Software Design (C++)

1. Language Technicalities

Juha Vihavainen
University of Helsinki

Preview

m computation: algorithms plus data structures
m some stuff on std::vector
m using 10 streams: states and flags

» handling errors and failures: exceptions
m pre-conditions and post-conditions
m a bit on debugging and testing

m reference and const types

m namespaces and headers

= scoped and unscoped enumerations
= overloading operators

4.11.2014 Juha Vihavainen / University of Helsinki

Data for iteration — std::vector

= Todo just about anything of interest, we need a collection of
data to work on. We can store this data in a vector. For example:

/l read some temperatures into a vector:

int main () {
std::vector <double> temps; // store temperatures
double temp; /I avariable for a value
while (std::cin >> temp) /I cin reads a value into temp

temps.push_back (temp); // store temp in the vector
/I ... dosomething ...

}

/I action cin >>temp will indicate true until we reach the end of file ..
/I .. or encounter something that isn’t a double (meaning here "quit")

4.11.2014 Juha Vihavainen / University of Helsinki 3

std::vector

m std::vector is the most useful standard library data type (Stroustrup)

m astd::vector <T> holds an sequence of values of type T
= we can think of a vector the following way (a bit simplified):
a vector named v contains 5 elements: {1, 4, 2, 3, 5}

size () std::vector <int>v={1,4,2,3,5},

v s

\V[O] VI v[2] Vv[3] V[4]
v’s elements: 1 4 2 3 5

m indirection needed since a std::vector is flexible: grows/shrinks

4.11.2014 Juha Vihavainen / University of Helsinki 4

Handling vectors

std::vector <int>v; /I start off empty
V. 0 (a hypothetical implementation)
v.push_back (1); /I add an element 1
v 1 1
v.push_back (4); /l add an element 4 atend (“the back™)
V. 2 —1T | 1 4
v.push_back (3); /l add an element 3 atend (“the back™)
vl v[i] v[2]
V. 3 11 4 3
4.11.2014 5

Handling vectors (cont.)

/I compute mean (average) and median:

int main () {
std::vector <double> temps; /I say, temperature values
double temp;
while (std::cin >> temp) /I read and put into vector

temps.push_back (temp);
double sum =0;
for (int i = 0; i < temps.size (); ++i) sum +=temps [i];
/I sums temperatures
std::cout << ""Mean temperature: ' << sum/temps.size () << "\n";
std::sort (temps.begin (), temps.end ()); // standard algorithm

std::cout << ""Median temperature: ** << temps [temps.size () / 2]
<< std::endl; /I adds "\n" and flushes buffer
}

/I what if the number stream is empty? - or if 10 errors happen?

4.11.2014 Juha Vihavainen / University of Helsinki 6

Example — Word list

[* read a bunch of strings into a vector of strings, sort
them into lexicographical (alphabetical) order ,
and print the strings from the vector to see what we have
*/
std::vector <std::string> wi :
std::string s;
while (std::cin >>s && s = ""quit"") /[and not EOF . .
words.push_back (s);

fail is not possible for a string ‘

std::sort (words.begin (), words.end ()); // standard algorithm

for (auto word : words) Il use range for, and
std::cout << word << "\n""; Il type deduction

» but what about error handling? - discussed shortly

4.11.2014 Juha Vihavainen / University of Helsinki 7

I/O error handling
[simplified from Stroustrup, 2014, Ch. 10.6, p. 354-358]

Read integers from cin into a vector until we reach eof() or *;"

std::vector <int>v; int i =0; /I value buffer (initially empty)
while (std::cin >> i) v.push_back (i); // read and store until “failure”
if (std::cin.eof ()) return v; /I fine: we found the end of file
if (!std::cin.bad ()) { /I not eof and not bad => fail
Il so state is fail - probably an integer format error due to ;'
std::cin.clear (); /I clear state, so can read more
char c=""; std::cin >>c; /I read a char, hopefully *;'
if (c=="") returnyv; /I got the expected character - OK
std::cin.unget (); /I clean mess: put that char back (?)

