
1

Software Design (C++)Software Design (C++)

3. Resource management and3. Resource management and
exception safetyexception safety

(idioms and technicalities)(idioms and technicalities)

Juha VihavainenJuha Vihavainen
University of HelsinkiUniversity of Helsinki

PreviewPreview

More on error handling and exceptionsMore on error handling and exceptions

checking array indices (again)checking array indices (again) -- why not?why not?
handling complicated error situationshandling complicated error situations
the RAII principlethe RAII principle

Smart pointersSmart pointers and resource managementand resource management

ImplementingImplementing exception safetyexception safety

builtbuilt--in language supportin language support
programming techniques and idiomsprogramming techniques and idioms

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2225.11.201425.11.2014

2

IndexIndex checkingchecking
//// an almost realan almost real vectorvector ofof doubledoubless::
include <stdexcept># include <stdexcept> //// //// getget std::out_of_rangestd::out_of_range
classclass VVector {ector { //// my custom container. . .my custom container. . .
public:public: ////

double& operator [] (double& operator [] (intint n);n); //// unsafe but max efficiencyunsafe but max efficiency
double& at (int n);double& at (int n); //// indexindex isis checkedchecked
////

};};
//// possible implementationspossible implementations ((asas allowedallowed by the C++ standardby the C++ standard))
double& Vector::operator [] (int n) { return elem [n]; }double& Vector::operator [] (int n) { return elem [n]; }
double& Vector::at (int n) {double& Vector::at (int n) {

if (n < 0 || sz <= n) throw std::out_of_range ("at: invalid index");if (n < 0 || sz <= n) throw std::out_of_range ("at: invalid index");
return elem [n];return elem [n];

}}
Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 3325.11.201425.11.2014

Reminder: Why not index checking?Reminder: Why not index checking?
Checking costsChecking costs in speed and code sizein speed and code size

not much, don’t worrynot much, don’t worry
fewfew realreal--world projects needworld projects need to worryto worry

ButBut somesome projects may really require optimalprojects may really require optimal performanceperformance
tthinkhink huge (e.g., Google)huge (e.g., Google) and very tinyand very tiny (e.g., cell phone)(e.g., cell phone)

TheThe standard muststandard must serve everybody (is still competing with C)serve everybody (is still competing with C)
""you can’t build optimal on top of checkedyou can’t build optimal on top of checked""
""youyou can build checked on topcan build checked on top of optimalof optimal""

Some projects cannot even be allowedSome projects cannot even be allowed to use exceptionsto use exceptions
ooldld projects with preprojects with pre--exception partsexception parts
hhighigh reliabilityreliability, hard real, hard real--timetime code (thinkcode (think airplanes)airplanes)

The C partThe C part of C++ can't give security guarantees anyway!of C++ can't give security guarantees anyway!

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 4425.11.201425.11.2014

3

RangeRange checking: an examplechecking: an example
The following small program tests out theThe following small program tests out the atat operation:operation:
int main () { . . .int main () { . . .

try {try {
std::vector <int> v;std::vector <int> v;
for (int i = 0; i < n; ++i) v.push_back (i);for (int i = 0; i < n; ++i) v.push_back (i);
forfor ((intint i = 0i = 0;; i <= v.size ();i <= v.size (); ++++ii)) //// oopsoops, but, but checkedchecked

std::coutstd::cout <<<< ""v ["v [" <<<< ii <<<< "] == ""] == " <<<< v.atv.at (i(i)) << '<< '\\nn';';
}}
catch (std::out_of_range const&) {catch (std::out_of_range const&) { //// we’llwe’ll getget herehere

std::coutstd::cout << "out of range<< "out of range errorerror";";
returnreturn 11;; //// just give up here..just give up here..

