
1

Software Design (C++)Software Design (C++)

0. Introduction and overview0. Introduction and overview

Juha VihavainenJuha Vihavainen
University of HelsinkiUniversity of Helsinki

22

On classroom etiquetteOn classroom etiquette

Please, silence your cell phone while in class.Please, silence your cell phone while in class.
Please, do not take or make phone calls in class.Please, do not take or make phone calls in class.

Please, do not keep up discussions among eachPlease, do not keep up discussions among each
other during lecturesother during lectures

really, the lectures are voluntary and ongoingreally, the lectures are voluntary and ongoing
discussions disturb others wishing to listendiscussions disturb others wishing to listen
but, of course, do ask me questions . .but, of course, do ask me questions . .

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

2

Rough course outlineRough course outline
The basicsThe basics

types, variables, strings, computationstypes, variables, strings, computations
simple IO, error handling (if any), exceptions,simple IO, error handling (if any), exceptions, references,references,
enums, overloading, etc.enums, overloading, etc.
small C++ code samplessmall C++ code samples

Data structures and algorithmsData structures and algorithms
free store, pointers, and builtfree store, pointers, and built--in arrays (directly from C)in arrays (directly from C)
useruser--defined types (classes)defined types (classes)
on implementing vectors, lists, iterators..on implementing vectors, lists, iterators..

Also,Also, safety andsafety and resource handling, templates, objectresource handling, templates, object--orientedoriented
programming & class hierarchiesprogramming & class hierarchies

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 3328.10.201428.10.2014

A textbookA textbook ProgrammingProgramming -- Principles & PracticePrinciples & Practice
withwith C++ (2. ed.)C++ (2. ed.) [[StroustrupStroustrup, 2014; ~, 2014; ~1300 pages1300 pages]]

Ch. 1Ch. 1 Computers, People, and ProgrammingComputers, People, and Programming
Ch. 2Ch. 2 Hello,World!Hello,World!
Ch. 3Ch. 3 Objects, Types, and ValuesObjects, Types, and Values
Ch. 4Ch. 4 ComputationComputation
Ch. 5Ch. 5 ErrorsErrors
Ch. 6 Writing a Program (Calculator)Ch. 6 Writing a Program (Calculator)
Ch. 7 Completing a ProgramCh. 7 Completing a Program
Ch. 8Ch. 8 Technicalities: Functions, etcTechnicalities: Functions, etc
Ch. 9Ch. 9 Technicalities: Classes, etc.Technicalities: Classes, etc.
Ch. 10 Input and Output StreamsCh. 10 Input and Output Streams
Ch. 11Ch. 11 Customizing Input and OutputCustomizing Input and Output
Ch. 12 A Display ModelCh. 12 A Display Model
Ch. 13 Graphics ClassesCh. 13 Graphics Classes
Ch. 14 Graphics Class DesignCh. 14 Graphics Class Design
Ch. 15 Graphing Functions and DataCh. 15 Graphing Functions and Data

Ch. 16 Graphical User InterfacesCh. 16 Graphical User Interfaces
Ch. 17Ch. 17 Vector and Free StoreVector and Free Store
Ch. 18Ch. 18 Vectors and ArraysVectors and Arrays
Ch. 19Ch. 19 Vector, Templates, and ExceptionsVector, Templates, and Exceptions
Ch. 20Ch. 20 Containers and IteratorsContainers and Iterators
Ch. 21Ch. 21 Algorithms and MapsAlgorithms and Maps
Ch. 22 Ideals and HistoryCh. 22 Ideals and History
Ch. 23 Text ManipulationCh. 23 Text Manipulation
Ch. 24 NumericsCh. 24 Numerics
Ch. 25 Embedded Systems ProgrammingCh. 25 Embedded Systems Programming
Ch. 26 TestingCh. 26 Testing
Ch. 27 The C Programming LanguageCh. 27 The C Programming Language

App A Language SummaryApp A Language Summary
App B Standard Library SummaryApp B Standard Library Summary
App CApp C -- E Visual Studio, FLTK, GUI codeE Visual Studio, FLTK, GUI code

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 44

Note the emphasis.

