
Mach Learn (2013) 92:225–250
DOI 10.1007/s10994-013-5357-4

Bayesian object matching

Arto Klami

Received: 14 January 2013 / Accepted: 11 April 2013 / Published online: 30 April 2013
© The Author(s) 2013

Abstract Matching of object refers to the problem of inferring unknown co-occurrence or
alignment between observations or samples in two data sets. Given two sets of equally many
samples, the task is to find for each sample a representative sample in the other set, without
prior knowledge on a distance measure between the sets. Given a distance measure, the prob-
lem would correspond to a linear assignment problem, the problem of finding a permutation
that re-orders samples in one set to minimize the total distance. When no such measure is
available, we need to consider more complex solutions. Typical approaches maximize statis-
tical dependency between the two sets, whereas in this work we present a Bayesian solution
that builds a joint model for the two sources. We learn a Bayesian canonical correlation anal-
ysis model that includes a permutation parameter for re-ordering the samples in one of the
sets. We provide both variational and sampling-based inference for approximative Bayesian
analysis, and demonstrate on three data sets that the resulting methods outperform the earlier
solutions.

Keywords Canonical correlation analysis · Matching · Permutation · Bayesian analysis

1 Introduction

The task in object matching is to learn correspondence of samples in two data sets. A clas-
sical example considers a set of agents and another set of jobs, and the task is to assign each
job for exactly one agent. For each agent-job pair we have a specific cost, corresponding,
for example, to how well they perform the job or how much it costs, and the goal is to find
the assignment that minimizes (or maximizes) the total assignment or matching cost. The
problem is known as the maximum weight matching in a bipartite graph, or as linear assign-
ment problem. Efficient polynomial time algorithms exist for finding the match, such as the
classical Hungarian algorithm (Kuhn 1955).

Editors: Zhi-Hua Zhou, Wee Sun Lee, Steven Hoi, Wray Buntine, and Hiroshi Motoda.

A. Klami (�)
Helsinki Institute for Information Technology HIIT, Department of Computer Science, University
of Helsinki, Helsinki, Finland
e-mail: arto.klami@hiit.fi

mailto:arto.klami@hiit.fi

226 Mach Learn (2013) 92:225–250

The classical setup takes the costs for the agent-job assignments as input. This is equiv-
alent to assuming that we are given a distance measure between the two sets, and the goal
is to minimize the total distance. In this work we study more complicated setups where no
such distance is known. Instead, we are merely given two vector data sets representing the
items in the two sets, with no known relationship between the feature representations. In
the classical example of agent-job matching, we might have for each agent a set of features
describing their physical abilities and test scores, whereas for the jobs we could have the
text of the job advert. The task is still to assign each job for one of the agents, but obviously
the standard algorithms for solving the assignment problem do not apply. To highlight the
notion of possibly wildly different feature representations, Yamada and Sugiyama (2011)
used the phrase cross-domain object matching (CDOM) to denote the problem.

Since no distance between the sets is given, we must replace the task of minimizing
the total distance by something else. In recent years, a number of solutions have been pro-
posed based on maximization of statistical dependency, measured for example by the mutual
information, between the two sets. This corresponds to making an assumption that the cor-
rect assignment is the one that reveals the highest degree of statistical dependency between
the sets. One intuitive justification for the idea is the observation that randomly permuting
samples of the correct match will decrease the dependency, eventually making the two sets
independent if all pairs are replaced with random ones. To our knowledge, the idea of find-
ing the match that maximizes the statistical dependency was independently first suggested
by Haghighi et al. (2008), Tripathi et al. (2009), and Quadrianto et al. (2009). The first two
measure the dependency with linear canonical correlations, whereas the last one uses the
kernel-based Hilbert-Schmidt Independence Criterion (HSIC; Smola et al. 2007), but con-
ceptually the methods are closely related. Later for example Tripathi et al. (2010), Tripathi
et al. (2011), Jagarlamudi et al. (2010), Quadrianto et al. (2010), Yamada and Sugiyama
(2011) and Djuric et al. (2012) have presented improved models and extensions based on
the same idea.

An alternative criterion for learning the match comes from joint modeling. Given the two
sets, we can write a joint generative model for both, including a permutation over the sam-
ples of one of the sets as part of the model. Then a reasonable assumption is that the correct
match is obtained with the permutation that results in the best joint model. This idea was
proposed before the dependency-maximization solutions by Jebara (2004) who maximized
the likelihood of a joint Gaussian model. Another example of a method optimizing the joint
likelihood is the matching canonical correlation analysis (MCCA) by Haghighi et al. (2008),
which was already mentioned in the previous paragraph; it can be seen as a method that both
maximizes the canonical correlation between the two sets but also maximizes the likelihood
of a specific probabilistic model, namely the probabilistic interpretation of canonical corre-
lation analysis (CCA; Bach and Jordan 2005).

In this work we present another solution that fits both motivations, extending our prelimi-
nary publication (Klami 2012). We solve the matching problem by building an optimal joint
model, but instead of maximizing the likelihood we do full Bayesian inference, searching for
a posterior distribution over the permutations to characterize the set of possible matches. The
connection to dependency-maximizing solutions is obtained by choosing Bayesian canon-
ical correlation analysis (BCCA; Klami et al. 2013) as the underlying probabilistic model.
Since the model implements CCA, our solution will also maximize the canonical correlation
between the sets. Furthermore, it corresponds to the Bayesian solution of MCCA.

The match is learned by introducing a permutation parameter π , which is a N × N bi-
nary matrix with unit row and column sums, into the BCCA model. The main challenge in
Bayesian analysis of the model is then in learning the posterior over the permutations. While

Mach Learn (2013) 92:225–250 227

the set of permutation matrices is discrete, there are N factorial different permutations. Ex-
act inference over such a huge space is not feasible, and hence the main contributions of
this work are several alternative approximative strategies that enable simultaneous poste-
rior inference over the permutations and the rest of the BCCA parameters. In particular, we
will present both a Gibbs sampler with approximative and exact conditional distributions
for the permutations given the rest of the parameters, as well as variational approximation
with varying degree of accuracy for a term approximating the posterior over the permuta-
tions. The former is a novel contribution of this work, whereas the latter was preliminary
presented already by Klami (2012).

To empirically evaluate the various alternative approximations, we compare the proposed
method with the best existing algorithms using three benchmark data sets: matching left and
right sides of images based on their content, matching metabolic profiles of different individ-
uals, and cross-lingual document alignment. For all experiments we compare the proposed
methods with the leading kernelized sorting variant of convex kernelized sorting (CKS) by
Djuric et al. (2012) and the maximum likelihood solution of our model, which corresponds
to Haghighi et al. (2008) and Tripathi et al. (2011). In all three tasks the proposed methods
outperform the earlier methods.

We will start by formally introducing the matching problem and our Bayesian formula-
tion for it. We then summarize the Bayesian canonical correlation analysis (BCCA) model
as presented by Klami et al. (2013), which is used as the underlying latent variable model
in our matching solutions. We go through both the sampling and variational inference for
that model, and then proceed to the main contributions of this work: The matching Bayesian
CCA. Again we cover both the sampling and variational inference, before explaining related
work and the empirical comparisons.

2 Object matching

2.1 Problem formulation

Given two sets of N objects, denoted by X and Y , the goal is to discover a permutation
matrix π over the objects in Y such that the ith object in X corresponds to the object in Y
for which π j i = 1. The correspondence is defined by a cost function c(X , Y|π) which is
maximized with respect to π ∈ P . Here P ∈ {0,1}N×N is the set of all N × N permutation
matrices, binary matrices with unit row and column sums.

In this work the samples will be represented as real-valued vectors, and hence the sets are
represented as matrices X ∈ R

Dx×N and Y ∈ R
Dy×N . Individual samples will be denoted by

column vectors xi and yj . In general, there does not need to be any correspondence between
the feature spaces of the two sets; their dimensionalities can differ, as well as the actual
features.

In case we have a distance measure between the two sets, providing distances dij between
the samples xi and yj , the problem is straightforward. It is an instance of bipartite graph
matching problems, and can be solved as a linear assignment problem (Kuhn 1955) by
minimizing the total distance c(X , Y|π) = ∑N

i=1

∑N

j=1 π j idij . In this work we are interested
in scenarios where no such distance is known. Then we need to use alternative costs that,
when maximized, result in a good match.

228 Mach Learn (2013) 92:225–250

2.2 Bayesian matching

We formulate a solution to the matching problem by straightforward joint modeling. We
assume the data is generated by a latent variable model of the type

p(X,Y) =
N∏

i=1

∫

p(xi |zi)p(yi |zi)p(zi)dzi .

That is, the i.i.d. samples in the two data sets are conditionally independent given a latent
variable zi .

The matching is introduced as an explicit permutation matrix π ∈ P applied to re-order
the samples in one of the data sets. We indicate by π j i = 1 that the sample yj pairs with the
latent variable zi (which is associated with the sample xi), and using π .i to denote the ith
column we can write the Bayesian matching model as

p(X,Y) =
∫

P

(

p(π)

N∏

i=1

∫

p(xi |zi)p(Yπ .i |zi)p(zi)dzi

)

dπ . (1)

The task in Bayesian matching is then to find the posterior distribution of the permutation,
p(π |X,Y), which cannot be done analytically. In this work we will introduce two alternative
strategies for approximating it for one particular model. One approach is based on variational
approximation of the posterior and the other uses Gibbs sampling to draw samples from the
posterior. While any joint model could in principle be used, the inference details will depend
on the choice of the model. Next, we will summarize our choice for the underlying model
before explaining how it needs to be modified to solve the matching problem.

