Software Design (C++)

0. Introduction and overview

Juha Vihavainen
University of Helsinki

On classroom etiquette

m Please, silence your cell phone while in class.
m Please, do not take or make phone calls in class.

m Please, do not keep up discussions among each
other during lectures

m really, the lectures are voluntary and ongoing
discussions disturb others wishing to listen

m but, of course, do ask me questions . .

28.10.2014 Juha Vihavainen / University of Helsinki

Rough course outline

m The basics
m types, variables, strings, computations

= simple 10, error handling (if any), exceptions, references,
enums, overloading, etc.

m small C++ code samples

m Data structures and algorithms
m free store, pointers, and built-in arrays (directly from C)
m user-defined types (classes)
= onimplementing vectors, lists, iterators..

m Also, safety and resource handling, templates, object-oriented
programming & class hierarchies

28.10.2014 Juha Vihavainen / University of Helsinki 3

A textbook Programming - Principles & Practice
with C++ (2. ed.) [Stroustrup, 2014; ~1300 pages]

Ch. 1 Computers, People, and Programming Ch. 16 Graphical User Interfaces

Ch. 2 Hello,World! Ch. 17 Vector and Free Store

Ch. 3 Objects, Types, and Values Ch. 18 Vectors and Arrays

Ch. 4 Computation Ch. 19 Vector, Templates, and Exceptions
Ch. 5 Errors Ch. 20 Containers and Iterators

Ch. 6 Writing a Program (Calculator) Ch. 21 Algorithms and Maps

Ch. 7 Completing a Program Ch. 22 Ideals and History

Ch. 8 Technicalities: Functions, etc Ch. 23 Text Manipulation

Ch. 9 Technicalities: Classes, etc. Ch. 24 Numerics

Ch. 10 Input and Output Streams Ch. 25 Embedded Systems Programming
Ch. 11 Customizing Input and Output Ch. 26 Testing

Ch. 12 A Display Model Ch. 27 The C Programming Language

Ch. 13 Graphics Classes
Ch. 14 Graphics Class Design
Ch. 15 Graphing Functions and Data

App A Language Summary

App B Standard Library Summary

App C - E Visual Studio, FLTK, GUI code
Note the emphasis.

28.10.2014 Juha Vihavainen / University of Helsinki 4

What kind of a language is C++?

m The next five slides give an overview of the evolution of C++

m But let’s hear how the father of C++, Bjarne Stroupstrup
explains the motivation and main features of the language (the
first 20 mins.)

m The Essence of C++ [GoingNative 2013, channel 9, url:

http://channel9.msdn.com/Events/GoingNative/2013/Openin
g-Keynote-Bjarne-Stroustrup]

m Modern C++ is not only for system programmers, but also for
creative coding

m OpenFrameworks [url: www.openframeworks.cc]

28.10.2014 Juha Vihavainen / University of Helsinki 5

What is C++? Some answers:

* Anobject-oriented
programming language

A hybrid language

It's C. Low level and too big.
Supports generic programming
A multi-paradigm programming
language

* Template meta-programming

* Embedded systems
programming language

C++ |and safety

C++is not statically type safe
C++ is not dynamically type safe

" a chain saw with all the safety
guards removed " (Bob Gray)

28.10.2014

“Parasol

8000+ Programming Languages "

¢ C++’s tamily tree (part of)

Assembler i Ada Ada9s —
\ Pascal :.‘ Object Pascal

C89/99 —*
Fortran

™ Algol 7 BCL ~ ¢

AN

Simula

-~ \\‘1 g —
, S ML—
Lisp —=—____ ¥ Java ('
T Smallalk — ’ —
» And this 1s a gross oversimplification!
28.10.2014 Stroustrup - Finland 2010 4

Beginning with "C with Classes" ~ 1980

m C with Classes —1980

m General abstraction mechanisms to cope with complexity
m class from Simula

m General close-to-hardware machine model for efficiency
m fromC

m Became C++in 1984

m Commercial release 1985

m |SO standard 1998 - a "corrected" version 2003

m 2nd ISO standard 2011

m See www.isocpp.org about C++ standardization activities

28.10.2014 Juha Vihavainen / University of Helsinki 8

First version
C with Classes (1979-1983)

m originally implemented as a preprocessor (C++ => C => native)
n features already include

m classes

m derived classes (i.e., subclasses)

m public/private access control

n friend classes

m constructors and destructors

m more static type checking (than C)

m "Classes: an abstract data type facility for the C language".
ACM Sigplan Notices, pp. 42 - 51, Jan 1982.

= "Adding classes to the C language"”, Software - Practice and
Experience, Feb 1983, pp. 139-161.