28.10.201428.10.2014

3

WhatWhat kindkind of aof a languagelanguage is C++?is C++?

TheThe nextnext fivefive slidesslides givegive anan overviewoverview of theof the evolutionevolution of C++of C++
ButBut let’slet’s hearhear howhow thethe fatherfather of C++,of C++, BjarneBjarne StroupstrupStroupstrup
explainsexplains thethe motivationmotivation and mainand main featuresfeatures of theof the languagelanguage (the(the
firstfirst 2020 minsmins.).)

TheThe EssenceEssence of C++ [of C++ [GoingNativeGoingNative 2013,2013, channelchannel 9, url:9, url:
http://channel9.msdn.com/Events/GoingNative/2013/Openinhttp://channel9.msdn.com/Events/GoingNative/2013/Openin
gg--KeynoteKeynote--BjarneBjarne--StroustrupStroustrup]]

ModernModern C++ isC++ is notnot onlyonly forfor systemsystem programmersprogrammers,, butbut alsoalso forfor
creativecreative codingcoding

OpenFrameworksOpenFrameworks [url:[url: www.openframeworks.ccwww.openframeworks.cc]]

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 55

C++C++ and safetyand safety

66

C++ is not statically type safe
C++ is not dynamically type safe

What is C++? Some answers:
• An object-oriented

programming language
• A hybrid language
• It’s C. Low level and too big.
• Supports generic programming
• A multi-paradigm programming

language
• Template meta-programming

• Embedded systems
programming language

" a chain saw with all the safety
guards removed " (Bob Gray)

28.10.201428.10.2014

4

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 7728.10.201428.10.2014

Beginning with "C with Classes" ~ 1980Beginning with "C with Classes" ~ 1980

C with ClassesC with Classes ––19801980
General abstraction mechanisms to cope with complexityGeneral abstraction mechanisms to cope with complexity

classclass fromfrom SimulaSimula
General closeGeneral close--toto--hardware machine model for efficiencyhardware machine model for efficiency

from Cfrom C

Became C++ in 1984Became C++ in 1984
Commercial release 1985Commercial release 1985
ISO standard 1998ISO standard 1998 -- a "corrected" version 2003a "corrected" version 2003
2nd ISO standard 20112nd ISO standard 2011
SeeSee www.isocpp.orgwww.isocpp.org about C++ standardization activitiesabout C++ standardization activities

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 8828.10.201428.10.2014

5

99

First versionFirst version
C with ClassesC with Classes (1979(1979--19831983))

originally implemented as aoriginally implemented as a preprocessor (C++ => C =>preprocessor (C++ => C => nativenative))
featuresfeatures already includealready include

classesclasses
derived classes (i.e., subclasses)derived classes (i.e., subclasses)
publicpublic//privateprivate access controlaccess control
friendfriend classesclasses
constructors and destructorsconstructors and destructors
more static type checking (than C)more static type checking (than C)

"Classes"Classes: an abstract data type facility for the C: an abstract data type facility for the C language".language".
ACMACM Sigplan NoticesSigplan Notices,, pp.pp. 4242 -- 51,51, JanJan 1982.1982.
"Adding"Adding classes to the Cclasses to the C language",language", SoftwareSoftware -- Practice andPractice and
ExperienceExperience, Feb 1983, pp. 139, Feb 1983, pp. 139--161.161.

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1010

Evolution of C++ from 1982Evolution of C++ from 1982
virtualvirtual functions (already infunctions (already in SimulaSimula, 1967), 1967)
functionfunction name and operator (+,name and operator (+, **, ..), ..) overloadingoverloading
referencesreferences (&), in addition to old C pointers(&), in addition to old C pointers
constconst variables and parametersvariables and parameters
useruser--controlled heap, viacontrolled heap, via newnew andand deletedelete operationsoperations
a version of multiplea version of multiple inheritance (used, e.g., by IO stream library)inheritance (used, e.g., by IO stream library)
overloading of assignment and initializationoverloading of assignment and initialization ("=": value copy)("=": value copy)
pure virtualpure virtual functions andfunctions and abstractabstract classesclasses
constconst member functionsmember functions (non(non--mutating methods)mutating methods)
enumerationenumerationss
exceptionexceptions:s: throwthrow, and, and trytry -- catchcatch constructconstruct
templatetemplatess & Standard Template Library (STL)& Standard Template Library (STL)
evolution andevolution and its standardization just goesits standardization just goes on..on..

