Software Design (C++)

3. Resource management and
exception safety
(idioms and technicalities)

Juha Vihavainen
University of Helsinki

Preview

= More on error handling and exceptions

m checking array indices (again) - why not?
m handling complicated error situations
m the RAII principle

m Smart pointers and resource management

m Implementing exception safety

m built-in language support
m programming techniques and idioms

25.11.2014 Juha Vihavainen / University of Helsinki

Index checking

/I an almost real vector of doubles:

#include <stdexcept> // ... /I get std::out_of _range
class Vector { /I my custom container. . .
public: /] ...
double& operator [] (int n); /I unsafe but max efficiency
double& at (int n); /I index is checked
...
b

/I possible implementations (as allowed by the C++ standard)
double& Vector::operator [] (int n) { return elem [n]; }
double& Vector::at (int n) {
if (n <0 || sz <=n) throw std::out_of _range (*'at: invalid index"");
return elem [n];

}

25.11.2014 Juha Vihavainen / University of Helsinki 3

Reminder: Why not index checking?

Checking costs in speed and code size
= not much, don’t worry
m few real-world projects need to worry

But some projects may really require optimal performance
m think huge (e.g., Google) and very tiny (e.g., cell phone)

The standard must serve everybody (is still competing with C)
= "you can’t build optimal on top of checked"
= "you can build checked on top of optimal”

Some projects cannot even be allowed to use exceptions
m old projects with pre-exception parts
= high reliability, hard real-time code (think airplanes)

m The C part of C++ can't give security guarantees anyway!

25.11.2014 Juha Vihavainen / University of Helsinki 4

Range checking: an example

The following small program tests out the at operation:
intmain) { ...

try {
std::vector <int> v;

for (int i =0; i < n; ++i) v.push_back (i);
for (int i = 0; i <= v.size (); ++i) /I oops, but checked
std::cout << "'v[" <<i<<"]=="<<v.at (i) <<'\n";

}
catch (std::out_of range const&) { /I we’ll get here
std::cout << "out of range error;
return 1; /I just give up here..
catch (...) { /I something else
}
}
25.11.2014 Juha Vihavainen / University of Helsinki

Exception handling and cleanup - the hard way
(works OK but not recommended)

/I sometimes we need to do a cleanup job and give a chance to continue
Vector * someFunction () Il returns a filled Vector

{

Vector * pV = new Vector; // dynamic allocation (bad style -
/[=> someone must deallocate)

try {
fillVector (*pV); /I could fail and throw (we assume here)
return pV; /I all’s well; return the filled vector
/I "local-recovery-rethrow" idiom:
catch (...) { /I catch any exception what-so-ever
delete pV; /I do our own local cleanup
throw; /I re-throw to allow the caller to deal
}

}

25.11.2014 Juha Vihavainen / University of Helsinki

Exception handling with destructors
(simpler and more structured idiom)

/I using scoped (local) variables makes the cleanup automatic
void someOtherFunction () // uses a filled vector

{
Vector v; /I vector handles deallocation
fillVector (v); /I pass as a reference
/[usevhere. ..

} /I v is automatically destructed

m the compiler-generated destructor call at end of block works
like an implicit finally clause

m if you feel that you need a try-catch block: think again
= you might be able to do much better without it

25.11.2014 Juha Vihavainen / University of Helsinki 7

RAII: Resource Acquisition Is Initialization

m std::vector
m acquires memory for elements in its constructor (or later)
= manages it (changing size, controlling access, etc.)
m gives back (releases) the memory in its destructor

m This is a special case of the general resource management strategy
called RAII (for in-depth discussion, see [Stroustrup, 2014, Ch. 19.5])

m also called “scoped resource management”

= use it wherever you can

» simpler and cheaper than anything else

m interacts elegantly with error handling using exceptions

m examples of resources: memory, file handles, sockets, 1/0
bindings (iostreams handle those using RAII), locks, widgets,
threads

25.11.2014 Juha Vihavainen / University of Helsinki 8

Using raw pointers considered harmful

What if you can't help creating dynamic objects (an API requires)

void f (int x) { ‘ or: ..=X::CreateX(...) ‘
X*p=new X (x); / allocate an X (bad style)
Il ... use p->f() ...
delete p; // might be never executed!
}

Can use a smart pointer for ownership and life-cycle control
‘ like a pointer but also keeps a reference count (here = 1) ‘
void f (int x) {
std::shared_ptr <X>p (new X (x)); // immediately hand in the X
I/l ... use p->f() - provides overloaded pointer operations

} /I pis local: so at exit, its destructor deletes the owned X

25.11.2014 Juha Vihavainen / University of Helsinki 9

Sample smart pointer: shared_ptr

m the C++11 standard provides std::shared_ptr (plus others..)
m heavily uses overloading, to create a pointer-like object

template <typename T> class shared_ptr {// a general solution for
public: /I reference counting

T * operator-> () const { return get (); }

T& operator * () const { return *get (); }

void reset (); . /I make empty (nullptr)
long use_count () const; /I how many owners?

bool unique () const; /I one owner only?
operator bool () const; /I whether get() != nullptr
T * get () const; N /I return raw pointer

overloads conversion | ;b\t cannot release !