}}
catch (...) {catch (...) { //// something elsesomething else
}}

}}
5525.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

ExceptionException handling and cleanuphandling and cleanup -- the hard waythe hard way
(works OK but(works OK but not recommendednot recommended))

//// sometimessometimes we need to dowe need to do aa cleanup job and give a chance to continuecleanup job and give a chance to continue
VectorVector ** someFunction ()someFunction () //// returns a filledreturns a filled VectorVector
{{

VectorVector ** pVpV == newnew Vector;Vector; //// dynamic allocationdynamic allocation ((bad stylebad style --
//// =>=> someonesomeone mustmust deallocatedeallocate))

trytry {{
fillVectorfillVector ((**pV);pV); //// could fail andcould fail and throwthrow ((we assume herewe assume here))
return pV;return pV; //// all’s well; returnall’s well; return the filled vectorthe filled vector

}} //// ""locallocal--recoveryrecovery--rethrowrethrow"" idiomidiom::
catchcatch (…) {(…) { //// catch any exception whatcatch any exception what--soso--everever

delete pV;delete pV; //// dodo ourour own localown local cleanupcleanup
throwthrow;; //// rere--throwthrow toto allowallow thethe caller to dealcaller to deal

}}
}}

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 6625.11.201425.11.2014

4

ExceptionException handling with destructorshandling with destructors
(simpler and more(simpler and more structured idiom)structured idiom)

//// using scopedusing scoped ((locallocal)) variables makes the cleanup automaticvariables makes the cleanup automatic

void someOtherFunction ()void someOtherFunction () //// uses a filleduses a filled vectorvector
{{

Vector vVector v;; // vector// vector handles deallocationhandles deallocation
fillVectorfillVector (v);(v); //// pass as a referencepass as a reference
//// use v here . . .use v here . . .

}} // v// v is automatically destructedis automatically destructed

the compilerthe compiler--generated destructor call at end of block worksgenerated destructor call at end of block works
like an implicitlike an implicit finallyfinally clauseclause
ifif you feel that you needyou feel that you need aa trytry--catchcatch blockblock:: think againthink again

youyou might be able tomight be able to dodo much better withoutmuch better without itit

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 7725.11.201425.11.2014

RAII:RAII: ResourceResource AcquisitionAcquisition Is InitializationIs Initialization
std::vectorstd::vector

acquires memory for elements in its constructor (or later)acquires memory for elements in its constructor (or later)
manages it (changing size, controlling access, etc.)manages it (changing size, controlling access, etc.)
gives back (releases) the memory in its destructorgives back (releases) the memory in its destructor

This is a special case of the general resource management strategyThis is a special case of the general resource management strategy
called RAII (for incalled RAII (for in--depth discussion, see [depth discussion, see [StroustrupStroustrup,, 2014, Ch. 19.5])2014, Ch. 19.5])

also called “scoped resource management”also called “scoped resource management”
use it wherever you canuse it wherever you can
simpler and cheaper than anything elsesimpler and cheaper than anything else
interacts elegantly with error handling using exceptionsinteracts elegantly with error handling using exceptions
examples ofexamples of resourcesresources: memory, file handles, sockets, I/O: memory, file handles, sockets, I/O
bindings (bindings (iostreamsiostreams handle those using RAII), locks, widgets,handle those using RAII), locks, widgets,
threadsthreads

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 8825.11.201425.11.2014

5

Using raw pointers considered harmfulUsing raw pointers considered harmful
WhatWhat ifif youyou can'tcan't helphelp creatingcreating dynamicdynamic objectsobjects (an API(an API requiresrequires))

void f (void f (intint x) {x) {
XX ** p = new X (x);p = new X (x); //// allocate anallocate an XX ((bad stylebad style))
// . . .// . . . useuse pp-->>f ()f ()
delete p;delete p; //// might be never executedmight be never executed!!

}}
CanCan useuse aa smartsmart pointerpointer forfor ownershipownership andand lifelife--cyclecycle controlcontrol

void f (void f (intint x) {x) {
std::std::shared_ptrshared_ptr <X> p (new X (x)); //<X> p (new X (x)); // immediately hand in theimmediately hand in the XX
// . . .// . . . useuse pp-->>f ()f () -- provides overloaded pointer operationsprovides overloaded pointer operations

} // p} // p is localis local:: so at exit, its destructor deletes the ownedso at exit, its destructor deletes the owned XX

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 99

like a pointer but also keeps a reference count (here = 1)

25.11.201425.11.2014

or:or: . . = X::CreateX (...). . = X::CreateX (...)