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

6

"C++11": even more features"C++11": even more features

E.g.,E.g., autoauto--typed variablestyped variables,, static assertionsstatic assertions,, scopedscoped enumenums,s,
lambdas, rvalue referenceslambdas, rvalue references, delegating constructors, defaulted, delegating constructors, defaulted
and deleted functions, new function declarator syntax, inlineand deleted functions, new function declarator syntax, inline
namespaces,namespaces, externextern templates, local and unnamed types astemplates, local and unnamed types as
template arguments, variadic template parameters, threadtemplate arguments, variadic template parameters, thread
support library,support library, std::initializer_list <T>std::initializer_list <T>,the "right angle,the "right angle
brackets" problem, raw string literals, ..brackets" problem, raw string literals, ..

some of these we will discuss as need arisessome of these we will discuss as need arises

"Every feature is implemented somewhere""Every feature is implemented somewhere"

New standard library components are shipping widelyNew standard library components are shipping widely

e.g. GCC, Microsoft, Booste.g. GCC, Microsoft, Boost

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 111128.10.201428.10.2014

WhatWhat dodo wewe needneed toto knowknow aboutabout ”C”?”C”?

C++ isC++ is basedbased on ”C”on ”C” -- commoncommon featuresfeatures::
DirectDirect manipulationmanipulation ofof computercomputer memorymemory ((pointerspointers etc.)etc.)
CompilationCompilation andand linkinglinking ofof programsprograms asas separateseparate translationtranslation
unitsunits ((alsoalso thethe useuse ofof headerheader filesfiles))
SyntaxSyntax,, semanticssemantics, and, and useuse ofof variablesvariables andand functionsfunctions
StructureStructure of theof the statementsstatements andand expressionsexpressions
PrimitivePrimitive nullnull--terminatedterminated stringsstrings,, typedefstypedefs,, assertassert--macromacro

C and C++C and C++ codecode cancan coco--existexist in thein the samesame programprogram ((fewfew caveatscaveats))
TheThe firstfirst exercisesexercises focusfocus on theon the featuresfeatures of Cof C thatthat areare necessarynecessary
toto understandunderstand forfor developingdeveloping systemsystem--levellevel codecode withwith C++C++

TheThe coursecourse bookbook isis writtenwritten withoutwithout assumingassuming priorprior
knowledgeknowledge of C,of C, whichwhich shouldshould help in case C ishelp in case C is unfamiliarunfamiliar

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1212

7

ToolsTools

YouYou needneed aa compilercompiler thatthat implementsimplements mostmost of theof the featuresfeatures
defineddefined in the C++11in the C++11 standardstandard

ForFor exampleexample gnugnu gccgcc v. 4.8.nv. 4.8.n oror Microsoft Visual C++Microsoft Visual C++
2012/2013 (2012/2013 (seesee the ”the ”OnOn--lineline resourcesresources”” subsub pagepage at theat the
homehome pagepage ofof thisthis coursecourse))
The LinuxThe Linux workstationsworkstations at theat the departmentdepartment havehave allall gccgcc 4.8.24.8.2
installedinstalled
ThereThere isis alsoalso aa remoteremote machinemachine runningrunning Linux andLinux and gccgcc 4.8.24.8.2
atat pangolin.it.helsinki.fipangolin.it.helsinki.fi ((loginlogin withwith sshssh andand youryour CSCS
accountaccount))

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1313

ToolsTools

YouYou don’tdon’t needneed an IDE (an IDE (butbut youyou cancan useuse oneone, of, of coursecourse!)!)
TheThe programsprograms willwill bebe smallsmall andand wewe areare notnot buildingbuilding GUIsGUIs
AA goodgood texttext editoreditor ((likelike GNUGNU EmacsEmacs on Linuxon Linux oror NotepadNotepad++++
on Windows) and aon Windows) and a compilercompiler runrun fromfrom thethe commandcommand lineline areare
enoughenough
YouYou cancan eveneven managemanage withoutwithout makemake
ItIt isis goodgood toto understandunderstand whatwhat goesgoes on ”on ”behindbehind thethe scenescene””