3 Bayesian CCA

As the actual model we use the Bayesian CCA model as presented by Klami et al. (2013),
which matches the choice of maximizing correlation made by the earlier solutions of
Haghighi et al. (2008) and Tripathi et al. (2011). This means our approach is maximiz-
ing both the joint marginal likelihood and a dependency measure. Furthermore, it has the
intuitively appealing property that we need not consider variation independent of the other
set while learning the match, since CCA uses separate components independent of the per-
mutation for modeling that.

The Bayesian CCA is a fairly simple linear model for two multivariate data sets. Each
sample is represented by a latent variable zi which is linearly transformed to both observa-
tion spaces, complemented with additive Gaussian noise. The Bayesian CCA for K compo-
nents is defined as

zi ∼ N (0, I),

[xi;yi] ∼ N (Wzi ,Σ),
(2)

where [xi;yi] denotes the feature-wise concatenation of the samples with D = Dx + Dy

dimensions and zi ∈ R
K×1. The basic idea of BCCA is that the latent components model

only the correlations. To achieve this, we either need to use block-diagonal covariance Σ

Mach Learn (2013) 92:225–250 229

Fig. 1 Left: Plate diagram of the model. The latent variables zi are directly associated with samples xi ,
whereas the samples yi use the permutation π to choose which latent variable to use. The ARD prior terms
βxk and βyk induce sparsity in the linear mappings Wx and Wy so that some of the K components are
being used for modeling variation independent of the other data set. The plate corresponds to the ARD
prior used with variational approximation; the spike-and-slab prior used for the Gibbs sampler has the same
general structure and differs only in the priors given for W. Right: Illustration of the model as coupled matrix
factorization. The two factorizations are tied through the shared set of latent variables Z and through the
permutation π re-ordering the observations in Y (which is equivalent to re-ordering latent variables for that
set). The projection matrices Wx and Wy are made sparse (the un-shaded regions correspond to zero values)
so that some of the components are used for modeling variation shared between the two sets, whereas some
model the variation independent of the other set

that allows free correlations between the features within each set (Bach and Jordan 2005;
Klami and Kaski 2007), or we can use diagonal covariance

Σ =
[

τ−1
x I 0
0 τ−1

y I

]

,

but need to model the view-specific correlations with additional components (Virtanen et al.
2011; Klami et al. 2013); this equals assuming the view-specific variation can be modeled
with low-rank covariance.

Here we adopt the latter choice, which results in considerably faster and more accurate
algorithm for high-dimensional data. In particular, we impose group-wise sparsity prior on
W ∈ R

D×K so that some of the K components are used for modeling dependencies between
the two sets, whereas some are used for describing variation independent of the other set. By
re-writing W = [Wx;Wy] so that Wx covers the dimensions spanned by X (and similarly for
Wy), we want solutions where some of the columns of W become sparse in a very specific
sense: Either Wx or Wy , or both, is completely zero for that component.

Such a solution splits the components into three groups. For some components all ele-
ments are free; these are the components that model the correlations between the two sets.
For some components the elements in Wx are free but the elements in Wy are zero; these
model variation specific to the data set X. Similarly, the components for which Wy is free
but Wx is zero model the variation specific to Y. Finally, components for which both parts
become zero can be dropped out, resulting in automatic complexity selection.

The model is illustrated in Fig. 1, which shows the plate diagram of the generative mode,
as well as graphical illustration of how the group-wise sparsity makes some of the compo-
nents to model low-rank covariance specific to each data set. The figure shows the model as
it is used for matching, explained in Sect. 4, but dropping the permutation makes the illus-
tration applicable to regular BCCA as well. Next we will briefly recap two alternative in-

230 Mach Learn (2013) 92:225–250

ference algorithms for BCCA following Klami et al. (2013), using two different approaches
for achieving the group-wise sparsity structure, before explaining the matching variant.

3.1 Gibbs sampling with spike-and-slab prior

The spike-and-slab is a mixture prior that gives some probability for the value to be exactly
zero (the spike) and some probability for it to be drawn from a proper distribution (the slab).
We use a group-wise extension of spike-and-slab by drawing for each component two binary
latent variables hxk and hyk that tell whether to draw the values of Wxk and Wyk from the
slab (a Gaussian distribution) or from the spike (delta distribution at zero). Here Wxk denotes
the Dx -dimensional vector corresponding to the kth component, the kth column of Wx . The
h are drawn from Bernoulli distributions, and for hxk = 1 we then draw the elements of Wxk

independently from a Gaussian distribution whose precision βxk is sampled from a Gamma
prior. For hyk = 0 we simply set all elements of Wxk = 0 to zero, and the formulas for Y are
equivalent except for the subscript.

Klami et al. (2013) derived a Gibbs sampler for BCCA using the above prior, by extend-
ing the element-wise sparse factor analysis model by Knowles and Ghahramani (2011). The
algorithm is conceptually very straightforward, drawing each parameter from its analytic
posterior given all of the other parameters. Since the model uses conjugate priors for all of
the parameters, these can be derived easily. The latent variables h, however, are drawn by
integrating out W; the resulting posterior is still analytically tractable. The full conditional
densities are summarized in the Appendix.

3.2 Variational approximation with ARD prior

An alternative for sampling is to approximate the posterior distribution with a simpler,
tractable, distribution. The approximation is learned by minimizing the Kullback-Leibler
divergence between the approximation and the true posterior. We adopt the variational ap-
proximation provided by Klami et al. (2013), which uses group-wise extension of the auto-
matic relevance determination (ARD) prior for achieving the right kind of sparsity.

The prior is defined as

βxk ∼ G(α0, β0), βyk ∼ G(α0, β0),

p(W) =
K∏

k=1

(
N

(
Wxk|0, β−1

xk I
)

N
(
Wyk|0, β−1

yk I
))

.

where Wxk again denotes the kth column of Wx , and G(α0, β0) is a flat Gamma prior. It
achieves the group-wise sparsity by driving the precision βxk towards infinity for the com-
ponents that are not needed for modeling the X data set (and similarly for Y). Contrary to
the spike-and-slab prior, this does not result in exact zeroes in W. Instead, the unnecessary
values will just become very small; this is still sufficient for the model to provide the CCA
solution, and it is easier to do variational approximation over a continuous prior.

An efficient variational approximation is provided by the factorization

Q = q(τx)q(τy)

K∏

k=1

q(βxk)q(βyk)

N∏

i=1

q(zi)

D∏

d=1

q(Wd.), (3)

and the parameters of each term are learned by updating alternatively each of the term. The
full updates are given by Klami et al. (2013), and are hence not replicated here.

Mach Learn (2013) 92:225–250 231

4 Matching Bayesian CCA

The matching Bayesian CCA model extends the above formulations by replacing the likeli-
hood part in (2) with

[xi;Yπ .i] ∼ N (Wzi ,Σ),

where π ∈ P . We assume a uniform prior over all N × N permutation matrices, but could
easily incorporate priors obtained from additional information sources as long as they fac-
torize over the sample pairs. The resulting model is illustrated in Fig. 1.

Including the permutation in the model requires also corresponding changes in the in-
ference procedures. These changes are conceptually very easy. For the sampler we merely
include the new parameter in the model, derive a distribution for sampling it given the rest
of the parameters, and condition all other sampling formulas on the permutation. For the
variation approximation we complement (3) with an extra term q(π), which is a distribution
over permutation matrices, and an update rule for that term. Also, we need to change the
updates for other terms to integrate over the new term.

In both approaches most of these changes are easy to do. However, the part where we
either sample the permutation or update its approximation is non-trivial. We will next present
several alternative techniques for achieving these steps, starting with the Gibbs sampler.

5 Matching BCCA with Gibbs sampler

Given a specific permutation, the changes needed for the sampling equations of W, h, β and
τ are trivial; we merely need to re-order the samples in Y by multiplying it with the current
permutation π before drawing the new samples.

The two remaining parameters, the permutation π and the latent variables zi de-
pend cyclicly on each other, and hence we sample them jointly, based on a slight re-
parameterization of the model. The latent variables zi can be equivalently written as

zi = μx
i + μ

y

j + ξ i

where μx
i = ΣzτxWT

x xi , μ
y

j = ΣzτyWT
y yj , and ξ i is zero-mean Gaussian noise with covari-

ance Σz = (τxWT
x Wx + τyWT

y Wy + I)−1. In other words, the posterior distribution depends
on two deterministic terms, one that depends on the sample xi and the other that depends on
the corresponding sample yj in the other set, as well as an independent noise term. Impor-
tantly, the random term does not depend on the permutation at all; changing the permutation
only influences the second deterministic term.

Using Ξ to denote the collection of all ξ i variables, we can write the conditional distri-
bution p(π ,Z|rest) as p(π,Ξ |rest) = p(π |Ξ , rest)p(Ξ |rest), decoupling the two variables.
Here “rest” indicates all of the other model parameters, which are not explicitly written for
notational simplicity. In principle it would be easy to draw samples from this conditional;
the latter term is Gaussian and the former is a discrete distribution for which we can evaluate
the log-probabilities as

logp(π |Ξ) = −
N∑

i=1

τy(yj − Wyzi)
T (yj − Wyzi) + const,

232 Mach Learn (2013) 92:225–250

where j is chosen such that π j i = 1. However, for directly drawing posterior samples from
this discrete distribution we would need to normalize the probabilities with a term that re-
quires computing the probability for all possible permutations. This is infeasible for all but
the smallest N , since there are N ! different permutations.