std::cin.clear (std::ios_base::failbit); // and set state to fail()

}

error ("input stream is corrupted™); // get out of here (defined later)

4.11.2014 Juha Vihavainen / University of Helsinki 8

I/O error handling: summary

10 streams reduce all errors to one of four states (for stream is)

= is.good () I the last operation succeeded (no flags are set)
m is.eof () /I we hit the end of input ("end of file™)

m is.fail () /I something "unexpected” happened (format)

m is.bad () /I something unexpected and very bad happened

Sample integer read “failure”

m "12345*"=>fail () /I ended by "terminator character": |*
m "12345.6"=>fail () /I ended by format error (for |".6" part)
m "12345" =>eof () /I end of file,

/I Ctrl-Z (Windows), Ctrl-D (Unix)
m diskerror => bad () /I something serious (*“cannot recover")

If a stream is in an error state, all subsequent 10 operations are ignored.
Reset state: "cin.clear ();", or sometimes: "cin.clear (ios_base::failbit);"

4.11.2014 Juha Vihavainen / University of Helsinki setsthe bit! 9

Word list, again — eliminating duplicates

/I eliminate the duplicate words (by copying only unique words):

std::vector <std::string> words;

std::string s;

while (std::cin >>s && s !=""quit") words.push_back (s);
std::sort (words.begin (), words.end ());

std::vector <std::string> w2;

if (words.size () >=1){ /I not empty
w2.push_back (words [0]); /I copy at least first
for (std::size_t i=1; i<words.size (); ++i) // from 2nd item
if (words [i-1] !'= words [i]) /I not the same again

w2.push_back (words [i]);
}

std::cout<< "Found " << words.size ()-w2.size ()<< " duplicates\n'";
for (auto word : w2) std::cout << word << "\n"";

4.11.2014 Juha Vihavainen / University of Helsinki 10

Computation

m Our job is to express computations
m correctly, simply, efficiently

m One tool is called divide and conquer
» to break down big computations into sub-problems

= Another tool is abstraction

= provide higher-level concepts that hide details
m both named actions (functions) and user-defined types

m Organization of data is often the key to good code
m input/output formats, protocols, data structures

= Note the emphasis on structure and organization

= you don’t get good code without analysis, design &
some experimentation

4.11.2014 Juha Vihavainen / University of Helsinki 11

Errors: overview

m Errors (“bugs”) really are unavoidable in
programming
m sources of errors? intmain () {
» kinds of errors? try {

Imn...
} catch (std::out_of_range const&) {
std::cerr << "vector index "

= To minimize errors
m organize code and data

m prepare for testing and "out of range\n'’;
debugging }catch(...) { // catcheswhatsoever
= Do error checking and produce std::cerr << ""unknown error\n®';

reasonable error messages
= input data validation
n function arguments
m pre-/post-conditions

m Exceptions & a sample error() helper routine

4.11.2014 Juha Vihavainen / University of Helsinki 12

On errors

m our most basic aim should be correctness

= we must deal with incomplete problem specifications, external
errors and failures, and our own errors

m prior experience, knowledge of the application domain, the
programming language, tools, etc. matter, too

m note that "incomplete specifications” may result from
changing circumstances and requirements

= we’ll mostly concentrate on one key area: how to deal with
unexpected (invalid) function arguments

m also briefly discuss about techniques for finding errors in
programs: debugging and testing

4.11.2014 Juha Vihavainen / University of Helsinki 13

On errors (cont.)