Sample smart pointer:Sample smart pointer: shared_ptrshared_ptr

the C++11 standard providesthe C++11 standard provides std::shared_ptrstd::shared_ptr (plus others..)(plus others..)
heavily uses overloading, to create a pointerheavily uses overloading, to create a pointer--like objectlike object

template <typename T> class shared_ptr { //template <typename T> class shared_ptr { // a general solution fora general solution for
public:public: //// reference countingreference counting

TT ** operatoroperator-->> () const { return get (); }() const { return get (); }
T& operatorT& operator ** () const { return() const { return **get (); }get (); }
void reset ();void reset (); //// make emptymake empty ((nullptrnullptr))
long use_count () const;long use_count () const; //// how many ownershow many owners??
bool unique () const;bool unique () const; //// one owner onlyone owner only??
operator bool () const;operator bool () const; //// whetherwhether get()get() !=!= nullptrnullptr
TT ** get () const;get () const; //// return raw pointerreturn raw pointer

. //// but cannot release !but cannot release !
Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 101025.11.201425.11.2014

overloads conversionoverloads conversion

6

1111

Safe exception handling: backgroundSafe exception handling: background
OOriginallyriginally, exceptions and, exceptions and errorserrors were very poorly understoodwere very poorly understood
aspect of Caspect of C++; also, expection++; also, expection safety issues and requirementssafety issues and requirements
were seen and added to the Cwere seen and added to the C++89/03++89/03 standard atstandard at last momentslast moments

[Stroustrup, 2000][Stroustrup, 2000] AppApp.. E:E: StandardStandard--Library ExceptionLibrary Exception SafetySafety
Article onArticle on Exception SafetyException Safety http://www.stroustrup.com/except.pdfhttp://www.stroustrup.com/except.pdf
Boost article:Boost article: ExceptionException--Safety in Generic ComponentsSafety in Generic Components

http://www.boost.org/community/exception_safety.htmlhttp://www.boost.org/community/exception_safety.html

TTwowo concerns:concerns:
1.1. class invariants must be maintainedclass invariants must be maintained -- or restoredor restored
2.2. nono resources may be leakedresources may be leaked

including: memory space, opened files, locks,including: memory space, opened files, locks,
connections,connections, oror any otherany other shared systemshared system resourcesresources

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1212

Invariants revisitedInvariants revisited
UUsese defensive programming and selfdefensive programming and self--checking objectschecking objects
AA class invariantclass invariant is an assertion that holds before and after anyis an assertion that holds before and after any
operation manipulating an objectoperation manipulating an object
PPreconditionsreconditions teststests "external""external" failures which the unit cannotfailures which the unit cannot
handle itselfhandle itself: must: must throw an exceptionthrow an exception

if (!if (! preconditionprecondition))
throwthrow AnException ("diagnosticsAnException ("diagnostics"); //"); // back toback to the callerthe caller

IInvariantsnvariants andand (testable)(testable) postconditionspostconditions checkcheck internal statesinternal states
that don't make sense to outsiders,that don't make sense to outsiders, and most oftenand most often indicate aindicate a
bug in codebug in code =>=> use asserts to eliminate themuse asserts to eliminate them

assert (isInValidInternalStateassert (isInValidInternalState_);_); //// abortsaborts if notif not

Often,Often, we don't know thewe don't know the actual reasonactual reason of a failure: perhaps aof a failure: perhaps a
programming error or some external factorprogramming error or some external factor

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

7

1313

Invariants revisited (contInvariants revisited (cont.).)
TheThe programmingprogramming--byby--contractcontract separates responsibilities butseparates responsibilities but
actual production software is not so that clear cut and cleanactual production software is not so that clear cut and clean
Preconditions providePreconditions provide a pragmatic tradea pragmatic trade--offoff what to checkwhat to check, at, at
the boundary of athe boundary of a unit (class/function/method)unit (class/function/method)
NNoteote that the C++ standard library uses the same strategythat the C++ standard library uses the same strategy
(provides checks(provides checks for selected operationsfor selected operations thatthat may throw)may throw)

TheThe fundamental problemfundamental problem with exception safetywith exception safety

an exception thrown from some component or function mayan exception thrown from some component or function may
interrupt the algorithm and leave the state of the calculationinterrupt the algorithm and leave the state of the calculation
(objects) in(objects) in some bad orsome bad or indeterminateindeterminate statestate

if theif the class invariant does notclass invariant does not hold,hold, the object cannot be eventhe object cannot be even
destructeddestructed without causing undefined behaviorwithout causing undefined behavior