25.11.2014 Juha Vihavainen / University of Helsinki 10

Safe exception handling: background

m Originally, exceptions and errors were very poorly understood
aspect of C++; also, expection safety issues and requirements
were seen and added to the C++89/03 standard at last moments

[Stroustrup, 2000] App. E: Standard-Library Exception Safety
Article on Exception Safety http://www.stroustrup.com/except.pdf

Boost article: Exception-Safety in Generic Components
http://www.boost.org/community/exception_safety.html

m Two concerns:
1. class invariants must be maintained - or restored
2. no resources may be leaked
m including: memory space, opened files, locks,
connections, or any other shared system resources

25.11.2014 Juha Vihavainen / University of Helsinki 11

Invariants revisited

m Use defensive programming and self-checking objects
m A class invariant is an assertion that holds before and after any
operation manipulating an object
m Preconditions tests "external” failures which the unit cannot
handle itself: must throw an exception
if (! precondition)
throw AnException (*"diagnostics'); // back to the caller

m Invariants and (testable) postconditions check internal states
that don't make sense to outsiders, and most often indicate a
bug in code => use asserts to eliminate them

assert (isinValidlnternalState); /l aborts if not

m Often, we don't know the actual reason of a failure: perhaps a
programming error or some external factor

25.11.2014 Juha Vihavainen / University of Helsinki 12

Invariants revisited (cont.)

The programming-by-contract separates responsibilities but
actual production software is not so that clear cut and clean

Preconditions provide a pragmatic trade-off what to check, at
the boundary of a unit (class/function/method)

Note that the C++ standard library uses the same strategy
(provides checks for selected operations that may throw)

The fundamental problem with exception safety

an exception thrown from some component or function may
interrupt the algorithm and leave the state of the calculation
(objects) in some bad or indeterminate state

if the class invariant does not hold, the object cannot be even
destructed without causing undefined behavior

25.11.2014 Juha Vihavainen / University of Helsinki 13

Many sources of exceptions

m User-supplied and system functions, such as allocator functions,

can throw exceptions (from [Stroustrup, 2000])

void fun (std::vector <X>& v, X const& x) {
/I sample exceptions:

v[2] =x; /I X's assignment may throw
v.push_back (x); /I vector's allocator may throw
std::vector <X>u=v; /I X's copy ctor may throw

} /I uisdestructed here; X's dtor should not throw!

m Also, 10 operations may throw (if so configured)

25.11.2014 Juha Vihavainen / University of Helsinki 14

Levels of exception safety

1. Basic Guarantee: no leaks, and maintains class invariant.
2. Strong Guarantee: succeeds, or leaves state unchanged.
3. Nofail Guarantee: doesn't fail (throw) in any circumstances.

m the last one (Nofail) is often needed to implement the former
ones; e.g., an assignment of a primitive value (say, a pointer)
cannot fail - but anything with allocations may fail!

m the strong guarantee for some complicated update may
require a "roll-back™ mechanism (sometimes too expensive)
= "maintaining class invariant" means

m the object is in some valid state (but not necessarily in the
one we would ideally like it to be)

m but it can be at least released and destructed

25.11.2014 Juha Vihavainen / University of Helsinki 15

Levels of exception safety (cont.)

m e.g., std::vector <T>::push_back is designed to give the
strong guarantee: a new element is added or no change

Additionally:

4. Exception Neutrality: exceptions originating from
components are always passed through unmodified

m relevant for a container handling and copying its elements,
especially when using C++ templates

m e.g.,standard vector <T>::push_back also manifests
exception neutrality: after any internal clean-up, propagates
the original exception caused by the copying operation -
that depends on the actual element type (T)

25.11.2014 Juha Vihavainen / University of Helsinki 16

User can call constructors and destructor

Constructors & destructors are usually called by compiler
X* ptr =new X; ... // reserve memory, then construct X
delete ptr; /I destruct X, then release its memory

m note that if p is nullptr (zero), delete has no effect

When necessary, allocation can be separated from object

initialization with the so-called placement-new operator
void * p = ::operator new (sizeof (X)); // allocates space
ptr = new (p) X; /I placement-new constructs X at p

Similarly, we could separate destruction & deallocation
ptr->~X (); /I destructs the object pointed by ptr
::operator delete (ptr); // delete operator frees space

Since a destructor is a member function, we can call it explicitly
- but then must very carefully ensure that the compiler doesn't!