IDEsIDEs areare greatgreat andand cancan helphelp youyou aa lotlot withwith biggerbigger,, moremore
complexcomplex programsprograms

ManyMany IDEsIDEs provideprovide alsoalso librarieslibraries (SDK) for(SDK) for servicesservices neededneeded
byby applicationsapplications ((platformplatform specificspecific oror crosscross--platformplatform))
ExamplesExamples:: EclipseEclipse, Visual Studio C++,, Visual Studio C++, QtQt,, XcodeXcode

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1414

8

A first programA first program –– completecomplete

//// a first programa first program::

#include <iostream>#include <iostream> //// get the required IO facilitiesget the required IO facilities

int main () {int main () { //// where a C++ program startswhere a C++ program starts
std::cout << "Hello, world!std::cout << "Hello, world!\\n";n"; //// output the 13 characters,output the 13 characters,

//// followed by a new linefollowed by a new line
return 0;return 0; //// a value indicating successa value indicating success

}}

//// herehere, main (), main () takes no argumentstakes no arguments
//// and returns anand returns an intint to indicate success or failureto indicate success or failure
// "// "<iostream><iostream>"" provides needed library headersprovides needed library headers ((declarationsdeclarations))

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 151528.10.201428.10.2014

A second programA second program

//// modified for amodified for a ""console modeconsole mode":":

#include <#include <iostreamiostream>> //// get the requiredget the required IO facilitiesIO facilities
intint main () {main () { //// where awhere a C++C++ program startsprogram starts

std::std::coutcout <<<< "Hello, world!"Hello, world!\\n";n"; //// output theoutput the 1313 characters,characters,
//// followed by a new linefollowed by a new line

char c;char c; std::std::cincin >>>> c;c; //// wait for an input characterwait for an input character
return 0;return 0; //// a value indicating successa value indicating success

}}
//// withoutwithout std::std::cincin >> c;>> c; the output window may be closed before youthe output window may be closed before you
//// have a chance to read the outputhave a chance to read the output ((on some implementationson some implementations))

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 161628.10.201428.10.2014

9

Compilation and linking (directly from C)Compilation and linking (directly from C)

The compiler translates what you wrote intoThe compiler translates what you wrote into object codeobject code
(machine(machine--level code)level code)
The linker links your code to system code needed to executeThe linker links your code to system code needed to execute

e.g. input/output libraries, operating system code, ande.g. input/output libraries, operating system code, and
windowing codewindowing code

The result is an executable programThe result is an executable program
e.g. ae.g. a .exe.exe file on Windows or anfile on Windows or an a.outa.out file on Unixfile on Unix

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1717

C++ compilerC++ source code
Object code

Linker
Executable program

Library object code

28.10.201428.10.2014

Header files

NoteNote

TheThe codecode examplesexamples in thein the bookbook ProgrammingProgramming -- Principles &Principles &
Practice with C++ (2. ed.)Practice with C++ (2. ed.) includeinclude thethe headerheader filefile
””std_lib_facilities.hstd_lib_facilities.h””

ThisThis headerheader filefile containscontains declarationsdeclarations andand definitionsdefinitions thatthat
makemake itit easiereasier for afor a novicenovice programmerprogrammer toto writewrite C++C++
programsprograms
YouYou cancan downloaddownload thethe filefile fromfrom the homethe home pagepage of theof the bookbook::
http://www.stroustrup.com/Programming/http://www.stroustrup.com/Programming/ (look for(look for standardstandard
librarylibrary accessaccess headerheader))
UsingUsing thethe headerheader youyou cancan typetype in thein the examplesexamples fromfrom thethe
bookbook andand compilecompile andand runrun themthem

ButBut: in: in thethe codecode examplesexamples onon thesethese slidesslides wewe alwaysalways useuse thethe
standardstandard headersheaders directlydirectly