= When we write programs, errors are natural and unavoidable;
how to deal with them?

m from the start, organize software to minimize errors
m style, idioms, object-oriented design patterns

m then try to eliminate most of the errors we make anyway
m by systematically testing and debugging

m actually cannot guarantee "absolute correctness"
m eliminate at least the most serious errors
m Stroustrup:

m “avoiding, finding, and correcting errors is 95% or more of
the effort for serious software development”

= code complexity often grows exponentially

4.11.2014 Juha Vihavainen / University of Helsinki 14

Detection of "errors"

Compile-time errors

m syntax and type errors: missing/extra token, type mismatch
Link-time errors

= missing or incompatible definition of data/functions
Run-time errors

» detected by computer, often by “crashing” the program

m detected by library; often will throw exceptions

m detected by application: lack of resources, connection failures
Logic errors : code compiles but produces incorrect output

m detected by testing (programmer/test driver) - we hope

Terminology: fault in code => error in data/state => failure in
execution (state includes the program counter PC - i.e., control)

4.11.2014 Juha Vihavainen / University of Helsinki 15

Checking arguments by the compiler

m The compiler helps by statically checking the number and types of
arguments (depends on the language)

int area (int length, int width) { // illustrative, only
return length * width;

}
/I call arguments must match
int x1 = area (7); /I error: too few arguments
int x2 = area (*'seven', 2); // error: 1st arg has a wrong type
int x3 = area (7, 10); /Il ok
int x5 = area (7.5, 10); /I ok, but odd: 7.5 is truncated to 7;
/I many compilers will warn you
int x = area (10, -7); /I thisis a difficult case in C/C++:
/I correct types but values make no sense
/I - itisa function domain error

4.11.2014 Juha Vihavainen / University of Helsinki 16

Bad function arguments

= So, how about intx = area (10, -7); // or "area (10, b);", b<0
m How to catch such an error? Alternatives:
m all callers check: insecure, laborious, hard to do systematically

m the function checks (so in one place only), and possibly

m returns an “error value” — not general, problematic
m sets an error status indicator — not general, problematic
» throws an exception: forcing the program check, or terminate

= a function has no control over how it is called, e.g., consider
library routines; so it is wise to be suspicious ..

Note: sometimes we can’t ourselves decide about error handling

= someone else wrote the code and we don’t want to or even
cannot change it

4.11.2014 Juha Vihavainen / University of Helsinki 17

How to report an error: exceptions

Report an error by throwing an exception

#include <stdexcept> // get the standard exceptions
. /I here, std:: domain_error
int area (int length, int width) {
if (length < 0 || width < 0)
throw std::domain_error (**Negative number");
return length * width;

}
Catch and deal with the error (e.g., in main())
try{ ... /I prepare to detect and handle
intz=area (x,y); ... // ifarea() doesn’t throw an exception
} /I make the assignment and proceed

catch (std:: domain_error const&) { // if area() throws
std::cerr << ""Bad area arguments — please, fix program\n**;

}

4.11.2014 Juha Vihavainen / University of Helsinki 18

Exceptions

m Exception handling is a general solution

m especially with libraries of reusable components

m you can’t just forget about an exception: the program will
terminate if someone doesn’t handle it (with a try ... catch)

m most errors can be reported using exceptions

m You still need to figure out what to do about an exception

m error handling is never really simple

Note. C++ does not (by default) use exceptions for 10 operations

m can argue that they are not really “exceptional” errors since
= we must always check input data - it is part of the problem/task

4.11.2014 Juha Vihavainen / University of Helsinki 19

Out of index range

Try this
std::vector <int> v (10); /I a vector of 10 ints, each
/I to the default value, 0,
/I referredtoas v[0]..v[9]
for (int i =0;i<v.size (); ++i) v[i]=i; // setvalues
for (int i = 0; i <= 10; ++i) /[print 10 values (oops!)
std::cout << "'V[" << i<< "] ==" << v [i] << std::endl;

m here, operator [] (subscript) is called with a bad index (10)
m the C++ standard leaves the actual behavior unspecified
m the behavior can differ with different environmets
m if you have some special library with check options and
utilities, it might report by throwing a std::out_of _range

4.11.2014 Juha Vihavainen / University of Helsinki 20

10

Example: handling an allocation failure

m In C++, new/new([] replace the C allocator macros (malloc(), etc.)