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1414

ManyMany sources of exceptionssources of exceptions

UUserser--suppliedsupplied and system functions, such as allocator functions,and system functions, such as allocator functions,
can throw exceptions (from [can throw exceptions (from [Stroustrup, 2000])Stroustrup, 2000])

void fun (std::vector <X>& vvoid fun (std::vector <X>& v,, X const& x)X const& x) {{
//// sample exceptionssample exceptions::

v [2] = x;v [2] = x; // X// X's's assignment may throwassignment may throw
v.push_back (x);v.push_back (x); // vector'// vector'ss allocator may throwallocator may throw
stdstd::vector <X> u = v;::vector <X> u = v; // X// X's's copy ctor may throwcopy ctor may throw

..
}} //// uu is destructedis destructed here;here; XX's dtor's dtor should notshould not throwthrow!!

Also, IO operations may throw (if so configured)Also, IO operations may throw (if so configured)

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

8

1515

Levels of exception safetyLevels of exception safety
1.1. Basic GuaranteeBasic Guarantee: no leaks, and: no leaks, and maintains class invariant.maintains class invariant.
2.2. Strong GuaranteeStrong Guarantee: succeeds, or leaves state unchanged.: succeeds, or leaves state unchanged.
3.3. Nofail GuaranteeNofail Guarantee: doesn't fail: doesn't fail (throw) in(throw) in any circumstances.any circumstances.

the last one (the last one (NofailNofail) is often needed to implement the former) is often needed to implement the former
ones;ones; e.ge.g., an assignment of a primitive value., an assignment of a primitive value (say, a pointer(say, a pointer))
cannot failcannot fail -- but anything with allocations may fail!but anything with allocations may fail!

thethe strong guaranteestrong guarantee forfor somesome complicated update maycomplicated update may
require a "rollrequire a "roll--back" mechanismback" mechanism (sometimes too expensive(sometimes too expensive))

""maintaining class invariantmaintaining class invariant"" meansmeans
the object is inthe object is in somesome valid state (but not necessarily in thevalid state (but not necessarily in the
one we wouldone we would ideally likeideally like it to be)it to be)
but it can be at least released andbut it can be at least released and destructeddestructed

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1616

Levels of exception safetyLevels of exception safety ((cont.)cont.)

e.g.,e.g., std::std::vector <vector <T>::push_backT>::push_back is designed to give theis designed to give the
strong guarantee:strong guarantee: a new element isa new element is added oradded or nono changechange

Additionally:Additionally:

4.4. Exception NeutralityException Neutrality: exceptions originating from: exceptions originating from
components are always passed through unmodifiedcomponents are always passed through unmodified

relevant for a container handling and copying its elements,relevant for a container handling and copying its elements,
especially when using C++ templatesespecially when using C++ templates

e.g., standarde.g., standard vector <T>::push_backvector <T>::push_back also manifestsalso manifests
exception neutralityexception neutrality: after any internal clean: after any internal clean--up, propagatesup, propagates
the original exception caused by the copying operationthe original exception caused by the copying operation --
that depends on the actual element type (that depends on the actual element type (TT))

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

9

1717

User can callUser can call constructors and destructorconstructors and destructor
CConstructorsonstructors & destructors are& destructors are usuallyusually called by compilercalled by compiler

XX ** ptr = new X;ptr = new X; //// reservereserve memory, then constructmemory, then construct XX
delete ptr;delete ptr; //// destructdestruct XX, then, then release itsrelease its memorymemory
note that ifnote that if pp isis nullptrnullptr (zero),(zero), deletedelete has no effecthas no effect

WWhenhen necessary,necessary, allocationallocation can be separated from objectcan be separated from object
initializationinitialization with the sowith the so--calledcalled placementplacement--newnew operatoroperator

voidvoid ** p = ::operator new (p = ::operator new (sizeof (sizeof (X));X)); //// allocatesallocates spacespace
ptr =ptr = new (p)new (p) X;X; //// placementplacement--new constructsnew constructs XX atat pp

SSimilarlyimilarly, we, we couldcould separate destruction & deallocationseparate destruction & deallocation
ptrptr--> ~> ~X ()X ();; //// destructsdestructs the object pointed bythe object pointed by ptrptr
::operator delete (ptr); //::operator delete (ptr); // deletedelete operatoroperator frees spacefrees space

Since aSince a destructor is a member function,destructor is a member function, wewe can call it explicitlycan call it explicitly
-- butbut then mustthen must very carefully ensurevery carefully ensure thatthat the compilerthe compiler doesn't!doesn't!