28.10.2014 Juha Vihavainen / University of Helsinki 9

Evolution of C++ from 1982

virtual functions (already in Simula, 1967)

function name and operator (+, *, ..) overloading

references (&), in addition to old C pointers

const variables and parameters

user-controlled heap, via new and delete operations

a version of multiple inheritance (used, e.g., by 10 stream library)
overloading of assignment and initialization ("=": value copy)
pure virtual functions and abstract classes

const member functions (non-mutating methods)
enumerations

exceptions: throw, and try - catch construct

templates & Standard Template Library (STL)

evolution and its standardization just goes on..

28.10.2014 Juha Vihavainen / University of Helsinki 10

"C++11": even more features

m E.g., auto-typed variables, static assertions, scoped enums,
lambdas, rvalue references, delegating constructors, defaulted
and deleted functions, new function declarator syntax, inline
namespaces, extern templates, local and unnamed types as
template arguments, variadic template parameters, thread
support library, std::initializer_list <T>,the "right angle
brackets" problem, raw string literals, ..

m some of these we will discuss as need arises
m "Every feature is implemented somewhere"
m New standard library components are shipping widely

m e.g. GCC, Microsoft, Boost

28.10.2014 Juha Vihavainen / University of Helsinki 11

What do we need to know about ”C”?

m C++is based on ”C” - common features:
Direct manipulation of computer memory (pointers etc.)

Compilation and linking of programs as separate translation
units (also the use of header files)

Syntax, semantics, and use of variables and functions
Structure of the statements and expressions

Primitive null-terminated strings, typedefs, assert-macro

s Cand C++ code can co-exist in the same program (few caveats)

m The first exercises focus on the features of C that are necessary
to understand for developing system-level code with C++

= The course book is written without assuming prior

knowledge of C, which should help in case C is unfamiliar
28.10.2014 Juha Vihavainen / University of Helsinki 12

Tools

= You need a compiler that implements most of the features
defined in the C++11 standard

m For example gnu gcc v. 4.8.n or Microsoft Visual C++
2012/2013 (see the ”On-line resources” sub page at the
home page of this course)

= The Linux workstations at the department have all gcc 4.8.2
installed

m There is also a remote machine running Linux and gcc 4.8.2
at pangolin.it.helsinki.fi (login with ssh and your CS
account)

28.10.2014 Juha Vihavainen / University of Helsinki 13

Tools

m Youdon’t need an IDE (but you can use one, of course!)
m The programs will be small and we are not building GUIs

m A good text editor (like GNU Emacs on Linux or Notepad++
on Windows) and a compiler run from the command line are
enough

= You can even manage without make
m |t is good to understand what goes on “behind the scene”

m |DEsare great and can help you a lot with bigger, more
complex programs

= Many IDEs provide also libraries (SDK) for services needed
by applications (platform specific or cross-platform)

s Examples: Eclipse, Visual Studio C++, Qt, Xcode

28.10.2014 Juha Vihavainen / University of Helsinki 14

28.10.2014

A first program — complete

/I afirst program:
#include <iostream>

int main () {

/I get the required 10 facilities

/I where a C++ program starts

std::cout << ""Hello, world\n"*; // output the 13 characters,

return O;

}

/I here, main () takes no arguments

/I followed by a new line
/I avalue indicating success

/I and returns an int to indicate success or failure
/I "<iostream>" provides needed library headers (declarations)

Juha Vihavainen / University of Helsinki 15

A second program

/I modified for a "console mode":

#include <iostream>

int main () {

}

std::cout << ""Hello, world\n"";

char c; std::cin >>c;
return O;

/I get the required 10 facilities

/I where a C++ program starts
/I output the 13 characters,

/I followed by a new line

I/l wait for an input character
I/l a value indicating success

/I without std::cin >> c; the output window may be closed before you
/I have a chance to read the output (on some implementations)

28.10.2014

Juha Vihavainen / University of Helsinki 16

Compilation and linking (directly from C)
/ Header files

Object code

Executabl i /

Library object code

= The compiler translates what you wrote into object code
(machine-level code)

C++ compiler

m The linker links your code to system code needed to execute

m e.g. input/output libraries, operating system code, and
windowing code

m The result is an executable program
m e.g. a.exe file on Windows or an a.out file on Unix

28.10.2014 Juha Vihavainen / University of Helsinki 17

Note

m The code examples in the book Programming - Principles &
Practice with C++ (2. ed.) include the header file
”std_lib_facilities.h”

m This header file contains declarations and definitions that
make it easier for a novice programmer to write C++
programs