n If the runtime system cannot allocate memory for an object on the
heap, then a std::bad_alloc exception is thrown

Student * michael, * studentArr; /I pointers
try {
michael = new Student (""Mike"); /I one student

studentArr = new Student [1000000000000]; // huge array

} catch (std::bad_alloc const& e) { /I dyn. alloc. failed

}

= Note 1. bad_alloc can be thrown by any nontrivial program

= Note 2. We can also define a special new-handler function to deal with
the failure of new, or we can use the nothrow-version of new (omitted
here, see e.g. Stroustrup or online sources).
4.11.2014 Juha Vihavainen / University of Helsinki 21

Standard exceptions

m Standard library defines a hierarchy of exceptions with std::exception
asthe root (in header <stdexcept>)

m Exceptions are divided into three main categories

1. logic errors: precondition violations that in principle should be
guaranteed before calling an operation; a failure will often mean
an error (bug) in program logic (e.g., pop from an empty stack,
invalid array index, etc.)

2. run-time errors: dynamic errors that cannot really be tested or
anticipated, e.g., numeric errors (overflow), communication line
failure, or other such external failures..

3. language-support: logic/run-time errors: bad_cast, bad_alloc,..

m Subclasses of logic errors use more-or-less self-explanatory names;
e.g., std::invalid_argument exception

4.11.2014 Juha Vihavainen / University of Helsinki 22

11

Standard exceptions (cont.)

logic_error o exception k runtime_error
I—IA +exception(:const exception &) \—IA

bad_alloc +operator=(:const exception &):exception Tos_base::failure
[|*-exception()
out_of_range

+what():const char*

o C++03
- [range_error] [underflow_error|
domain_error | | [|
}(bad_exception)I I bad_typeid I I bad_cast I
[out_of_range | C++11 adds the following [Josul2, 42]:
L]
bad_array_new_length

bad_weak_ptr, bad_function_call

invalid_argument
1en%th_er ror future_error, system_error

nested_exception (with new throws)

= Logic and runtime exceptions are included from the header <stdexcept>.
The header <exception> provides std::exception, and related functions.
The header <typeinfo> provides std::bad_typeid and std::bad_cast. The
header <new> provides std:bad_alloc.

= Not the perfect design (says Stroustrup) - but supports portability, uniform
handling of exceptions, and is ready for use.

4.11.2014 Juha Vihavainen / University of Helsinki 23

Standard exceptions (cont.)

Exceptions that are often used for library and run-time errors:

m out_of range: invalid index for a STL container (vector::at ())
m length_error: aspecified structure/range too long
m range_error: error in numeric computation

Special exceptions are used for C++ features (“language support")

bad_alloc: operator new fails to allocate memory
bad_cast: dynamic_cast operation fails (on reference &)
bad_typeid: typeid operator fails on null ptr/ref (nullptr)

ios_base::failure: 10 failure (when a stream is configured to
throw exceptions); derived from system_error (C++11)

By default, no exceptions are thrown from IO errors.

4.11.2014 Juha Vihavainen / University of Helsinki 24

12

Standard exceptions (cont.)
m std::exception has a special operation what () to report on the
error (can be redefined in subclasses)

class exception {
public:
virtual const char * what () const noexcept (); ...
~

b

‘ doesn't throw any ‘
. std::cerr <<e.what (); // caught exception e

m derived exception classes have constructors to specify the value
returned by what ():

logic_error::logic_error (std::string const& msg);
m there is a similar arrangement for other predefined exceptions

m the constructor takes a std::string value as a parameter but the
query operation what () returns a C-style character array

4.11.2014 Juha Vihavainen / University of Helsinki 25

Idiom: always handle uncaught exceptions

Use exception handling to "terminate programs gracefully"

int main () try { /I using special function try block syntax
In...