To handle the difficult conditional we propose an approximative Metropolis-Hastings
step with Gibbs-like proposal distribution q(π∗,Ξ ∗) = q(π∗|Ξ ∗)q(Ξ ∗) that does not de-
pend on the current values of π and ξ . For the latter term we use the actual conditional
distribution q(Ξ ∗) = p(Ξ ∗|rest) that is a Gaussian, whereas for q(π∗|Ξ ∗) we use a simple
proposal distribution that is the delta distribution centered around the most likely permuta-
tion given Ξ ∗ and the other parameters. We can easily find that permutation by solving a
LAP with the cost matrix

Aij = τy

(
yj − Wyz∗

i

)T (
yj − Wyz∗

i

)
. (4)

The Metropolis-Hastings ratio for acceptance of the proposals is given by

p(π∗,Ξ ∗)q(π,Ξ)

p(π ,Ξ)q(π∗,Ξ ∗)
= p(π∗|Ξ ∗)p(Ξ ∗)q(π |Ξ)q(Ξ)

p(π |Ξ)p(Ξ)q(π∗|Ξ ∗)q(Ξ ∗)
= p(π∗|Ξ ∗)

p(π |Ξ)

where q(π |Ξ) = q(π∗|Ξ ∗) = 1 and q(Ξ) = p(Ξ) cancel out. Consequently, the propos-
als should be accepted with probability min(1,p(π∗|Ξ ∗)/p(π |Ξ)). Computing the ratio is
infeasible due to the normalization constants that are sums over all permutations.

We propose approximating the ratio with a constant p(π∗|Ξ ∗)/p(π |Ξ) = 1, which
means accepting all proposals. The sampler will hence not draw samples from the true
posterior, but in practice the approximation is fairly accurate due to two properties. First,
the relative probability of the most likely permutation is effectively independent of the like-
lihood of that permutation. This means that the sampler does not impose bias in favor or
against permutations that fit the data well. Instead, it merely has a small bias towards Ξ that
would give roughly equal probability for several permutations, the kind of latent variable
allocations where some variables lay near the Voronoi border of two data points. Second,
for high-dimensional data p(π |Ξ) approaches one (and hence also the ratio approaches
one), since the best permutation becomes increasingly more likely compared to all others.
We provide empirical evidence for these arguments in Sect. 9.1. Using small enough N that
makes explicit normalization of p(π |Ξ) feasible and hence permits exact Gibbs steps, we
show that the resulting marginal posterior over the permutations is a good approximation
for the true marginal posterior. An intuitive explanation is that even though we use a crude
approximation for q(π |Ξ), the marginal posterior depends more on Ξ and hence the joint
samples will still cover roughly the same part of the permutation space. This also makes the
chain ergodic.

In case one is not willing to make the above approximation, an exact sampler can be de-
rived by updating only a subset of latent variables at a time. For a subset of sufficiently small
size (in practice at most 6 or 7) we can go though all possible permutations and compute the
relative probabilities of each of them. We then draw that subset of the permutation matrix
by conditioning on the rest of the parameters and the remaining part of the permutation. In
practice we suggest drawing a random subset of samples, updating the posterior for those,
and repeating this procedure several times to obtain the next posterior sample.

An alternative exact sampler could be derived based on the pseudo-marginal likelihood
method by Andrieu and Robers (2009). They prove that the even if the likelihoods in
Metropolis-Hastings acceptance ratio are replaced with estimates the chain will still pro-
duce samples from the correct posterior, assuming the estimation error is independent of

Mach Learn (2013) 92:225–250 233

the sampling chain. In our case, we could estimate the likelihood p(π |Ξ) by estimating the
normalization constant e.g. with random walks over the permutations. However, we do not
think that the added computational overhead needed to estimate the normalization constant
would be worth it, and hence we experiment only with the approximative variant. From this
perspective, it corresponds to using a constant estimate p(π |Ξ) ≈ c, which already seems
to have almost independent approximation error.

Posterior summaries The samplers described above produce a collection of samples from
the posterior distribution p(Z,π , τ,h,W, β|X,Y). In matching problems the primary inter-
est is in the marginal posterior p(π |X,Y), which is obtained by counting how many times
each of the possible permutations were drawn during the process.

Various posterior summaries can be useful for interpretation. The most obvious one is
the mean over the permutations π̃ = 1

S

∑S

s=1 π (s), where π (s) is the sth posterior sample
collected after a burn-in period and S is the total number of samples. This mean is not a
permutation matrix itself, but instead a doubly-stochastic matrix that can be interpreted as a
soft permutation; its entries tell the probability that two samples are paired with each other.

In many applications we are also interested in obtaining a single permutation that sum-
marizes the whole posterior. We create the summary by finding the permutation π that max-
imizes

∑
diag(π̃π), the total probability of each sample pairing with its chosen pair. The

cost is again that of an assignment problem, and hence we obtain the solution by applying
LAP to the weight matrix π̃ . This solution is the same that Tripathi et al. (2011) used for
finding a consensus of multiple isolated matching tasks.

6 Matching CCA with variational approximation

The variational approximation for matching CCA was presented in our preliminary work
(Klami 2012). Again the basic idea is straightforward; we merely complement the posterior
approximation with q(π), which is a distribution over a set of the permutations.

Even approximating the distribution that is over the N !-dimensional space initially
sounds infeasible, but in practice the problem is simplified by the same observations that
were used to motivate the Gibbs sampler above: (i) We can efficiently find the permutation
π̂ that maximizes the variational lower bound and (ii) only a tiny faction of other permu-
tations have clearly non-zero probability. Given these observations, we can construct q(π)

by properly normalizing a distribution over a small set of permutations S = {π (m)}M
m=0 that

includes π̂ = π0 and some nearby permutations.
Given a set S of feasible permutation matrices with their associated weights wm, it is

easy to compute the expectation 〈π〉 = 1∑
wm

∑M

m=0 wmπ (m). Simple verification confirms
that the update rules of regular Bayesian CCA can be re-used for all other terms in the
approximation, assuming we simply transform Y by 〈π〉 after updating the match. Hence,
the only challenging part is again in updating the permutations.

6.1 The most likely permutation

For the Gibbs sampler we could find the most likely permutation by merely looking at the
distances between yj and Wyzi . For variational approximation, however, we need to inte-
grate over the approximating distribution. The integrals can be computed analytically since
the approximation factorizes over the different terms, but the resulting formulas are a bit
more complex than for the sampler.

234 Mach Learn (2013) 92:225–250

The log-cost of a permutation is given by

logwm ∝ −1

2

N∑

i=1

〈
τy

(
Yπ

(m)
.i − Wyzi

)T (
Yπ

(m)
.i − Wyzi

)〉
,

where 〈·〉 denotes the expectation over the approximating posterior. To find the most likely
permutation π̂ , we collect all pairwise expected distances into a single N ×N matrix A with
entries

Aij = 1

2

〈
τy(yj − Wyzi)

T (yj − Wyzi)
〉

= 1

2
〈τy〉

[
yT

j yj − 2yT
j 〈Wy〉〈zi〉 + Tr

(〈
WT

y Wy

〉〈
zizT

i

〉)]
, (5)

where Tr(·) denotes the matrix trace. A regular linear assignment problem solver will then
find a globally optimal choice of π̂ so that

∑
diag(Aπ̂) is minimized.

Similar to the re-parameterization in the Gibbs sampler, the values 〈zi〉 are based on a
representation that de-couples the permutation and the stochastic part. This time the relevant
expression stems from the update rule for q(zi) = N (μij ,Σz) that can be written as

μij = Σz〈τx〉
〈
WT

x

〉
xi + Σz〈τy〉

〈
WT

y

〉
yj ,

Σz = (〈τx〉
〈
WT

x Wx

〉 + 〈τy〉
〈
WT

y Wy

〉 + I
)−1

.

Again the permutation only influences the second deterministic term in the mean μij . This
re-parameterization allows writing the distances in the compact form (5) and also makes
transparent an additional factorizing assumption: we assume that the uncertain part ξ i = zi −
μij (with covariance Σz) is independent of j . This is a necessary assumption for efficient
computation, but means that the approximation is more restricted.

Finally, since CCA automatically infers which of the K components model correlations
between the two sets, it makes sense to learn the match only over those components. We
can do that by analytically integrating out zi for the components that do not describe any
variation in X (that is, βxk is very large) – the ones not active in Y anyway have no effect
on A. Denoting by Vy the columns of Wy corresponding to the components marginalized
out and by Uy the remaining columns, the entries in (5) are replaced by 1

2 〈(yj −Uyzi)Ψ (yj −
Uyzi)〉, where Ψ = (VyVT

y + τ−1
y I)−1. For efficient inversion we use the Woodbury identity

Ψ = τyI − τ 2
y Vy(I + τyVT

y Vy)
−1VT

y . For large Dy we can further approximate Ψ = τyI for
faster computation, since the matrix is anyway close to diagonal in many cases.

6.2 Full posterior over the permutations

To create a full distribution over the permutations we need to complement the most likely
permutation with a set of other reasonable permutations. For this purpose we propose two
alternative strategies.

