. The connecting lines in the plot show the order of the
model vectors in the row. Starting from a good initial point, the SOM found a good solution.

Figure 13.9: Application of SOM to the same data as above. Starting from a bad initial point, the SOM got stuck in
a “local minimum”.



Chapter 14

Short comparison of methods

To end the story, let’s have a short comparison of the methods we learned.

PCA /FA, nonlinear projections

ICA

clustering (k-means, GMM)

what sample sizes?

(nonliner: not high)

Applicable to medium / high low / medium (< 1000) low/medium /high
what dimensions?
Applicable to small/medium/high rather high small/medium /high

Immediate goal

visualization,
reduce computation & noise

finding underlying
components / sources

intuitive interpretation,
compression

Utility as generally useful, e.g. for ICA, sometimes useful, particularly if | Apply e.g. regression
preprocessing regression & classification combined with variable selection | separately in each cluster
Optimization quadratic, except for SOM complicated, general very special form
problem (thus EVD) (Gradient method, FastICA) (k-means, EM)

Problems with

no, except for SOM

yes

yes

local maxima
Probabilistic

only FA yes only gaussian mixture model

The point on sample sizes may not be obvious based on the course material. But if you tried out ICA with rather small data
sizes, you would see that the errors are too large. Basically, measuring non-Gaussianity needs a lot of data points, much more
that measuring, e.g. the mean or (co)variance. Also, the amount of data needed grows fast as a function of dimension, so ICA
cannot be used in very high dimensions.

Regarding local maxima, we see that methods based on maximization of quadratic forms (PCA, some variants of FA, MDS and
some of its variants) are superior, since they have no local maxima and can be solved by eigen-value methods.

ICA is not really a preprocessing method in itself since it does not reduce the dimension and often the orthogonal rotation that
it makes on the whitened data does not make any difference in further processing. Many classification methods, for example,
would give identical results for ICA and data whitened by PCA. However, this need not be so, because we might be able to
select the most useful independent components for further processing. Furthermore, many fashionable classification methods
include such selection of components implicitly in the form of an L1 penalty (e.g. the LASSO methods). For those methods,
preprocessing by ICA might be very useful because selecting a subset of independent components is likely to be more meaningful
that selecting a subset of the original variables.

At this point, it is a useful exercice to go back to the four real-life examples in the introductory chapter (Figs. 1.1-1.4). Which
methods would enable us to make the analyses reported in those publications? The authors did not always use exactly the same
methods as described in this course, but the methods in this course are able to produce similar results.

100