catch (std::out_of_range const&) { // (ignore const& ..here)
std::cerr << "oops — some index out of range\n"’;

catch (std::exception const& €) { // some other standard exception
std::cerr << "oops: " << e.what () << std::endl;

catch (...){ /I all other exceptions
std::cerr << "oops — some unknown exception\n**;
4.11.2014 Juha Vihavainen / University of Helsinki 26

13

Pre-conditions

What does a function require of its arguments (data)?

m such a requirement is called a pre-condition
m often (depending on circumstances), it’s good to check it
int area (int length, int width) { /I calculate area
if (length <O || width < 0)

throw std:: domain_error ("*Negative number"');
return length * width;

}

m problems are easier to recognize and handle at their beginning

4.11.2014 Juha Vihavainen / University of Helsinki 27

Post-conditions

What must be true when a function returns?
Such a requirement is called a post-condition

int area (int length, int width) { /I calculate
if (length <0 || width < 0)
throw std::domain_error (**Negative number");
/I the post: return the result from integer multiplication
return length * width; /I always OK?
}

Checking can be done by run-time systems, libraries, application code,
extra sanity checks (assert()), or by test drivers

Note that here area() may produce an unnoticed integer overflow
m C++doesn't check integer overflow here (neither does Java)
m C# provides optional check blocks ("checked (a*b)")

4.11.2014 Juha Vihavainen / University of Helsinki 28

14

Principle of "separate responsibilities"

It is the responsibility of the caller to ensure that pre-conditions are
not violated

» the algorithm inside the routine body can then assume that the
conditions are valid and just proceed with its calculation

» failed pre-conditions can show data errors - or a forbidden state

It is the responsibility of the called routine to ensure that the post-
condition is true

m the caller can assume that if the pre-condition is true then the
post-condition is met on return from the routine

m the failure in post-conditions (usually) means that there is a bug

Such contract can simplify both user code and implementation code

In reality, errors (bugs) do happen and so routines provide a pre-
condition checks for general safety/robustness (e.g., index checks)

4.11.2014 Juha Vihavainen / University of Helsinki 29

Pre- and post-conditions

Always think about them as part of program design
» if nothing else write them as comments

Check them *“where reasonable” (or - at least partially)
= some failures manifest only after actual attempts
m accessing scarce resources
m also consider doing really complicated calculations..

We will need to check a lot more when looking for a bug . .

Analyzing and checking pre- and post-conditions can be tricky

= how could the "post-condition” for area () fail
m after the pre-condition is established (as true)?

m what are the actual pre- and post-conditions for area ()?

4.11.2014 Juha Vihavainen / University of Helsinki 30

15

Functions and passing-by-reference

Pass-by-reference gives a reference (= an address) to the argument:

int f (int& a) {a=a+1; return a; } & 15t call (refers to xx)
AN
int main () { ‘ ais an alias for xx ‘
int xx = 0;)
std::cout << f (xx) << std::endl; // writes I\, changes xx
std::cout << xx << std::endl; Il writes 1
) d call (refers to yy)
intyy=17;

std::cout << f (yy) << std::endl; // writes 8 ; changes yy
std::cout << yy << std::endl;

}

m Similar features: in Pascal, var parameter; C#: ref/out parameter

4.11.2014 Juha Vihavainen / University of Helsinki 31

Functions and reference parameters

m Reference arguments may lead to obscure bugs when you forget which
arguments can be changed

int incrl (int a) { return a+1; }

void incr2 (int& a) { ++a; } ‘ shows the side-effect ‘
intx=7; \

x =incrl (x); /I pretty obvious

incr2 (x); /I pretty obscure (in C#: incr2 (ref x);)

m Occasionally, reference arguments may be essential, e.g.,

for changing several values via one single call

representing so-called Ivalue (the term is originally from C)
manipulating containers (e.g., vector subscripting produces Ivalues)
needed for many technical issues: 10, initialization/copying..