Local perturbations By making the assumption that ξ i are independent of the permuta-
tion π , we can directly use costs of the form wm ∝ e−∑

diag(Aπ (m)) to obtain the relative
probabilities of different permutations π (m). We can then approximate the full posterior by
repeatedly slightly perturbing π̂ and computing the relative cost of the resulting alternative

Mach Learn (2013) 92:225–250 235

permutations. This will produce a local unimodal approximation centered around the mode,
to complement the other unimodal terms in (3).

To create the set of other feasible permutations, we find N other permutations that differ
minimally from the optimal one. We exclude one pair at a time from the optimal match
(by setting the corresponding element in A to infinity) and solve the AP again. All of the
resulting matches π (m) will be worse than the optimal one, but will be maximally close
in terms of probability due to having only one extra constraint. Note, however, that they
will typically differ for multiple pairs, since the single constraint propagates to multiple
changes in the full permutation. For each unique π (m) we then evaluate the associated cost
wm, and the expectation over the approximative posterior is given by the weighted average
〈π〉 = 1∑

wm

∑M

m=0 wmπ (m). Here π (0) = π̂ denotes the most likely permutation. Note that
M ≤ N , since we create N alternative permutations, but it is possible that several constraints
result in the same permutation.

An interesting observation is that for large Dy the weight wm will be negligible for
most π (m). Even though the algorithm generates maximally similar permutations by adding
always just one additional constraint, most of them have very low probability for high-
dimensional data. Hence, for high-dimensional data it might be feasible to ignore the al-
ternative permutations altogether and simply use the most likely one. For low-dimensional
data the posterior over the permutations is smooth, and no efficient algorithm for finding all
likely permutations exists. The above process will, however, generate a reasonable subset
of those in the immediate vicinity of the optimal one, providing a local approximation of
the posterior around its mode. It is also easy to extend the procedure to create larger set of
likely permutations, for example by creating also alternative permutations with more than
one constraint. In the experiments we use the algorithm as described above, creating only
the N alternative permutations. Preliminary tests indicate that covering bigger set of likely
permutations slightly improves the accuracy, but for these applications the gain is small
compared to the increased computational cost.

Numerical integration Like explained above, the straightforward variational approxima-
tion makes one fairly strong independence assumption: It assumes that ξ i , the stochastic
parts of the latent variables zi , are independent of the match. This assumption allows ef-
ficient computation of Aij , but it also implies that the relative probabilities of the different
permutations will be incorrect. In particular, the uncertainty in the distances is not fully taken
into account, but instead the model favors strongly the closest samples even if the variance
of the distance was large.

To avoid the problem we should model the dependencies between the choices instead
of allowing each yj to independently integrate over zi . If a particular value is chosen for zi

then it should simultaneously become, for instance, both a better pair for yj and a worse pair
for some other sample yl . In other words, the posterior distributions depend on the chosen
match: Conditional on the choice “yj is paired with xi”, the distribution of Wyzi shifts closer
to yj , and often this implies it shifts away from some other samples.

Explicitly modeling such dependencies requires simultaneously integrating over the N

latent variables zi to compute the relative costs of different permutations. Solving such an
integral analytically seems hopeless, and hence we resort to Monte Carlo integration which
closely resembles the way the Gibbs sampler works. Instead of assuming independent set
of ξ i values for each sample yj and integrating them out (which would correspond to (5)),
we draw a joint random sample Ξ (m) = {ξ (m)

i }N
i=1 that is independent of j . We then re-

compute Aij for all pairs, not integrating over zi but instead replacing them with the sampled
value (note, however, that we still integrate over q(τy) and q(W)). We then find the best

236 Mach Learn (2013) 92:225–250

permutation for this particular sample, and by repeating the process M times we can estimate
〈π〉 as the unweighted average of the resulting permutations.

It is worth noting that the above numerical integration scheme does not result in mono-
tonically increasing variational lower bound for the marginal likelihood. We have not found
this to be a problem in practice, and as shown by the experiments the resulting match is bet-
ter than the one obtained when not modeling the dependencies between the latent variables.
The gain is particularly clear for high-dimensional data.

6.3 Initialization

As demonstrated by most earlier works, the matching problem is very sensitive to the ini-
tialization. Our variational solution is no exception, due to the iterative mean-field algorithm
for updating the variational approximation. Hence, we present an initialization scheme that
borrows elements from several earlier solutions.

The basic idea is that we solve the problem L times, each time with a different initial-
ization. We then create a consensus of those matches, following the idea by Tripathi et al.
(2011), by counting how many times each of the sample pairs were matched together in the
set of the L solutions. Finally, the actual solution is computed by initializing the model with
the consensus (normalized to probabilities) and solving the matching problem one more
time.

The reasoning behind the strategy is that by choosing diverse initial models we can better
cover the space of potential matches, making the unimodal posterior approximation less of
a limitation. However, each individual initialization should still be a good one. To get a set
of different but still good initializations, we use a modified version of the PCA-initialization
suggested by Quadrianto et al. (2010). For each of the L initializations we compute PCA
separately for both sets and order the samples according to the first component. For increas-
ing the diversity, we compute the PCA from random subset of N/2 dimensions instead of
the whole data, getting slightly different initialization for each run. Alternatively, one could
add some random noise to the first PCA component before sorting the data points. Finally,
we make the initial permutation smoother by convolving it with a Gaussian kernel (the exact
width does not seem to matter).

7 Related work

Most earlier solutions to the matching problem maximize statistical dependency between
the two sets. The idea is that statistical dependency should not arise by coincidence, but
instead a high degree of dependency should be indicative of having found the correct match.
A random permutation will make any two sets independent, and hence maximizing the de-
pendency will at least allow escaping that extreme. The practical methods can be divided into
two categories based on the dependency measure. The first category optimizes canonical cor-
relation between the sets, whereas the other category maximizes a kernel-based dependency
called Hilbert-Schmidt Independence Criterion (HSIC; Smola et al. 2007) or some other
kernel-based measure. The former require access to real-valued feature vectors for the two
sets, whereas for the latter it is sufficient to provide kernels representing pairwise-distances
within each set.

The matching canonical correlation analysis (MCCA) method was introduced by
Haghighi et al. (2008) for constructing bilingual dictionaries from monolingual corpora,
by matching the individual words in two languages. The basic idea of the algorithm is that

Mach Learn (2013) 92:225–250 237

it finds a linear subspace that maximizes the correlation between the sets (CCA; canonical
correlation analysis). Explicit representation for the subspace allows computing distances
between the samples in the two sets, and hence a LAP can be used for finding the match.
Since the subspace itself depends on the match, the algorithm alternates between these two
steps until convergence. The original algorithm is defined for semi-supervised matching
that requires an initial seeding with some known pairs, but Tripathi et al. (2009) presented
independently almost the same algorithm for fully unsupervised matching of probes of gene
expression platforms, and Tripathi et al. (2010) extended it to use kernel CCA while also
presenting the semi-supervised matching problem where some initial seed pairs are given.
Later, Tripathi et al. (2011) extended the CCA-based formulation to setups where the task
is to find a consensus of multiple matching problem solutions, and Sysi-Aho et al. (2011)
applied it to finding correspondence between metabolic profiles of different species. The
basic idea is to merge several matching problem solutions by learning one more LAP to find
a permutation that best agrees with the initial solutions.

The other category of dependency-maximizing matching solutions builds on the kernel-
ized sorting (KS) idea initially presented by Jebara (2004). Instead of finding an explicit
representation that allows computing distances (and hence solving the matching as a LAP),
the idea in kernelized sorting is to directly optimize a dependency measure that only depends
on kernels computed for the two sets. Quadrianto et al. (2010) introduced the standard KS
algorithm that maximizes the Hilbert-Schmidt Independence Criterion. The HSIC is defined
as the trace-norm of KL, where K and L are properly centered kernel matrices for the
two sets, and KS solves the matching problem by introducing a permutation matrix in that
cost. The resulting cost corresponds to a quadratic assignment problem (QAP), which is
NP complete (Burkard 1984). Quadrianto et al. (2010) solve the QAP by iteratively apply-
ing a LAP solver. Later Jagarlamudi et al. (2010) improved the algorithm by proposing an
improved initialization scheme and various other tricks to improve the robustness of KS so-
lutions. They also consider application-specific details for an important domain of matching
problems, natural language processing with specific tasks such as document alignment. Ya-
mada and Sugiyama (2011) introduced another variant that replaces the HSIC measure with
alternative kernel-based dependency measures, normalized cross-covariance operator and
least-squares mutual information, using the same iterative learning algorithm as Quadrianto
et al. (2010).

Recently, Djuric et al. (2012) provided an alternative optimization algorithm for kernel-
ized sorting. Instead of directly optimizing the QAP, they relax the optimization problem by
replacing the optimization space of permutation matrices with that of the doubly-stochastic
matrices; positive matrices with unit row and column sums. The resulting cost is convex
and hence they can find the global optimum of the relaxed cost. However, the solution does
not in general correspond with the solution of the original cost function, and even though
the algorithm does not need to solve assignment problems it is still computationally very
demanding as it performs constrained gradient-based optimization over a N2-dimensional
parameter space. Also, while the model produces soft assignments between the samples,
it does not correspond to a proper distribution over the permutations; it is merely the op-
timal solution over doubly-stochastic matrices. In the empirical sections, we will compare
the proposed models primarily with CKS, since Djuric et al. (2012) showed that it typically
outperforms other KS algorithms.