= You can download the file from the home page of the book:
http://www.stroustrup.com/Programming/ (look for standard
library access header)

m Using the header you can type in the examples from the
book and compile and run them

m But: in the code examples on these slides we always use the

standard headers directly
28.10.2014 Juha Vihavainen / University of Helsinki 18

I/0O library overview

‘ Stream 1/0 ‘
in>>x Read from in into x according to x’s format
out << X Write x to out according to x’s format
in.get(c) Read a character from ininto ¢

getline(in,s) Reada line from in into the string s

istream ostream a class hierarcy with

Nﬂtance

istringstream ifstream iostream ofstream ostringstream

T

stringstream fstream

28.10.2014 Juha Vihavainen / University of Helsinki 19

#include <iostream>

Input and output

/I get the required 10 facilities

#include <string> Il get the standard std::string

int main () {

}

std::cout << ""Please enter your first name (followed '
"by ‘enter*):\n";

std::string firstName;

std::cin >> firstName;

std::cout << ""Hello, " << firstName << "\n";

/I note how literal strings can be concatenated
/I note how several values can be output by a single statement
/I the final return 0 is optional in main ()

I

- but you may need to include it to pacify your compiler

28.10.2014 Juha Vihavainen / University of Helsinki 20

10

Input and type

m We read into a variable of type std::string

m The type of a variable determines what operations we can do
on it

m Here, "std::cin >> firstName;" calls an overloaded ">>"

m first skips any leading white space, then

m reads characters in a word until a white-space character is
seen (space, tab, newline,..)

m the input text (*word") can be of any size, and the string
"grows" in size as needed (allocated space in a buffer)

28.10.2014 Juha Vihavainen / University of Helsinki 21

String input plus concatenation

int main () {

I/ read first and second name:
std::cout << ""Please enter your first and second names\n**;
std::string first, second;
std::cin >> first >> second; /I read two strings
std::string name = first + ' * + second; // concatenate,

/I separated by a space
std::cout << ""Hello, ""<< name <<'\n';

28.10.2014 Juha Vihavainen / University of Helsinki 22

11

Integer input

m The same 10 operations >> and << work for different types,
e.g., for integer values

m Later we make them work similarly for user-defined types, too

/I read name and age:

int main () {
std::cout << ""Please enter your first name and age\n"’;
std::string firstName; /I string variable
int age; /I integer variable

std::cin >> firstName >> age; // read both
std::cout << "Hello, " << firstName << " age "' << age << '\n’;

28.10.2014 Juha Vihavainen / University of Helsinki 23

Integers and strings

= The type of a variable determines which operations (names) are
valid and what their meanings are for that type

m uses "overloading" or "operator overloading"

m std::string » Integer and floating point number
m cin >> reads until whitespace = cin >> reads a number
m cout << writes the string m cout << writes the number
m + concatenates = + adds
m +=sadds the string s at end = +=n increments by the int n

++ is a compile-time error
- isacompile-time error

++ increments by 1
- subtracts

28.10.2014 Juha Vihavainen / University of Helsinki 24

12

A simple computation

intmain () { // inch-to-cm conversion

const double cm_per_inch = 2.54;

int length = 1; /I length in inches

while (length 1= 0) {

28.10.2014

/I 0 is used to exit
std::cout << "Please enter a length in inches: **;
std::cin >> length;
std::cout << length << ™" in. ="

<< cm_per_inch * length << " cm.\n";

Juha Vihavainen / University of Helsinki

/I centimeters per inch

25

Types and literals

m Built-in types

m Boolean type

m Character types

» boolean literals
s true false
bool
» character literals
a', 'x', 4 \n', '$’
char, charl6_t, char32_t -

= Integer types = integer literals
- [] -
= int, short, long, long long 12345701, 12845678011
» Floating-point types
» float, double, n floating point literals

. 3F, .3F, 13.345L

m Standard-library types
= std::string m string literals "asdf" (C-style string)

m std::complex <ScalarType>

m Most types are "standalone”

28.10.2014

» complex <double> (12.3
s complex <float> (1.3F)

= complex "literals" (constructor calls)
, 99)

» {12.3,99} // C++11

Juha Vihavainen / University of Helsinki

26

13

C++ types
m C++ provides a set of built-in types
m represent the native types of the underlying hardware
m e.g. bool, char, int, double, long long, long double, etc.
m C++ programmers can define new types (struct, class, enum)
m called “user-defined types” = abstract data types/subclasses
= we'll get to that later

m The C++ standard library provides types (in std namespace)
m e.g. string, vector, complex, list, map, istream, ostream
= in principle, these are "user-defined types", too

m i.e., they are built using facilities available to every user:
classes, overloading, templates, exceptions..