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1818

Exceptions andExceptions and ctors/dtorsctors/dtors
The following builtThe following built--in C++ mechanisms enable resource managementin C++ mechanisms enable resource management

even in case of failures and exceptionseven in case of failures and exceptions

1.1. AnAn exception throw causes the unwinding of call stackexception throw causes the unwinding of call stack
all objects locatedall objects located (in the call stack) between(in the call stack) between the places wherethe places where
the exception is thrown and caught are destroyed, i.e., theirthe exception is thrown and caught are destroyed, i.e., their
destructors are calleddestructors are called

2.2. SupposeSuppose that an exception is thrown inside a constructor, whichthat an exception is thrown inside a constructor, which
has already constructed one or morehas already constructed one or more embedded members (fields)embedded members (fields)

the runthe run--time systemtime system ("compiler") calls("compiler") calls the destructors of thethe destructors of the
already constructed members to release resources reserved byalready constructed members to release resources reserved by
those membersthose members

33.. AA failed construction in afailed construction in a ""newnew T ()T ()"" operationoperation also alwaysalso always
releases the space allocated for thereleases the space allocated for the TT objectobject

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

10

1919

Language supportLanguage support for exception safetyfor exception safety

C++ languageC++ language rules/implementationrules/implementation ensure that exceptions thrown whileensure that exceptions thrown while
construction will be handledconstruction will be handled correctlycorrectly

1.1. EEitherither the object isthe object is fully builtfully built (and its(and its invariants OK), or its membersinvariants OK), or its members
becomebecome automatically destructed (by the compiler/runautomatically destructed (by the compiler/run--time system)time system)

2.2. AlsoAlso newnew operations are implemented safely;operations are implemented safely; ""p =p = new Tnew T;;"" isis
compiledcompiled intointo something like (something like (pseudocodepseudocode here):here):

p =p = allocate space for a T: //allocate space for a T: // may fail & throw but that's OKmay fail & throw but that's OK!!
trytry { construct a T at p;{ construct a T at p; //// create it herecreate it here ((placement newplacement new))
}} catch (...)catch (...) {{ //// note exceptionnote exception neutralityneutrality

free the reserved space; //free the reserved space; // release backrelease back raw memoryraw memory
rethrowrethrow the same exception;the same exception;

}}

the Tthe T ctorctor is assumedis assumed to be "safe":to be "safe": no leaks of itsno leaks of its ownown
25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

2020

CaseCase: how safety mechanisms work: how safety mechanisms work
CConsideronsider the following C++ class and codethe following C++ class and code

class A : public B {class A : public B {
public:public:

A ()A () {}{} //// implicitimplicit ctorctor calls forcalls for xx andand yy
XX xx; Y; Y yy;; //// twotwo ((publicpublic)) members..members..

}; . . .}; . . . //// usingusing implicit dtorimplicit dtor ~A ()~A (),, herehere

AA ** a = new A;a = new A; // . . .// . . . some other codesome other code
deletedelete a;a;

TThehe AA constructorconstructor may seem emptymay seem empty but actuallybut actually itit containscontains thethe
constructionconstruction of theof the BB,, XX, and, and YY partsparts of anof an AA objectobject
SSimilarlyimilarly AA's compiler's compiler--generated destructor handles the destructiongenerated destructor handles the destruction
of all these membersof all these members

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

11

2121

CaseCase (cont.)(cont.)
AA ** p = new A;p = new A; //// createcreate aa dynamicdynamic AA andand useuse itit
deletedelete p;p; //// laterlater getget ridrid ofof itit

TheThe aboveabove codecode isis implementedimplemented byby thethe compilercompiler asas followsfollows
voidvoid ** pp = ::operator= ::operator new (new (sizeofsizeof (A));(A)); //// ((11)) allocateallocate

// operator// operator newnew throwsthrows bad_allocbad_alloc uponupon failurefailure ((no problemno problem))
trytry {{ //// we now have space for anwe now have space for an AA

new (new (pp)) A;A; }} //// ((22)) create ancreate an AA atat pp ((or failor fail))
catchcatch (...) {(...) { //// handle whatever failureshandle whatever failures

::operator delete (::operator delete (pp); throw;); throw;
}}
. //// some othersome other code . . .code . . .