As mentioned already in the Introduction, the MCCA method by Haghighi et al. (2008)
can also be interpreted as maximizing the joint likelihood of the two data sets, based on the
probabilistic interpretation of CCA (Bach and Jordan 2005). In fact, the MCCA model is
identical to our formulation (1) except that it does not have priors for any of the model pa-
rameters and it uses maximum likelihood estimation. The model by Tripathi et al. (2011) can

238 Mach Learn (2013) 92:225–250

also be interpreted in similar fashion, since the maximum likelihood solution for probabilis-
tic CCA is equivalent to the classical CCA solution. These two methods are hence the closest
alternatives to ours, and in the empirical comparisons we will use them to demonstrate that
the improved accuracy of the Bayesian solutions is because of the posterior inference. For
running these comparisons we use the optimization algorithm as implemented by Tripathi
et al. (2011) since it does not require initial seed pairing, and use the abbreviation CCA-ML
to remind that the method corresponds to maximum likelihood estimation of a CCA-based
matching method.

Another example of a method maximizing the join likelihood is the multilingual topic
model by Boyd-Graber and Blei (2009). They learn a topic model for two languages by
matching their vocabularies based on a maximum a posteriori estimation of a permutation
matrix. While their eventual task is in learning the topic model itself, the matching solution
is an integral part of the model.

Besides the above two criteria (maximal dependency and optimal joint model) for defin-
ing the right match, one can solve the matching problem also by explicitly constructing a
distance between the two sets. This results in a non-iterative algorithm that merely needs
to compute the distances once, since given the distances a single LAP solver will find the
match. For example, Tripathi et al. (2011) used the manifold alignment method by Wang
and Mahadevan (2009) to compute the distances by aligning local neighborhoods for the
two sets in order to solve the matching problem. The application of Wang and Mahadevan
(2009) also constitutes a good example of a potential application domain; they seek to match
protein structures.

Some related work has also been done on posterior inference over permutations. While
these works have not considered the matching problem as such, they are relevant background
information. Kondor et al. (2007) considered exact variational inference over permutations
by using Fourier transformations, and Plis et al. (2011) mapped the permutations to a high-
dimensional hypersphere to do the same. These approaches are, however, only applicable
to small N , at most tens, and hence would not be sufficient for our scenarios where N is
in the order of hundreds. Leskovec et al. (2010), in turn, proposed a Metropolis sampler
for permutations based on swaps of pairs. Their sampler is effectively equivalent to the one
Gibbs-subset uses for sampling the posteriors, assuming we use J = 2; for larger J we
can consider more complex operations than mere swaps of two pairs. They also provide
illustrative characterizations of the properties of the permutation space, showing how only
a tiny fraction of the permutations have non-negligible probability; this matches exactly our
findings.

8 Method summary

Since the article describes two different inference algorithms and a number of variants for
both, we will here summarize the previous sections by naming the different alternatives.
After the summary, we provide the computational complexities for the variants and also for
the closest competitors described in the previous section.

1. Gibbs sampling with the most likely permutation (Gibbs-hard): Gibbs sampling for
all other parameters except the permutation and the latent variables. The permutations
are sampled with approximative Metropolis-Hastings step that jointly samples π and Z
given the rest of the variables. The sampler is approximative since it accepts all proposals
as if using Gibbs proposals, despite actually picking the most likely permutation given
the latent variables and the rest of the parameters.

Mach Learn (2013) 92:225–250 239

2. Gibbs sampling with subset updates (Gibbs-subset): Gibbs sampling is used for all
parameters. For sampling the permutation we select a random subset of J samples and
draw the permutation corresponding to those samples from the true posterior, enumerat-
ing all possible permutations of the elements. In empirical experiments we used J = 4
and drew the values for 100 randomly chosen subsets for each posterior sample.

3. VB with the most likely permutation (VB-hard): Variational approximation for all
parameters, except the permutation. For the permutation, we simply use the most likely
permutation π̂ . This variant is equivalent to the comparison method CCA-ML, except
that is does posterior inference over the CCA part instead of maximum likelihood.

4. VB with local permutations (VB-local): Variational approximation for all parameters.
The most likely permutation is complemented with a set of other feasible permutations
{π (m)}, obtained by re-optimizing the match with extra constraints that prevent each of
the samples in turn from picking its favorite pair. We then compute 〈π〉 as a weighted
average of these permutations.

5. VB with numerical integration (VB-numInt): Variational approximation for all param-
eters. For estimating q(π) we numerically integrate over q(zi) to model the dependencies
between the match and the latent variables. For each Z(m) drawn from the posterior we
solve the assignment problem to obtain a feasible permutation π (m). The expectation is
given by the flat average of such permutations.

8.1 Computational cost

The computational complexity for one iteration of Gibbs-hard, VB-numInt and VB-hard is
O(N3 + N2DK + NDK3), where D = max(D1,D2). The first term is because of solving
the LAP, the second for computing the costs of all possible pairs, and the last is for updating
the parameters of the BCCA model. Here K is typically small compared to N and D. For
VB-local the first term becomes O(N4), since it needs to solve the LAP N times for each
iteration. Gibbs-subset does not require solving LAP but instead it enumerates all permuta-
tions of size J , and hence the complexity is O(J ! + N2DK + NDK3).

Even though the computational complexity is the same for most of the methods, the
practical running times go up for the more accurate approximations. Gibbs-numInt needs to
solve the LAP M times, and hence takes roughly M times longer than VB-hard since the
LAP-step dominates the cost for all but very small N . To somewhat reduce the computa-
tional load, we update the match only after every 10 iterations; the permutations are anyway
fairly stable. One iteration for Gibbs-hard is roughly as efficient as one iteration of VB-hard,
but one typically needs to run the sampler for much longer than the VB algorithm that often
converges in tens of iterations. For the practical experiments we used 1,000 samples, mak-
ing Gibbs-hard roughly as fast as VB-numInt and VB-local that require less iterations but
solve LAP several times per iteration.

The computational complexity of the proposed methods is comparable to that of all of
the competing methods. With the exception of CKS, all of the kernelized sorting methods
and the CCA-based methods require repeatedly solving a LAP, which is the most time-
consuming part in typical applications. Hence, each iteration takes the same amount of time
as one iteration of our algorithms and the practical computation time depends on the number
of iterations required for convergence. In practice, all methods are applicable to problems
of similar magnitude, at least for hundreds of samples and possibly thousands with clever
implementation. However, it is worth noting that for solving MCCA and CCA-ML one
needs to invert a covariance matrix, introducing an additional complexity term of O(D3);
our models avoid this by modeling the correlations with explicit components.

240 Mach Learn (2013) 92:225–250

CKS does not need to solve LAPs, but instead performs gradient-based optimization
over a N2-dimensional parameter space. There is no easy way to quantify the number of
iterations needed for convergence, but computing the gradient as described by Djuric et al.
(2012) is O(N4) and hence at least for large N the iterations become slower than solving
a LAP and the method is not applicable to as large problems as the competing methods.
With the increased computational cost comes the advantage of guaranteed global optimum.
In Sect. 9.4 we demonstrate how this advantage can be borrowed for the proposed methods
by initializing the algorithms with the results of CKS.

9 Experiments

We start the experiment with an artificial data experiment, used to demonstrate the character-
istics of the solution. In particular, we will show how the two alternative inference strategies
have very different strength and weaknesses. We also demonstrate empirically the quality of
the approximation for the Gibbs-hard sampler.

After the demonstration, we compare the proposed methods with earlier matching prob-
lem solutions, using data collections analyzed by the earlier authors. We perform three dif-
ferent comparisons. The first is an image matching task from Quadrianto et al. (2010), the
second a metabolite matching task from Tripathi et al. (2011), and the last a cross-lingual
document alignment task from Djuric et al. (2012). In all cases we compare the proposed
methods with the leading kernelized sorting variant CKS by Djuric et al. (2012) and the
CCA-ML method by Tripathi et al. (2011) which correspond to finding the maximum likeli-
hood solution of our model. The purpose of these comparisons is to show that the proposed
solution is more accurate than the earlier solutions, while also demonstrating that the im-
provement comes from the Bayesian treatment of the model.

9.1 Artificial data

In this section we will apply the model on simple artificial data sets of varying dimension-
ality, to illustrate an important property of the inference strategies. We generated data sets
with N = 40 samples and Dx and Dy ranging from 10 to 640, by sampling data from the
model (2) that has four latent variables. We then applied all model variants to these match-
ing problems, initializing them with a permutation that has 50 % correct matches to simulate
a reasonably good starting point. The resulting accuracies, averaged over 20 different data
sets of each size, are shown in Fig. 2 (top), displaying an interesting trend: for low dimen-
sionality the VB algorithms are the best, but for high dimensionality Gibbs-hard is clearly
superior.

The reason for this in the shape of the posterior distribution over the permutations:
for high-dimensional data it is peaked around the best permutation, whereas for low-
dimensional data it is extremely wide; nearly all permutations are possible. This is illustrated
in Fig. 2 (bottom), which shows for each of the dimensionalities the probability of the most
likely permutation, computed for data with N = 8; for such a small set we can explicitly
numerate all of the 40,320 possible permutations and hence can compute the actual nor-
malized probability. We see that when the dimensionality grows, the probability assigned
for the most likely permutation gets larger. For low dimensionality, the posterior is very flat,
but already for D = 120 the posterior is so peaked that the approximations of Gibbs-hard,
VB-numInt and VB-local become accurate.