28.10.201428.10.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1818

10

I/O library overviewI/O library overview

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 1919

istream ostream

ifstream iostream ofstream ostringstreamistringstream

fstreamstringstream

Stream I/O
in >> x Read from in into x according to x’s format
out << x Write x to out according to x’s format
in.get(c) Read a character from in into c
getline(in,s) Read a line from in into the string s

28.10.201428.10.2014

a class hierarcy with
multi-inheritance

Input and outputInput and output
#include <iostream>#include <iostream> //// get the requiredget the required IO facilitiesIO facilities
#include <string>#include <string> //// get theget the standardstandard std::stringstd::string
int main () {int main () {

std::cout << "Please enter your first name (followed "std::cout << "Please enter your first name (followed "
"by 'enter'):"by 'enter'):\\n";n";

std::string firstName;std::string firstName;
std::cin >> firstName;std::cin >> firstName;
std::cout << "Hello, " << firstName << 'std::cout << "Hello, " << firstName << '\\n';n';

}}
//// note how literal strings can be concatenatednote how literal strings can be concatenated
//// note how several values can be output by a single statementnote how several values can be output by a single statement
//// the finalthe final return 0return 0 is optional inis optional in mainmain ()()
//// -- but you may need to include it to pacify your compilerbut you may need to include it to pacify your compiler

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 202028.10.201428.10.2014

11

Input and typeInput and type

We read into a variable of typeWe read into a variable of type std::stringstd::string

The type of a variable determines what operations we can doThe type of a variable determines what operations we can do
on iton it

Here, "Here, "std::cin >> firstName;std::cin >> firstName;" calls an overloaded "" calls an overloaded ">>>>""

first skips any leading white space, thenfirst skips any leading white space, then
reads characters in a word until a whitereads characters in a word until a white--space character isspace character is
seen (seen (spacespace,, tabtab,, newlinenewline,..),..)
the input text ("word") can be of any size, and the stringthe input text ("word") can be of any size, and the string
"grows" in size as needed (allocated space in a buffer)"grows" in size as needed (allocated space in a buffer)

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 212128.10.201428.10.2014

String input plus concatenationString input plus concatenation

int main () {int main () {
//// read first and second nameread first and second name::
std::cout << "Please enter your first and second namesstd::cout << "Please enter your first and second names\\n";n";
std::string first, second;std::string first, second;
std::cin >> first >> second;std::cin >> first >> second; //// read two stringsread two strings
std::string name = first + ' ' + second; //std::string name = first + ' ' + second; // concatenate,concatenate,

//// separated by a spaceseparated by a space
std::cout << "Hello, "<< name << 'std::cout << "Hello, "<< name << '\\n';n';

}}

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 222228.10.201428.10.2014

12

Integer inputInteger input
The same IO operationsThe same IO operations >>>> andand <<<< work for different types,work for different types,
e.g., for integer valuese.g., for integer values
Later we make them work similarly for userLater we make them work similarly for user--defined types, toodefined types, too

//// read name and ageread name and age::
int main () {int main () {

std::cout << "Please enter your first name and agestd::cout << "Please enter your first name and age\\n";n";
std::string firstName;std::string firstName; //// string variablestring variable
intint age;age; //// integer variableinteger variable
std::cin >> firstName >> age;std::cin >> firstName >> age; //// read bothread both
std::cout << "Hello, " << firstName << " age " << age << 'std::cout << "Hello, " << firstName << " age " << age << '\\n';n';

}}

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 232328.10.201428.10.2014

Integers and stringsIntegers and strings

std::stringstd::string
cincin >>>> reads until whitespacereads until whitespace
coutcout <<<< writes the stringwrites the string
++ concatenatesconcatenates
+= s+= s adds the stringadds the string ss at endat end
++++ is a compileis a compile--timetime errorerror
-- is a compileis a compile--timetime errorerror
……

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2424

Integer and floating point numberInteger and floating point number
cincin >>>> reads a numberreads a number
coutcout <<<< writes the numberwrites the number
++ addsadds
+= n+= n increments by theincrements by the intint nn
++++ increments byincrements by 11
-- subtractssubtracts
……