((A((A**))pp))-->> ~A ();~A (); //// ((2'2')) releaserelease AA--specific resourcesspecific resources
::operator delete (::operator delete (pp);); //// ((1'1')) releaserelease AA's space's space ((viavia pp))

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

may throwmay throw

cannotcannot
throwthrow

2222

On implementingOn implementing your own strongyour own strong guaranteeguarantee
a sketcha sketch of strong exception guarantee andof strong exception guarantee and rollroll--backback

void doOperation (T const&void doOperation (T const& valuevalue) {) {
try {try { << updateupdate the state copying the givingthe state copying the giving valuevalue >;>;

//// e.ge.g.,., aa copy operation may fail & throwcopy operation may fail & throw
} catch} catch (...)(...) {{ //// catchcatch any exceptionany exception

<< restorerestore the old state and itsthe old state and its invariantsinvariants >;>;
throw;throw; //// nownow rethrow the originalrethrow the original

}}
}}

exceptionexception neutrality:neutrality: anyany TT--relatedrelated exceptions pass throughexceptions pass through
strong guarantee may be very tricky or too costly to achieve;strong guarantee may be very tricky or too costly to achieve;
even STLeven STL does not provide it fordoes not provide it for allall its operationsits operations
special C++ idioms support strong guarantee (see later)special C++ idioms support strong guarantee (see later)

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

12

2323

ExampleExample: exception safe: exception safe constructor forconstructor for VectorVector

Vector::Vector (size_t sz, T const& x)Vector::Vector (size_t sz, T const& x) { //{ // create a vector ofcreate a vector of sz x'sz x'ss
rep_= (Trep_= (T**)::operator new (sz)::operator new (sz**sizeof(Tsizeof(T));)); //// newnew may failmay fail
TT ** p = rep_;p = rep_; //// element addresselement address
try {try { //// constructconstruct szsz itemsitems

for (; p != rep_+ sz; ++p)for (; p != rep_+ sz; ++p) new (p) T (xnew (p) T (x));; //// ctorctor may failmay fail
}} catchcatch (...)(...) {{ //// handlehandle TT constructor failuresconstructor failures

while (pwhile (p---- != rep_)!= rep_) //// destroydestroy all constructed itemsall constructed items
pp-->>T::~T ()T::~T ();; //// callcall TT's destructor's destructor

::operator delete (rep::operator delete (rep_);_); //// releaserelease memorymemory
throw;throw; //// propagatepropagate the original exceptionthe original exception

}}
size_= capacity_= sz; //size_= capacity_= sz; // OK:OK: VectorVector initializedinitialized

}}
25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

STL container operationSTL container operation

ExceptionException--safe copy ctor, and assignmentsafe copy ctor, and assignment
SimilarSimilar implementationimplementation mustmust bebe writtenwritten forfor copycopy constructionconstruction:: ifif copycopy
ofof oneone itemitem failsfails,, mustmust destructdestruct thethe previouslypreviously copiedcopied onesones

AssignmentAssignment operatorsoperators cancan oftenoften bebe safelysafely programmedprogrammed withwith anan
existingexisting copycopy constructorconstructor and a (and a (safesafe)) swapswap::

VectorVector&& Vector::operatorVector::operator = (= (VectorVector constconst&& rhsrhs) {) {
VectorVector tmptmp ((rhsrhs);); //// maymay failfail ((but nobut no problemproblem))
//// cancan nownow dodo thethe actualactual assignmentassignment,, safelysafely andand efficientlyefficiently
swapswap ((tmptmp);); //// doesdoes notnot failfail ((exchangesexchanges fieldsfields))
returnreturn **thisthis;;

}} //// tmptmp isis destructeddestructed herehere ((oldold valuevalue))
wewe assumeassume thatthat thethe swapswap operationoperation doesn'tdoesn't failfail (as(as shouldshould bebe!)!)
thethe samesame requirementrequirement neededneeded forfor VectorVector's's destructordestructor ((sincesince tmptmp
becomesbecomes destroyeddestroyed at theat the endend of theof the functionfunction beforebefore thethe returnreturn))