Next, we will explain why the variational approximation and the Gibbs sampler behave
very differently for these two scenarios. Let us consider the high-dimensional case first. The

Mach Learn (2013) 92:225–250 241

Fig. 2 Top: The matching accuracy of all methods increases with increasing data dimensionality (x-axis;
note the non-linear axis), since there is more data for learning the match. Both Gibbs samplers are very bad
for low dimensionality since the posterior over permutations is very wide, but for large dimensionality Gibb-
s-hard is clearly the best algorithm, reaching almost the perfect solution for this data with N = 40 samples.
Gibbs-subset, however, is very inefficient in exploring the permutation space; a lot more iterations would be
needed for reaching acceptable accuracy. The other two VB variants are roughly equivalent to VB-numInt on
this data, and are hence not shown for clarity. Bottom: Illustration of how the posterior distribution over the
permutations converges towards a delta distribution for increasing data dimensionality. The plot shows the
probability of the most likely permutation p(π̂ |Ξ , rest) for a setup with N = 8, for which we can compute
the full posterior exactly. Even though there are more than 40,000 possible permutations, the most likely one
captures more than half of the posterior mass for the higher dimensionalities. The solid line depicts the mean
probability, whereas the shaded area covers one standard deviation to both directions

Gibbs-hard does well because the assumption that p(π |Ξ , rest) corresponds to the most
likely permutation is good, yet the sampler still explores the space of permutations effec-
tively because Ξ is resampled every time. Gibbs-subset shows similar trend of improved
accuracy for higher dimensions, but it is considerably less efficient in exploring the poste-
rior since it does not find the best permutation for each sample but instead produces per-
mutations with high degree of autocorrelation. This results also in clearly lower accuracy.
The variational approximation, on the other hand, is a mean-field algorithm that explicitly
averages over the permutations and the latent variables. Hence, for a peaked posterior the
VB-local and VB-hard quickly get stuck with one permutation and the model converges to
a local optimum. The VB-numInt model does better because it borrows the strength of the
Gibbs-sampler; it numerically integrates over Ξ when updating the permutation, and hence
can explore the space of permutations to some degree.

For the low-dimensional case the true posterior is very wide. The Gibbs-hard no longer
approximates the posterior well, but even ignoring this issue we have a more fundamen-
tal problem with both samplers: Since the posterior over permutations is so wide, it be-
comes very difficult to estimate the rest of the parameters well. When the sampler, correctly,
changes the permutation dramatically from one sample to another, it becomes nearly impos-
sible for W and other parameters to converge towards reasonable posterior. The variational

242 Mach Learn (2013) 92:225–250

Fig. 3 The Gibbs-hard sampler is approximative since it approximates the conditional density p(π |Ξ , rest)
with the most likely permutation. However, since the joint posterior p(π ,Ξ |rest) depends more on Ξ than
it does on π , the algorithm still approximates the marginal posterior p(π |rest) well. These log-probability
crossplots compare the approximative posterior (y-axis) with the posterior obtained by running exact Gibbs
sampler (x-axis), which is only feasible for very small sample sizes (here N = 8). The plot shows all per-
mutations (individual dots) included at least once in either set of posterior samples. For exactly identical
distributions all of the dots would lie along or close to the diagonal like. We see that the approximation,
understandably, gives slightly too high probability (indicated by dots above the line) for the most likely per-
mutation(s), but that it captures the general shape well and provides roughly the correct rank for the permu-
tations. The Spearman rank correlation coefficient between the two sets of log-probabilities is always above
0.7 and for D = 640 the ranks are exactly correct

approximation, however, is inefficient in exploring this wide posterior since it averages over
the possible values. Hence, the inference technique acts as a strong regularizer, making it
possible to infer the rest of the parameters even though the true posterior over the matches
is very wide.

Finally, we illustrate empirically the approximation error caused by the incorrect ac-
ceptance probability for the (π ,Ξ) proposals in Gibbs-hard. Using a data set with N = 8
samples we ran both an exact Gibbs sampler and the proposed algorithm for 10,000 in-
dependent samples and estimated the marginal posterior p(π |rest) based on the posterior
samples, keeping rest of the parameters except π and Ξ fixed. Figure 3 cross-plots the log-
probabilities of the two distributions for various data dimensionalities. These plots suggest
that despite making a seemingly crude approximation, the Gibbs-hard sampler still produces
samples from almost the correct distribution, especially for high-dimensional data. It gives

Mach Learn (2013) 92:225–250 243

Fig. 4 Image matching: The number of correct matches as a function of the number of samples N . The
Gibbs-hard variant is the best, outperforming the variational approximation variants, the maximum likelihood
solution of the same model (CCA-ML), and also the state-of-art kernelized sorting methods convex kernelized
sorting (CKS), least-squares object matching (LSOM), and p-smooth. The results for p-smooth are measured
with a ruler from Jagarlamudi et al. (2010), the results for CKS are from Djuric et al. (2012), and the results
for LSOM from Yamada and Sugiyama (2011) (who do not report the accuracy for N = 320). The VB-numInt
and Gibbs-subset variants also perform well, outperforming p-smooth but not reaching the accuracy of CKS
and LSOM. The color-coding (when available) and the symbols separate the Gibbs methods (red, circle) from
the VB methods (black, triangle) and the comparison methods (green, cross)

somewhat too high probability for the most likely permutation, but it still gives non-zero
probability mass for almost all of the same permutations as the exact sampler, and it also
retains the relative probabilities of the permutations accurately.

9.2 Image matching

In this problem the task is to match two halves of a set of 320 images, using the raw pixels
values (40 × 40 pixels in Lab color space) as the input. The problem itself is completely
artificial, but it has nevertheless become a kind of benchmark for the matching solutions
due to the data provided by Quadrianto et al. (2010). The data has 2400 dimensions, and
hence constitutes an example of a high-dimensional data for which the sampling algorithms
should do well. VB-local, on the other hand, would not notably differ from VB-hard since
the posterior is so peaked around the best permutation, and hence we leave it out from the
comparison.

We solve the matching problem with varying subsets of the data. For VB-hard and VB-
numInt, we learn L = 50 different initial models for each choice of N and initialize the final
model by the consensus of these matches, using K = 8 components to keep the computa-
tional cost manageable. We then initialize the Gibbs variants with the result of VB-numInt,
and use K = 16 components. We ran the samplers for 10 parallel chains, for 500 samples
each, and then found the consensus of all posterior samples; since the initialization was al-
ready a good one we did not leave a burn-in period out. For Gibbs-subset we used J = 4
and 100 subset choices for each posterior sample.

Figure 4 compares the proposed methods with the p-smooth variant of kernelized sorting
by Jagarlamudi et al. (2010), convex kernelized sorting by Djuric et al. (2012), and least-
squares object matching (LSOM) by Yamada and Sugiyama (2011), all of which have been

244 Mach Learn (2013) 92:225–250

demonstrated to be superior to the original kernelized sorting algorithm by Quadrianto et al.
(2010). In addition, we compare the proposed methods with CCA-ML, which corresponds
to using (hard) EM algorithm to find the maximum likelihood solution of our model. For
CCA-ML we used an initialization strategy similar to what was used for the proposed meth-
ods. That is, we ran the model L = 50 times with different initializations that were slightly
randomly permuted PCA-initializations. The final accuracy is the accuracy of the consen-
sus; we also tried running the model one more time using the consensus as initialization but
it typically decreased the accuracy. To avoid overfitting to the high-dimensional data, the
CCA-ML method was ran on the first N/8 PCA components of each data set.

The main finding is that Gibbs-hard is the best matching solution for this data, followed
by LSOM. For the whole collection with N = 320 images Gibbs-hard gets 275 correct
matches compared to 136 for p-smooth and 206 for CKS;1 Yamada and Sugiyama (2011)
do not report an exact number for LSOM, but extrapolation suggests it would find roughly
245 correct pairs. The variational Bayesian inference is also good as long as we use numer-
ical integration for estimating q(π); it reaches accuracy comparable to CKS while outper-
forming p-smooth clearly for large sample sizes. The initialization scheme is necessary for
achieving this; the individual runs used for finding the initialization only found on average
less than 30 correct pairs for N = 320, whereas the final run initialized with their consensus
reached 201.

Gibbs-subset, which was initialized with the output of VB-numInt, produces effectively
the same results as its initialization; this confirms that the sampler is too inefficient in ex-
ploring the permutations space. Considerably more samples would be required to improve
the results, but since Gibbs-hard works so much better we did not spend excess computa-
tional time to do this. We also see that the VB-hard variant that only uses the most likely
solution is not sufficient here. This reveals that the good accuracy of Gibbs-hard and VB-
numInt is because of the posterior inference over the permutations. However, for large N

VB-hard still outperforms CCA-ML, demonstrating that Bayesian inference over the rest of
the parameters already helps.

One of the advantages of the Bayesian matching solutions is that in addition to learn-
ing the best permutation we can characterize the posterior over the permutations. Convex
kernelized sorting can also achieve this to some degree, since it optimizes the HSIC over
doubly-stochastic matrices and hence produces soft assignments as a result. Next, we will
compare how well the two methods fare in terms of such soft assignments. First we look at
recall of the correct pairs, by ordering for each sample xi the samples in Y according to the
posterior probability of matching with xi . Figure 5 (left) shows how already 95 % of true
pairs are captured within top 5 ranks. For comparison, Djuric et al. (2012) reports 81 % for
the same threshold. We also inspected the actual probabilities to verify that the posterior is a
reasonable distribution, and that they are consistent with the actual results. Figure 5 (right)
plots the probabilities of the correct matches against the highest probabilities assigned for
any pair. We see that the probabilities cover the whole range from roughly 0.1 to one, in-
dicating that the algorithm is more certain of some pairs. We also note that it makes very
few mistakes for the pairs that it assigned a high probability, indicating that the values in-
deed correspond to reasonable probabilities. For comparison, CKS does not assign a weight
higher than 0.2 for any pair, illustrating how the soft match learned by CKS cannot be inter-
preted as any kind of probabilities even though they do sum up to one for each sample; the
distributions are clearly too wide to represent the true uncertainty.