28.10.201428.10.2014

The type of a variable determines whichThe type of a variable determines which operations (names)operations (names) areare
valid and what their meanings are for that typevalid and what their meanings are for that type

uses "uses "overloadingoverloading" or "" or "operator overloadingoperator overloading""

13

A simple computationA simple computation

intint main ()main () {{ //// inchinch--toto--cm conversioncm conversion

const doubleconst double cm_per_inchcm_per_inch = 2.54; //= 2.54; // centimeters per inchcentimeters per inch
int length = 1;int length = 1; //// length in incheslength in inches
while (length != 0) {while (length != 0) { //// 00 is used to exitis used to exit

std::cout << "Please enter a length in inches: ";std::cout << "Please enter a length in inches: ";
std::cin >> length;std::cin >> length;
std::cout << length << " in. = "std::cout << length << " in. = "

<< cm_per_inch<< cm_per_inch ** length << " cm.length << " cm.\\n";n";
}}

}}

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 252528.10.201428.10.2014

Types and literalsTypes and literals
BuiltBuilt--in typesin types

Boolean typeBoolean type
boolbool

Character typesCharacter types
charchar,, char16_tchar16_t,, char32_tchar32_t

Integer typesInteger types
intint,, shortshort,, longlong,, long longlong long

FloatingFloating--point typespoint types
floatfloat,, doubledouble,,
longlong doubledouble

StandardStandard--library typeslibrary types
std::stringstd::string
std::complexstd::complex <<ScalarTypeScalarType>>

Most types are "standalone"Most types are "standalone"

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2626

boolean literalsboolean literals
true falsetrue false

character literalscharacter literals
'a', 'x', '4', ''a', 'x', '4', '\\n', '$'n', '$'

integer literalsinteger literals
0, 1, 123,0, 1, 123, --6, 0x34, 0xa3,6, 0x34, 0xa3,
1234576L, 123456789LL1234576L, 123456789LL

floating point literalsfloating point literals
1.2, 13.345, .3,1.2, 13.345, .3, --0.54, 1.2e3,0.54, 1.2e3,
. 3F, .3F, 13.345L. 3F, .3F, 13.345L

string literalsstring literals ""asdfasdf"" (C(C--style string)style string)

complex "literals" (constructor calls)complex "literals" (constructor calls)
complex <double> (12.3, 99)complex <double> (12.3, 99)
complex <float> (1.3F)complex <float> (1.3F)
{ 12.3, 99 } //{ 12.3, 99 } // C++11C++11

28.10.201428.10.2014

14

C++ typesC++ types
C++ provides a set of builtC++ provides a set of built--in typesin types

represent therepresent the native typesnative types of the underlying hardwareof the underlying hardware
e.g.e.g. boolbool,, charchar,, intint,, doubledouble,, long longlong long,, long doublelong double, etc., etc.

C++ programmers can define new types (C++ programmers can define new types (structstruct,, class, enumclass, enum))

called “called “useruser--defined typesdefined types” = abstract data types/subclasses” = abstract data types/subclasses
we'll get to that laterwe'll get to that later

The C++ standard library provides types (inThe C++ standard library provides types (in stdstd namespace)namespace)
e.g.e.g. stringstring,, vectorvector,, complex, list, map, istream, ostreamcomplex, list, map, istream, ostream
in principle, these are "userin principle, these are "user--defined types", toodefined types", too

i.e., they are built using facilities available to every user:i.e., they are built using facilities available to every user:
classes, overloading, templates, exceptions..classes, overloading, templates, exceptions..