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 2424

13

2525

DestructorsDestructors should never failshould never fail, i.e., never allow exceptions to escape, i.e., never allow exceptions to escape
from themfrom them

ExerciseExercise: Write a test program to show: Write a test program to show

wwhathat happens if an exception is thrown out from a destructor whilehappens if an exception is thrown out from a destructor while
the system is still propagating anotherthe system is still propagating another??

propagatingpropagating an exception callsan exception calls destructors (within the call stack)destructors (within the call stack)
ifif such a destructor letssuch a destructor lets a newa new exception escape,exception escape, the runthe run--timetime
system immediately terminates the programsystem immediately terminates the program
so a destructorso a destructor should always catch potential exceptions (if any)should always catch potential exceptions (if any)

handle and recover from thehandle and recover from the exceptionexception ---- or if not possibleor if not possible
loglog out an error diagnostics and shut down the programout an error diagnostics and shut down the program

thethe compiler cannot checkcompiler cannot check,, so it is the programmer's responsibilityso it is the programmer's responsibility

Destructors are critical for exception handlingDestructors are critical for exception handling

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

2626

Need for exception safetyNeed for exception safety

Reusable library components vs. basicReusable library components vs. basic applicationsapplications

different levels of exception safety can be identified and aredifferent levels of exception safety can be identified and are
appropriate in different situationsappropriate in different situations
strong guarantee may be too expensive or not worth it:strong guarantee may be too expensive or not worth it:
notnot all processing or programs can be made or need to beall processing or programs can be made or need to be
absolutely "failureabsolutely "failure safe"safe"

ForFor exampleexample

an application program is not necessarily meant to be a separatean application program is not necessarily meant to be a separate
reusable component (or a part of a library)reusable component (or a part of a library)
when encountering an error, a simple applicationwhen encountering an error, a simple application could reportcould report
errors, decide to end its execution, discard all calculated results,errors, decide to end its execution, discard all calculated results,
and require the user to try it again withand require the user to try it again with better and morebetter and more validvalid
inputinput

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

14

Think againThink again
if you feel that you need aif you feel that you need a deletedelete in your code: think againin your code: think again

preferprefer deletedeletes in destructorss in destructors

if you feel that you need aif you feel that you need a trytry--catchcatch block: think againblock: think again
you might be able to do much better using RAIIyou might be able to do much better using RAII

if you feel that you need aif you feel that you need a newnew operation..operation..
prefer scopeprefer scope--controlled objects, or objects that arecontrolled objects, or objects that are
embedded "inline" within "owner objects"embedded "inline" within "owner objects"
useuse pointerspointers onlyonly whenwhen needneed toto replacereplace aa wholewhole objectobject "in"in
placeplace" (" (saysay,, replacereplace aa bufferbuffer withwith a newa new longerlonger oneone))
atat leastleast hidehide thethe dynamicdynamic allocation/deletionallocation/deletion insideinside
functionfunction membersmembers

aa vectorvector maymay reallocatereallocate itsits bufferbuffer butbut thatthat isis hiddenhidden

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 272725.11.201425.11.2014

2828

SummarySummary
write exceptionwrite exception--safe classsafe class librarieslibraries andand reusablereusable componentscomponents
three different levels of exception safety can be provided:three different levels of exception safety can be provided: basicbasic,,
strongstrong, and, and nofailnofail
especially, the destructors require theespecially, the destructors require the nofailnofail guaranteeguarantee
exceptionexception neutralityneutrality needed especially for templatesneeded especially for templates ((unknownunknown
type parameters withtype parameters with their unknowntheir unknown exceptions)exceptions)

play safe to prevent bugs and toplay safe to prevent bugs and to debugdebug

addadd redundant checks to verify assumptionsredundant checks to verify assumptions
always initialize everything (especially pointers) to minimizealways initialize everything (especially pointers) to minimize
random and unpredictable statesrandom and unpredictable states
remember to clean up resourcesremember to clean up resources (usually via destructors)(usually via destructors)
instead of rawinstead of raw pointers usepointers use smart pointerssmart pointers (C++11)(C++11)

25.11.201425.11.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