= Note that const reference arguments are very often useful

4.11.2014 Juha Vihavainen / University of Helsinki 32

16

By-value / by-reference / by-const-reference

void g (int a, int& r, const int& cr) {

++a; /I ok: a acts like a local variable
++r; /I ok: rischanged
int x = cr; /I ok: cr is accessed for its value
++X; /I ok: local x is changed
}
int main () {
intx=0,y=0,z=0;
g(xy,2); /I aftercall: x==0;y==1;z==0
g(1,23); /I error: reference r needs a variable to refer to
gLy, 3); /I ok: since cr is const we can pass “a temporary”
}

/I 3rd argument in the last call can be an expression ("x + 1")

4.11.2014 Juha Vihavainen / University of Helsinki 33

General references

m “reference” is a general concept, not just for pass-by-reference

inti=7;

int& r=i; /I bindsrtoi r i
r=9; /I i becomes 9 \ i
const int& cr=i; // bindscrtoi 7
cr=71; Il error: cr refers to const /

i=8; /I ok cr

std::cout << cr << std::endl; // writes out the value of i (that’s 8)

= you can think of a reference as an alternative name for an object
» actually, the implementation is just a pointer (memory address)
m but with some restrictions; e.g., we can’t
m bind a reference to another object after its initialization
m traverse a linked data structure (like pointers)
= modify an object through a const reference

4.11.2014 Juha Vihavainen / University of Helsinki 34

17

Guidance for passing variables

For example

class Image { /* objects that are potentially huge */ };

void f (Image i); ... f(mylmage); /I copy: can be very slow
void f (Image& i); ... f(mylmage); /I no copy, but bad style
void f (Image const&); ... f(mylmage); // can't mess mylmage

use call-by-value for very small objects (fit registers and such)
use call-by-const-reference for large objects (to avoid copying)
use call-by-reference only when you have to (sometimes you do)

generally, better to return a result rather than modify an object
through a reference argument

m more readable, less error-prone, problematic for large values
m C++11 provides ways to return large objects efficiently

4.11.2014 Juha Vihavainen / University of Helsinki 35

Motivation for namespaces

class Glob {/*...*/}; /I in Jack’s header file jack.h
class Widget {/*...*/}; [/l alsoin jack.h

class Blob {/*...*/}; /I in Jill’s header file jill.h
class Widget {/*...*/}; [/ alsoinjill.h

#include ""jack.h™ /I this is in your code
#include "jill.h™ /I so is this
void myFunc (Widget .. .){ // error: multiple definitions of Widget
...
}
4.11.2014 Juha Vihavainen / University of Helsinki 36

18

Namespaces

m the compiler will not compile multiple definitions for a name
m clashes may occur from including headers (historically: String)
m 0one way to prevent this problem is with namespaces:

namespace Jack { /I in Jack’s header file
class Glob { /*.. .*/};
class Widget { /* .. .*/ };

}
#include "'jack.h™ /I in your code
#include "jill.h™ /I sois this
void myFunc (Jack::Widget . .) { // Jack’s Widget class will not
... /I clash with a different Widget
}
4.11.2014 Juha Vihavainen / University of Helsinki 37

Namespaces

m A namespace is just a named scope
m only a compile-time concept
m Nno extra memory allocations (memory block)
m no special initializations required

m The :: syntax is used to specify (qualify)
= which namespace you are using, and

= which (of many possible) objects of the same name
you are referring to

For example, cout is in namespace std, so we write:

std::cout << "Please enter stuff..."" <<std::endl;

4.11.2014 Juha Vihavainen / University of Helsinki 38

19

using Declarations and Directives

In order to avoid using the qualifiers
std::cout << "Please enter stuff . .." <<std::endl;
you can write a using declaration (in a .cpp file)

using std::cout; . .. /I cout now means std::cout
cout << "'Please enter stuff . .."; /I ok: std::cout
cin >>x; /[error: cin not in scope

or you can write a general using directive (but avoid this!)