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 272728.10.201428.10.2014

Declaration and initializationDeclaration and initialization

int a = 7;int a = 7;

int b = 9;int b = 9;

char c = 'a';char c = 'a';

double x = 1.2;double x = 1.2;

std::string s1 = "Hello, world";std::string s1 = "Hello, world";

std::string s2 = "1.2";std::string s2 = "1.2";

(conceptually "containers")(conceptually "containers")

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2828

7

9

'a'

1.2

"Hello, world"

"1.2"

a:

b:

c:

x:

s1:

s2:

28.10.201428.10.2014

12

3

C-syle string

15

ObjectsObjects
""ObjectObject" is a technical term in C++" is a technical term in C++

somesome memorymemory thatthat holds a valueholds a value of a given typeof a given type
(built(built--in/userin/user--defined)defined)

A variable is a named or "declared" objectA variable is a named or "declared" object
since a declaration (usually) names an objectsince a declaration (usually) names an object

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2929

int a = 7;int a = 7;
char c = 'x';char c = 'x';
std::complex <double> z (1.0, 2.0);std::complex <double> z (1.0, 2.0);

std::string s = "qwerty";std::string s = "qwerty";
//// implicit conversionimplicit conversion

7

'x'

1.0

"qwerty"

2.0

6

a:

s:

c:

z:

28.10.201428.10.2014

(can grow or shrink)

Type safetyType safety
Language rules try to enforce or support type safetyLanguage rules try to enforce or support type safety

every object is used only according to its type, i.e.,every object is used only according to its type, i.e., onlyonly
operations defined for the object's type will be appliedoperations defined for the object's type will be applied
each operation is (hopefully) programmed to leave the objecteach operation is (hopefully) programmed to leave the object
with a valid value (or indicates an error..)with a valid value (or indicates an error..)

Ideal:Ideal: static type safetystatic type safety
a program that has a type violation will not even compilea program that has a type violation will not even compile
the compiler reports each violation (in an ideal system)the compiler reports each violation (in an ideal system)

no need to run, test, and determine code coverageno need to run, test, and determine code coverage

Ideal:Ideal: dynamic type safetydynamic type safety
type violations detected (prevented) at run time (at the latest)type violations detected (prevented) at run time (at the latest)
some code ("the runsome code ("the run--time system") reports violations not foundtime system") reports violations not found
by the compiler; usually viaby the compiler; usually via exceptionsexceptions

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 303028.10.201428.10.2014

16

Type safety and C++Type safety and C++
Type safety is a very big deal: “the compiler is your best friend”Type safety is a very big deal: “the compiler is your best friend”

but it won’t always feel like that when it rejects your “correct”codebut it won’t always feel like that when it rejects your “correct”code

C++ is notC++ is not staticallystatically type safetype safe
no practical language is (completely) statically type safeno practical language is (completely) statically type safe
absolute static type safety would interfere with our ability to expressabsolute static type safety would interfere with our ability to express
runrun--time computations (say, using dynamic index values..)time computations (say, using dynamic index values..)

C++ is notC++ is not dynamicallydynamically type safetype safe
dynamic type checking may make code bigger and slowerdynamic type checking may make code bigger and slower
in C++, may have to insert checks of our own (in C++, may have to insert checks of our own (assert()assert(),, check()check()))

Java and C# compensate for lack of total static safety with dynamicJava and C# compensate for lack of total static safety with dynamic
checks => such languages are calledchecks => such languages are called strongly typedstrongly typed (prevent type errors)(prevent type errors)

Most of what you’ll be taught here is type safeMost of what you’ll be taught here is type safe
We’ll try to specifically mention anything that is notWe’ll try to specifically mention anything that is not

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 313128.10.201428.10.2014

A typeA type--safety violation ("implicit narrowing")safety violation ("implicit narrowing")
//// beware: C++ does not prevent you from trying to put a large valuebeware: C++ does not prevent you from trying to put a large value
//// into a small variable (though a compilerinto a small variable (though a compiler maymay possibly warn)possibly warn)

intint main () {main () { //// illustrative codeillustrative code
intint a = 20000;a = 20000;
char c = a;char c = a; //// oror ""((charchar))aa""
intint b = c;b = c;
if (a != b)if (a != b) //// of the same typeof the same type ((intint))

std::cout << "oops!: " << a << "!=" << b << 'std::cout << "oops!: " << a << "!=" << b << '\\n';n';
elseelse

std::cout << "Wow! We have very large charactersstd::cout << "Wow! We have very large characters\\n";n";
}}

in C++, we don't (necessarily) know what will happen ("c = 20000")in C++, we don't (necessarily) know what will happen ("c = 20000")
try it to see what valuetry it to see what value bb gets on your machinegets on your machine

warnings depend on compiler options (e.g., VC++ not by default)warnings depend on compiler options (e.g., VC++ not by default)
Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 3232