1Note that the subsets of images used for N < 320 may not be exactly the same that were used by the
comparison methods, so only the case of N = 320 is directly comparable.

Mach Learn (2013) 92:225–250 245

Fig. 5 Left: Recall of the correct matches when looking at the top I possible pairs in ranked order for each
of the samples xi . The Gibbs-hard solution (solid line) clearly outperforms the convex kernelized sorting
(dashed line) for all I . CKS requires top 5–6 matches to reach the same accuracy that Gibbs-hard captures
already with the top-ranked pairs. Right: Cross-plot between the probabilities for the true pairs versus the
highest probability assigned for any pair, for every sample xi . The samples lying on the diagonal line cor-
respond to correctly identified pairs, cases where the highest probability is given for the correct pair. The
dots below the line indicate mistakes. The important observation is that for the high-probability assignments
almost all are correct; the bottom right corner of the image has only a few dots indicating mistakes when
the model believed in some pair with high probability. The bottom left corner also shows correct behavior
of more mistakes when the model is more uncertain; the values would not correspond to probabilities if the
method got all of the matches correct for this regime as well

9.3 Metabolite matching

Next we proceed to an example data on translational medicine, taken from Tripathi et al.
(2011), where the task is to match metabolites of two populations. The problem mimics a
challenge where we need to align metabolites of two different species (Sysi-Aho et al. 2011),
but here the two populations are both human to provide the ground-truth alignment. The data
consists of time series of concentrations of N = 53 metabolites, and we have measurements
for several subjects. We compare our method with two methods presented by Tripathi et al.
(2011), using a setup very similar to theirs. In particular, we average the matching accuracies
over 100 runs where X and Y are taken from random subjects (that is, the runs are truly
independent since the input data is different in each run), and we restrict the matchings so
that a metabolite can only pair with another one in the same functional class (which are
assumed known). We also provide another set of results without constraints, to demonstrate
how well we can do without any prior information on the match.

The individual time series are of very low dimensionality, ranging from 3 to 30 depending
on the subject. Hence, we only apply the variational approximation methods for this prob-
lem; the posterior over the permutations is so wide that the Gibbs-sampler variants would
not work at all. We then compare our method with CCA-ML and CKS.

Figure 6 shows how we again outperform the earlier methods. VB-numInt and VB-local
have comparable accuracy, and both are better than CKS and CCA-ML. The comparison
with CCA-ML, which corresponds to the maximum likelihood solution of the proposed
model, confirms the findings of the image matching experiment (Sect. 9.2). The Bayesian
solution is advantageous in two respects. First, the difference between VB-hard and CCA-
ML comes solely from doing Bayesian inference over the CCA parameters, since these two
models treat the permutations in identical fashion. More importantly, however, the difference
between VB-hard and the other two variants reveals that already approximative Bayesian

246 Mach Learn (2013) 92:225–250

Fig. 6 Metabolite matching: The accuracy of matching the metabolites in two human populations, averaged
over 100 different matching tasks and summarized as boxplots using the default parameters of the R imple-
mentation. The top plot summarizes the results for setup where the matches are constrained to be within the
known functional classes of the metabolites, whereas the bottom plot shows the results for purely data-driven
solution with no additional constraints. For both setups the proper variational approximations (both the nu-
merical integration variant “VB-numInt” and the local perturbation variant “VB-local”) are the best, followed
by convex kernelized sorting (CKS). The difference between “VB-numInt” and “VB-local” is not statistically
significant, but both are significantly better than the other three methods (paired t-test, p < 0.01)

inference over the permutations improves the accuracy dramatically. For completeness, we
tried also the Gibbs samplers for this task, but as expected they did not work; they result in
posteriors that are only marginally better than random assignments.

Note that in this experiment we did not use the advanced initialization strategy of learning
the final model given a consensus of preliminary runs, but instead only used one initialization
(based on the first PCA component) for each run. However, we did one final test to mimic the
consensus matching setup of Tripathi et al. (2011), and found the consensus of the 100 runs
with different input matrices to reach 85 %, compared to their result of 70 % with equal
amount of data and some additional biological constraints not used in our solution.

9.4 Document alignment

As a third real data experiment we consider the task of document alignment. Given two col-
lections of documents written on two different languages, the task is to find the translations
by matching the documents. We use the data provided by Djuric et al. (2012), consisting of
more than 300 documents extracted from the Europarl corpus and represented as TF-IDF
vectors of words stemmed with Snowball.2 Djuric et al. (2012) considered nine different
matching tasks, each between English documents and documents written in one of nine

2http://snowball.tartarus.org/.

http://snowball.tartarus.org/

Mach Learn (2013) 92:225–250 247

Table 1 Matching accuracy (number of correct pairs) for multi-lingual document alignment tasks, where
the goal is to pair the N documents with their English translations. Djuric et al. (2012) showed that the
CKS method outperforms all other methods in this task, and hence we initialized the proposed methods with
CKS to demonstrate how they can improve an already good solution. CKS already solves seven of the nine
language pairs well, and the proposed methods are able to improve the accuracy also for the remaining two
pairs (Finnish and Swedish). Gibbs-hard does particularly well, solving all cases with at least 98 % accuracy.
VB-numInt and CCA-ML are also better than CKS for the two difficult language pairs, but do not reach
perfect accuracy. The cases where the accuracy is below 95 % are written in boldface, to highlight cases that
could not be considered solved with that method

Language N CKS Gibbs-hard VB-numInt CCA-ML

Danish 387 385 385 379 385

Dutch 387 383 383 383 384

Finnish 308 114 308 276 288

French 356 356 356 356 356

German 356 356 354 356 352

Italian 387 385 381 383 384

Portuguese 356 356 356 356 354

Spanish 387 387 385 385 387

Swedish 337 97 337 306 296

other languages, and showed that CKS outperforms other kernelized sorting algorithms (the
original KS algorithm, KS p-smooth and LSOM) for all tasks by a wide margin. They also
achieved effectively perfect accuracy for seven of the tasks, reaching at least 98 % accuracy
for each. For the remaining two language pairs, English-Swedish and English-Finnish, their
accuracy was only 29 % and 37 %, respectively.

We initialized the Bayesian matching solutions with the permutation learned by CKS
and then applied VB-numInt and Gibbs-hard for solving the same matching tasks, using a
data representation that kept 10,000 words with the highest total TF-IDF weight over the
corpus, separately for each language. For both methods we used K = 16, and for Gibbs-hard
we again ran 10 separate chains for 500 samples each. We also applied CCA-ML with the
same initialization, using Dx = Dy = 50 first PCA components for representing the data.
The results are summarized in Table 1, showing how the Bayesian matching solutions and
CCA-ML retain the good accuracy for the language pairs CKS already solved adequately.
For the two difficult language pairs all methods improve on the initialization, but Gibbs-hard
is the only one that solves also those problems perfectly, reaching 100 % accuracy.

9.5 Summary of the empirical experiments

Above we performed four separate experiment to evaluate the Bayesian matching solutions.
Based on both the artificial and real matching experiments we can make the following con-
clusions:

– The proposed Bayesian matching solution outperforms the comparison methods, in-
cluding kernelized sorting variants and earlier methods based on CCA. In particular,
it is considerably more accurate than the maximum-likelihood solutions based on the
same idea of introducing a permutation matrix as part of CCA (Haghighi et al. 2008;
Tripathi et al. 2011). This confirms that the improved accuracy is because of the full pos-
terior inference, instead of the model structure or cost function.

248 Mach Learn (2013) 92:225–250

– For high-dimensional data Gibbs-hard is the best method. It can explore the posterior
space more efficiently than the variational approximation, and it produces interpretable
posterior estimates with high matching accuracy. While the conditional density used for
sampling the permutation is not necessarily exact, the choice of always picking the best
permutation is extremely efficient compared to more justified alternatives. As illustrated
in Fig. 3, it is still very accurate in producing samples from the correct posterior.

– For low-dimensional data the true posterior over the permutations is so wide that prop-
erly modeling it does not produce good results. Hence, the Gibbs samplers do not work
for such data. The variational approximations still provide accurate matches due to the
inherent regularization effect of mean-field approximation.

– All of the proposed methods depend heavily on the initialization. A good initialization
can be obtained by finding a consensus of several matches. Alternatively, the methods
can be initialized by the result of the convex kernelized sorting method by Djuric et al.
(2012); it finds the global optimum of a relaxation of the kernelized sorting problem and
produces good matching accuracy.

The practical suggestion based on these observations is to use the Gibbs-hard method
for learning the matching solutions, assuming the data dimensionality is sufficiently high
(at least tens, preferably hundreds or more). The method should be initialized either with a
consensus learned from multiple random initializations, or with the CKS method. The con-
sensus is best learned with the VB variants, since the samplers might have difficulties with
initial solutions where almost all pairs are incorrect; then the posterior is wide irrespective
of the dimensionality since most BCCA components do not describe relationships between
the two sets. For low-dimensional data, we suggest using the VB-numInt method instead of
the samplers.