28.10.2014 Juha Vihavainen / University of Helsinki 27

Declaration and initialization

inta=7;
a
intb=29;
e |9 |
char c="a";
c:
double x =1.2;
e C-syle string X ‘ 1.2 ‘
std::string s1 = ""Hello, v\\'/orld";
sl: ‘ 12 H "Hello, world"
std::string s2 = "'1.2""; s2 [3 | "1.2" |

(conceptually "containers")

28.10.2014 Juha Vihavainen / University of Helsinki 28

14

Objects

m "Object" is a technical term in C++

m some memory that holds a value of a given type
(built-in/user-defined)

m A variable is a named or "declared” object
m since a declaration (usually) names an object

inta=7;

charc ='X"; c:
std::complex <double> z (1.0, 2.0);

z 1.0 2.0

std::string s = "qwerty";
/1 implicit conversion
(can grow or shrink)

s 6 _

T "gqwerty”

28.10.2014 Juha Vihavainen / University of Helsinki 29

Type safety

m Language rules try to enforce or support type safety

m every object is used only according to its type, i.e., only
operations defined for the object's type will be applied

m each operation is (hopefully) programmed to leave the object
with a valid value (or indicates an error..)

m ldeal: static type safety
m a program that has a type violation will not even compile
m the compiler reports each violation (in an ideal system)
= No need to run, test, and determine code coverage

m ldeal: dynamic type safety
m type violations detected (prevented) at run time (at the latest)

= some code (“'the run-time system") reports violations not found
by the compiler; usually via exceptions

28.10.2014 Juha Vihavainen / University of Helsinki 30

15

Type safety and C++

m Type safety is a very big deal: “the compiler is your best friend”
» but it won’t always feel like that when it rejects your “correct”code

m C++is not statically type safe
m no practical language is (completely) statically type safe

» absolute static type safety would interfere with our ability to express
run-time computations (say, using dynamic index values..)

m C++is not dynamically type safe
m dynamic type checking may make code bigger and slower
m in C++, may have to insert checks of our own (assert(), check())

» Java and C# compensate for lack of total static safety with dynamic
checks => such languages are called strongly typed (prevent type errors)

= Most of what you’ll be taught here is type safe
= We’ll try to specifically mention anything that is not

28.10.2014 Juha Vihavainen / University of Helsinki 31

A type-safety violation ("implicit narrowing")

/I beware: C++ does not prevent you from trying to put a large value
/I into a small variable (though a compiler may possibly warn)

int main () { /I illustrative code
int a = 20000;
char c =a; /l or"(char)a" 2 20000
intb=c; R P
if (a!=Db) /I of the same type (int)
std::cout << "oops!: " << a<<"I=" << b << "\n;
else

std::cout << ""Wow! We have very large characters\n';

in C++, we don't (necessarily) know what will happen ("¢ = 20000")
m try it to see what value b gets on your machine
= warnings depend on compiler options (e.g., VC++ not by default)

28.10.2014 Juha Vihavainen / University of Helsinki 32

16

Type-safety violation: uninitialized variables

/I beware: C++ does not prevent you from trying to use a variable
/I before you have initialized it (though a compiler may try to warn)

int main () {
intx; /I x gets a “random” initial value
charc; /I cgetsa “random” initial value
double d; /I d getsa “random” initial value
double dd = d; /I potential failure, in some hardware:

/l can’tcopy invalid floating-pointvalues
std:icout << ™ x: << x<<"cr'<<ec<<"d: " <<d << "\n"; /I warn?

not every bit pattern is a valid floating-point (as seen by the hardware)
beware: “debug mode” may initialize by some default values - or not
always initialize your variables

= one possible exception to this rule: use as input variable (nearby)

" B B -

28.10.2014 Juha Vihavainen / University of Helsinki 33

About efficiency

m C++is derived from C, another systems programming language
m still provides direct access to hardware (memory/instructions)

m C++’s built-in types map directly to computer main memory

m anint is stored in a memory word
m adouble fits in a floating-point machine register

m C++’s built-in operations map directly to machine instructions

m an integer + is implemented by an integer add operation
m an integer = is implemented by a simple move operation

m C++may help to build safer, more elegant, and efficient new
types and operations using these built-in types and operations

m e.g., std::string, std::vector, std::list
m eventually, we’ll show some of how that’s done

m For now, concentrate on correctness and simplicity of code

28.10.2014 Juha Vihavainen / University of Helsinki 34

17

A bit of philosophy

m One of the ways that programming resembles other kinds of engineering
is that it involves a lot of tradeoffs

m We have ideals or requirements, but they often conflict, so must decide
what matters for a given program under specific circumstances
m type safety (static/dynamic)
m run-time performance (vs. e.g., dynamic checks for type safety)
= ease of construction
» ease of maintenance (which may make construction harder..)
= ability to run on our given platform
= ability to run on multiple platforms with same results (portability)
m compatibility with 3rd-party code, libraries, and legacy systems

= Don't cut corners on correctness or testing
m By default, aim for type safety and portability (not so trivial in C++)

28.10.2014 Juha Vihavainen / University of Helsinki 35

18