using namespace std; /I all std names available
cout << "Please enter stuff... *; /I ok: std::cout
cin >>x; /I ok: std::cin

Note. Never place any using statements into header files

4.11.2014 Juha Vihavainen / University of Helsinki 39

Enumerations

An enum (enumeration) is a very simple user-defined type,
specifying its set of values (its "enumerators"); for example:

enum class Month { // auser-defined type, with its constants
Jan =1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
h

Month m = Month::Feb; I/l ok

m=7; /I error: can’t assign int to Month

int i = static_cast <int> (m); /I ok: convert to a numeric value

m = static_cast <Month> (7); /I ok: convert int to Month

i =20000; /I ok: assign to int (of course)

m = static_cast <Month> (i); Il Visual Studio doesn't complain!
4.11.2014 Juha Vihavainen / University of Helsinki 40

20

Unscoped enumeration values (no class!)

m Can also define unscoped enum values (by default, unsigned ints)

/I again, the first enumerator has the value 0, and
/I the next enumerator has the value ““one plus the value before it”

enum { Horse, Pig, Chicken }; // Horse =0, Pig = 1, Chicken =2

= Here, too we could explicitly control numbering

enum {Jan =1, Feb, Mar .. .}; /l Feb=2,Mar =3
enum StreamState { Fail =2, Bad =4, Eof =8 }; // illustrative, only

= and practice some (often unsafe) bit manipulations

int ordValue = StreamState::Fail; /I ok: assign 8

int flags = (int)StreamState::Fail + (intymState::Eof; // ok; = 10
StreamState s = flags; // error: can’t assign an int to a StreamState
StreamState s2 = StreamState (flags); /I unsafe conversion!

‘ C++ alternative cast notation ‘
4.11.2014 Juha Vihavainen / University of Helsinki 41

Using enumerations

(1) Simple list of named unsigned int constants (instead of macros):

enum { Red, Green }; /I mere enum doesn’t give a scope
int a = Red; /I ok: Red is available here
enum { Red, Blue, Purple }; /I error: Red is defined twice

The underlying type is here unsigned (but generally impl. defined).

(2) A new "scoped" type, with constant list the underlying type is int
" | unless otherwise specified

enum class Color { Red, Green, Blue ... };
enum class Month { Jan =1, Feb, Mar, ... Nov, Dec };

Month m1 = Month::Jan; /I ok

Month m2 = Color::Red; /I error: Red isn’ta Month

Month m3 =7; /I error: 7 isn’ta Month

inti=mi; /I error: ml isn’tan int

int i = static_cast <int> (ml); /I ok: is converted to an int (1)
4.11.2014 Juha Vihavainen / University of Helsinki 42

21

Summary: operator overloading

m Can overload only existing operators (defined by C++ syntax)
meg, +-*/%[=0"!&<<=>>=

m Can define operators only with their conventional number of operands
m e.g., no unary <= (less than or equal) and no binary ! (not)

= Anoverloaded operator must have at least one user-defined type as
operand

m int operator + (int, int); /I error: can’t overload built-in +
m Vect2 operator + (Vect2 const&, Vect2 const&); /Il ok
. Vect2vl,v2; ... vli=vl+v2;

» Recommendations (for good programming style):

= overload operators only with their "conventional meaning”, e.g.,
+ should be addition, * be multiplication, [] be access, () be call, etc.

n generally, avoid overloading unless very good reasons to do it

4.11.2014 Juha Vihavainen / University of Helsinki 43

Operator overloading
You can overload almost all C++ operators (for class or enum operands -
but not sizeof, "? :", ..); here, using the scoped enum values:
enum class Month : char { Jan =1, Feb, ... }; // specify impl.
Month m = Month::Nov;