10 Conclusion

We introduced a variational Bayesian solution for the object matching problem introduced
by Jebara (2004) and popularized by Haghighi et al. (2008), Quadrianto et al. (2010), Tri-
pathi et al. (2011) and Yamada and Sugiyama (2011) for solving alignment tasks for ex-
ample in natural language processing and computational biology. By learning together a
Bayesian canonical correlation analysis model (Klami et al. 2013) and a permutation matrix
re-ordering the samples in one of the sets, we obtained matching accuracies better than those
of any earlier solution.

We presented two alternative inference strategies, one based on approximative Gibbs
sampling and the other on variational approximation, and derived the computational details
necessary for approximating the posterior over the permutations for both. The resulting al-
gorithms were applied on three benchmark data sets and further illustrated on artificially
generated data, to confirm that the proposed algorithms produce accurate matches. In partic-
ular, we outperformed all the earlier variants by a comfortable margin. For image matching
we improved from 64 % to 85 %, for metabolite alignment we improved from 35 % to
39 %, and in two document alignment tasks we improved from 29–37 % to 100 %. These
improvements correspond to real practical gains, and in particular the last one represents a
qualitative change where the new method is able to perfectly solve a problem for which the
earlier solutions were not satisfactory.

The Gibbs sampler was found to be the better of the two inference solutions, since it can
more effectively explore the posterior space. We additionally showed that for sufficiently
low-dimensional data the true posterior is so wide that it is actually better to concentrate

Mach Learn (2013) 92:225–250 249

on some local region of the posterior space. For such setups the Gibbs sampler reduces to
almost random guessing, and the variational inference is the best matching solution.

Acknowledgements The research was funded primarily by the TEKES, as part of the TIVIT Data to Intel-
ligence (D2I) Program, and in part by Academy of Finland (Finnish Center of Excellence for Computational
Inference COIN, 251170). We provide our grateful thanks for Prof. Matej Orešič for providing the data used
in the metabolomics experiment, for Novi Quadrianto for providing the data for the image matching exper-
iment, and for Nemanja Djuric for providing the code for CKS and the data for the document alignment
task.

Appendix: Gibbs sampler details

The Gibbs sampler draws samples from the posterior p(Z,π, τ,h,W, β|X,Y), by repeat-
edly sampling from the conditional densities summarized below. The equations are given
for x; the ones for y are obtained by replacing the subscripts. These equations are applicable
also for Gibbs sampling of Bayesian CCA model without permutations, by simply setting
π = I.

h The latent variables indicating the component activities are sampled independently, in-
tegrating W out in the process. Following Klami et al. (2013), this results in relative likeli-
hoods

p(hxk = 1)

p(hxk = 0)
= γ

(1 − γ)

(
(βxk)

−1

λ

)Dx/2

exp

(
1

2
λμT μ

)

,

where λ = τmZT
k:Zk: +βxk and μ = τx

λ
(X−∑

j
=k Wxj ZT
j :)Zk:. Here γ is the prior probability

for hxk = 1, which we set to a constant γ = 0.5.

W The projections are sampled conditional on the spike-and-slab variable h. For hxk = 1
we have Wxk ∼ N(μ, λ−1I), where μ and λ are as defined above, and for hxk = 0 we set
Wxk = 0.

β The prior precision for the active Wx has Gamma prior and hence also a Gamma poste-
rior. For hxk = 1 we have

βxk ∼ G
(
α0 + Dx/2, β0 + WT

xkWxk/2
)
,

and for hxk = 0 the value is drawn from the prior G(α0, β0).

τ The noise precision has also Gamma prior, and the resulting posterior is

τx ∼ G

(

ατ
0 + NDx/2, βτ

0 +
N∑

i=1

(xi − Wxzi)
T (xi − Wxzi)

)

.

For τy we need to use the current permutation π to pick the latent variables, so that Wxzi is
replaced by Wyzj such that π j i = 1.

Z,π The latent variables and the permutation need to be sampled jointly, as described in
Sect. 5. First we draw ξ i ∼ N(0,Σz) for each i independently, using Σz = (τxWT

x Wx +
τyWT

y Wy + I)−1. Then we compute the most likely permutation given Ξ by solving the
LAP with costs given by (4). Finally, we set zi = ΣzτxWT

x xi + ΣzτyWT
y yj + ξ i according

to the chosen permutation.

250 Mach Learn (2013) 92:225–250

References

Andrieu, C., & Robers, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations.
The Annals of Statistics, 37(2), 697–725.

Bach, F. R., & Jordan, M. I. (2005). A probabilistic interpretation of canonical correlation analysis (Technical
Report 688), Department of Statistics, University of California, Berkeley.

Boyd-Graber, J., & Blei, D. M. (2009). Multilingual topic models for unaligned text. In Uncertainty in artifi-
cial intelligence.

Burkard, R. E. (1984). Quadratic assignment problems. European Journal of Operational Research, 15(3),
283–289.

Djuric, N., Grbovic, M., & Vucetic, S. (2012). Convex kernelized sorting. In Proceedings of the 26th AAAI
conference on artificial intelligence (pp. 893–899).

Haghighi, A., Liang, P., Berh-Kirkpatrick, T., & Klein, D. (2008). Learning bilingual lexicons from monolin-
gual corpora. In Proceedings of ACL-08: HLT (pp. 771–779).

Jagarlamudi, J., Juarez, S., & Daumé, H. III (2010). Kernelized sorting for natural language processing. In
Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1020–1025).

Jebara, T. (2004). Kernelized sorting, permutation, and alignment for minimal volume PCA. In LNAI:
Vol. 3120. Conference on computational learning theory (COLT) (pp. 609–623).

Klami, A. (2012). Variational Bayesian matching. In JMLR C&WP: Vol. 25. Proceedings of Asian conference
on machine learning (pp. 205–220).

Klami, A., & Kaski, S. (2007). Local dependent components. In Proceedings of the 24th international con-
ference on machine learning (ICML) (pp. 425–432).

Klami, A., Virtanen, S., & Kaski, S. (2013). Bayesian canonical correlation analysis. Journal of Machine
Learning Research, 14, 899–937.

Knowles, D., & Ghahramani, Z. (2011). Nonparametric Bayesian sparse factor models with application to
gene expression modeling. Annals of Applied Statistics, 5(2B), 1534–1552.

Kondor, R., Howard, A., & Jebara, T. (2007). Multi-object tracking with representations of the symmetric
group. In Proceedings of the 11th international conference on artificial intelligence and statistics (AIS-
TATS).

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,
2(1–2), 83–97.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani, Z. (2010). Kronecker graphs: an
approach to modeling networks. Journal of Machine Learning Research, 11, 985–1042.

Plis, S. M., McCracken, S., Lane, T., & Calhoun, V. D. (2011). Directional statistics on permutations. In
Proceedings of the 14th international conference on artificial intelligence and statistics (AISTATS)
(pp. 600–608).

Quadrianto, N., Song, L., & Smola, A. (2009). Kernelized sorting. In D. Koller, D. Schuurmans, Y. Bengio,
& L. Bottou (Eds.), Advances in neural information processing systems (Vol. 21, pp. 1289–1296).

Quadrianto, N., Smola, A. J., Song, L., & Tuytelaars, T. (2010). Kernelized sorting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(10), 1809–1821.

Smola, A. J., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In
LNCS: Vol. 4754. Algorithmic learning theory (pp. 13–31).

Sysi-Aho, M., et al. (2011). Metabolic regulation in progression to autoimmune diabetes. PLoS Computa-
tional Biology, 7, e1002257.

Tripathi, A., Klami, A., & Kaski, S. (2009). Using dependencies to pair samples for multi-view learning. In
Proceedings of ICASSP 09, the international conference on acoustics, speech, and signal processing
(pp. 1561–1564).

Tripathi, A., Klami, A., & Virpioja, S. (2010). Bilingual sentence matching using kernel CCA. In Proceedings
of MLSP 2010, IEEE international workshop on machine learning for signal processing (pp. 130–135).

Tripathi, A., Klami, A., Orešič, M., & Kaski, S. (2011). Matching samples of multiple views. Data Mining
and Knowledge Discovery, 23, 300–321.

Virtanen, S., Klami, A., & Kaski, S. (2011). Bayesian CCA via group sparsity. In Proceedings of the 28th
international conference on machine learning (ICML) (pp. 457–464).

Yamada, M., & Sugiyama, M. (2011). Cross-domain object matching with model selection. In Proceedings
of the 14th international conference on artificial intelligence and statistics (AISTATS) (pp. 807–815).

Wang, C., & Mahadevan, S. (2009). Manifold alignment without correspondence. In Proceedings of the 21st
international joint conference on artificial intelligence (IJCAI) (pp. 1273–1278).

	Bayesian object matching
	Abstract
	Introduction
	Object matching
	Problem formulation
	Bayesian matching

	Bayesian CCA
	Gibbs sampling with spike-and-slab prior
	Variational approximation with ARD prior

	Matching Bayesian CCA
	Matching BCCA with Gibbs sampler
	Posterior summaries

	Matching CCA with variational approximation
	The most likely permutation
	Full posterior over the permutations
	Local perturbations
	Numerical integration

	Initialization

	Related work
	Method summary
	Computational cost

	Experiments
	Artificial data
	Image matching
	Metabolite matching
	Document alignment
	Summary of the empirical experiments

	Conclusion
	Acknowledgements
	Appendix: Gibbs sampler details
	h
	W
	beta
	tau
	Z, pi

	References