20000a

???c:

28.10.201428.10.2014

17

TypeType--safety violation: uninitialized variablessafety violation: uninitialized variables
//// beware: C++ does not prevent you from trying to use a variablebeware: C++ does not prevent you from trying to use a variable
//// before you have initialized itbefore you have initialized it ((though a compiler may try to warnthough a compiler may try to warn))

intint main () {main () {
intint x;x; // x// x gets a “random” initial valuegets a “random” initial value
char c;char c; // c// c gets a “random” initial valuegets a “random” initial value
double d;double d; // d// d gets a “random” initial valuegets a “random” initial value
doubledouble dddd = d;= d; //// potential failure, in some hardwarepotential failure, in some hardware::

//// can’t copy invalid floatingcan’t copy invalid floating--point valuespoint values
std::cout << " x: " << x << " c: " << c << " d: " << d << 'std::cout << " x: " << x << " c: " << c << " d: " << d << '\\n'; //n'; // warnwarn??

}}
not every bit pattern is a valid floatingnot every bit pattern is a valid floating--point (as seen by the hardware)point (as seen by the hardware)
beware: “debug mode” may initialize by some default valuesbeware: “debug mode” may initialize by some default values -- or notor not
always initialize your variablesalways initialize your variables

one possible exception to this rule: use as input variable (nearby)one possible exception to this rule: use as input variable (nearby)

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 333328.10.201428.10.2014

About efficiencyAbout efficiency
C++ is derived from C, another systems programming languageC++ is derived from C, another systems programming language
still provides direct access to hardware (memory/instructions)still provides direct access to hardware (memory/instructions)
C++’s builtC++’s built--in types map directly to computer main memoryin types map directly to computer main memory

anan intint is stored in a memory wordis stored in a memory word
aa doubledouble fits in a floatingfits in a floating--point machine registerpoint machine register

C++’s builtC++’s built--in operations map directly to machine instructionsin operations map directly to machine instructions
an integer + is implemented by an integeran integer + is implemented by an integer addadd operationoperation
an integer = is implemented by a simplean integer = is implemented by a simple movemove operationoperation

C++ may help to build safer, more elegant, and efficient newC++ may help to build safer, more elegant, and efficient new
types and operations using these builttypes and operations using these built--in types and operationsin types and operations

e.g.,e.g., std::stringstd::string,, std::vectorstd::vector,, std::liststd::list
eventually, we’ll show some of how that’s doneeventually, we’ll show some of how that’s done

For now, concentrate on correctness and simplicity of codeFor now, concentrate on correctness and simplicity of code

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 343428.10.201428.10.2014

18

A bit of philosophyA bit of philosophy
One of the ways that programming resembles other kinds of engineeringOne of the ways that programming resembles other kinds of engineering
is that it involves a lot of tradeoffsis that it involves a lot of tradeoffs

We have ideals or requirements, but they often conflict, so must decideWe have ideals or requirements, but they often conflict, so must decide
what matters for a given program under specific circumstanceswhat matters for a given program under specific circumstances

type safety (static/dynamic)type safety (static/dynamic)
runrun--time performance (time performance (vsvs. e.g., dynamic checks for type safety). e.g., dynamic checks for type safety)
ease of constructionease of construction
ease of maintenance (which may make construction harder..)ease of maintenance (which may make construction harder..)
ability to run on our given platformability to run on our given platform
ability to run onability to run on multiple platformsmultiple platforms with same results (portability)with same results (portability)
compatibility with 3rdcompatibility with 3rd--party code, libraries, and legacy systemsparty code, libraries, and legacy systems

Don't cut corners on correctness or testingDon't cut corners on correctness or testing
By default, aim for type safety and portability (not so trivial in C++)By default, aim for type safety and portability (not so trivial in C++)

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 353528.10.201428.10.2014