++m; /I increment: m becomes Dec
Month Dec = m++; /I increment but use old value; m -> Jan
Month operator ++ (Month& m) { /I prefix increment

m = (m==Month::Dec) ? Month::Jan : Month ((char)m+1);
/I wraps around if necessary

return m; ‘ dummy parameter (not used) to specify post++ ‘
} %
Month operator ++ (Month& m, int) { /I postfix increment
Month old = m; ++m; return old; /[m wraps around
4.11.2014 Juha Vihavainen / University of Helsinki 44

22

Assertions

Assertions are Boolean expressions that define conditions
that should never fail

C++ provides (in header <cassert>) the predefined macro

assert (booleanExpression); // already in standard C

By default, is turned on in the test version

n if NDEBUG is not defined and the argument of assert ()
evaluates to false, then source file and line are displayed, and
the program is immediately aborted, by calling abort ()

assert () is usually turned off in the production version

= when macro NDEBUG is defined, assert () does nothing (it's
empty) and thus “extra" checks are eliminated from the code

4.11.2014 Juha Vihavainen / University of Helsinki 45

Exceptions vs. assertions

n Differences between exceptions and assertions

» failed assert immediately terminates the program
m You can catch exceptions and try to continue
= you can turn off assertions (but usually not exceptions)

m Differences between preconditions and other assertions

m preconditions (often) tests external failures which the component
cannot handle itself; instead, it must throw failures back to their
original source (the caller)

= many run-time failures (e.g., math. overflow, memory alloc.) can
be seen as a kind of "external" factors, too => use exceptions

= Invariants and post-conditions check the internal state that cannot
possibly make sense to outsiders and indicate a bug in the component
=> use asserts to eliminate them

4.11.2014 Juha Vihavainen / University of Helsinki 46

23

Summary: Why checks?

Why not leave all checks out of the production version

= we often don't really know the real reason of the failure: perhaps a
programming error or some external resource/factor

m strongly-typed languages (such as Java and C#) use checks and
exceptions to always prevent unsafe operations

m preconditions/external failures provide a pragmatic trade-off what
to check, at the boundary of a component or module

m note that the C++ standard library uses the same convention
(provides pre-condition checks for selected operations)

m to generally use exceptions, must additionally design classes and
operations to be exception safe (i.e., to tolerate unexpected errors
and their handling thru exceptions); we will discuss this later

4.11.2014 Juha Vihavainen / University of Helsinki 47

Debugging is hard

m Try to see what the program code really specifies, not what you
hope or think it should say

m Pay special attention to “end cases” (beginnings and ends)

m did you initialize every variable to a reasonable value?
m did the function get the right arguments?
m did the function return the right value?
» did you handle the first/last element correctly?
m did you handle the empty case correctly?
= Nno elements, no input
m did you open all files correctly?
» did you actually read that input? write that output?

m Assertions help; IDE helps (breaks, stepping); logging helps
m need to make the behavior of the program apparent/visible

4.11.2014 Juha Vihavainen / University of Helsinki 48

24

How to test a program?

Think of testing and correctness from the very start
Practice "test-driven development” (TDD)

Systematically analyze input data and design tests for them
When possible, test parts of a program in isolation

m e.g., for a critical or very complicated function

m write code that calls it with different arguments to see how it
behaves in isolation before putting it into the real program

m test drivers help to organize tests and display reports

Test both debug options set ON and options set OFF
m need to try out both debug version and production version

See more about this in, e.g, [Stroustrup, 2009, Ch. 26 Testing]

4.11.2014 Juha Vihavainen / University of Helsinki 49

Program structure: some general rules

m Make the program easy to read so that we have a better
chance of spotting the bugs

m Use meaningful descriptive names (most important)
s Comment and explain design ideas (why use this solution)

m Use a consistent layout and indentation
= an IDE may help (but you are the one responsible)

m Break code into small functions
m say, try to avoid functions longer than a page

= Avoid complicated/difficult code
m but, of course, you sometimes cannot avoid such

m Use library facilities (abstractions that hide complexities)
= Use language-dependent idioms, and OO design patterns

4.11.2014 Juha Vihavainen / University of Helsinki 50

25