25.11.2014 Juha Vihavainen / University of Helsinki 17

Exceptions and ctors/dtors

The following built-in C++ mechanisms enable resource management
even in case of failures and exceptions

1. An exception throw causes the unwinding of call stack

m all objects located (in the call stack) between the places where
the exception is thrown and caught are destroyed, i.e., their
destructors are called

2. Suppose that an exception is thrown inside a constructor, which
has already constructed one or more embedded members (fields)

» the run-time system (“compiler”) calls the destructors of the
already constructed members to release resources reserved by
those members

3. Afailed construction in a "new T ()" operation also always
m releases the space allocated for the T object

25.11.2014 Juha Vihavainen / University of Helsinki 18

Language support for exception safety

C++ language rules/implementation ensure that exceptions thrown while
construction will be handled correctly

1. Either the object is fully built (and its invariants OK), or its members
become automatically destructed (by the compiler/run-time system)

2. Also new operations are implemented safely; "p =new T;" is
compiled into something like (pseudocode here):
p = allocate space for a T: // may fail & throw but that's OK!
try { construct a T atp; // create it here (placement new)
} catch (...) { /I note exception neutrality
free the reserved space; // release back raw memory
rethrow the same exception;

}

m the T ctor is assumed to be "safe": no leaks of its own

25.11.2014 Juha Vihavainen / University of Helsinki 19

Case: how safety mechanisms work

m Consider the following C++ class and code

class A : public B {

public:
AO{} /I implicit ctor calls for x and y
Xx; Yy; Il two (public) members..
oo /I using implicit dtor ~A (), here
A*a=newA,; . /I ... some other code
delete a;

m The A constructor may seem empty but actually it contains the
construction of the B, X, and Y parts of an A object

» Similarly A's compiler-generated destructor handles the destruction
of all these members

25.11.2014 Juha Vihavainen / University of Helsinki 20

10

Case (cont.)
A*p=newA; ... /I create a dynamic A and use it
delete p; /I later get rid of it
m The above code is implemented by the compiler as follows
void * p = ::operator new (sizeof (A)); /I (1) allocate
/I operator new thfows bad_alloc upon failure (no problem)

try { — /I we now have space for an A

new (p) A; } Il (2) create an A at p (or fail)
catch (...){ /I handle whatever failures
::operator delete (p); throw;
} cannot
o .~ |throw | // some other code ...
(A®)p)->~A(0; Il (2") release A-specific resources
::operator delete (p); Il (1") release A's space (via p)
25.11.2014 Juha Vihavainen / University of Helsinki 21

On implementing your own strong guarantee
m asketch of strong exception guarantee and roll-back

void doOperation (T const& value) {

try { < update the state copying the giving value >;
/I e.g., a copy operation may fail & throw

}catch (...) { /I catch any exception

< restore the old state and its invariants >;

throw; /I now rethrow the original
}

}

= exception neutrality: any T-related exceptions pass through

m strong guarantee may be very tricky or too costly to achieve;
even STL does not provide it for all its operations

m special C++ idioms support strong guarantee (see later)

25.11.2014 Juha Vihavainen / University of Helsinki 22

11

Example: exception safe constructor for Vector

‘ STL container operation ‘

Vector::Vector (size_t sz, T const& x) { // create a vector of sz x's
rep_= (T*)::operator new (sz*sizeof(T)); // new may fail

T*p=rep_; /I element address
try { /I construct sz items
for (; p !=rep_+sz; ++p) new (p) T (x); // ctor may fail
}catch (...) { /I handle T constructor failures
while (p-- I=rep_) /I destroy all constructed items
p—>T::~T (); /I call T's destructor
::operator delete (rep_); // release memory
throw; /I propagate the original exception
}
size_= capacity_= sz; /Il OK: Vector initialized
}
25.11.2014 Juha Vihavainen / University of Helsinki 23

Exception-safe copy ctor, and assignment

m Similar implementation must be written for copy construction: if copy
of one item fails, must destruct the previously copied ones . .

m Assignment operators can often be safely programmed with an
existing copy constructor and a (safe) swap:

Vector& Vector::operator = (Vector const& rhs) {
Vector tmp (rhs); // may fail (but no problem)
/I can now do the actual assignment, safely and efficiently
swap (tmp); /I does not fail (exchanges fields)
return *this;
} /I tmp is destructed here (old value)
= We assume that the swap operation doesn't fail (as should be!)
= the same requirement needed for Vector's destructor (since tmp
becomes destroyed at the end of the function before the return)

25.11.2014 Juha Vihavainen / University of Helsinki 24

12

Destructors are critical for exception handling

m Destructors should never fail, i.e., never allow exceptions to escape
from them

Exercise: Write a test program to show

what happens if an exception is thrown out from a destructor while
the system is still propagating another?

m propagating an exception calls destructors (within the call stack)

m if such a destructor lets a new exception escape, the run-time
system immediately terminates the program

= 5o a destructor should always catch potential exceptions (if any)

m handle and recover from the exception -- or if not possible
log out an error diagnostics and shut down the program

m the compiler cannot check, so it is the programmer’s responsibility

25.11.2014 Juha Vihavainen / University of Helsinki 25

Need for exception safety

Reusable library components vs. basic applications

n different levels of exception safety can be identified and are
appropriate in different situations

m strong guarantee may be too expensive or not worth it:
not all processing or programs can be made or need to be
absolutely "failure safe"

For example

= an application program is not necessarily meant to be a separate
reusable component (or a part of a library)

= when encountering an error, a simple application could report
errors, decide to end its execution, discard all calculated results,
and require the user to try it again with better and more valid
input

25.11.2014 Juha Vihavainen / University of Helsinki 26

13

Think again

m if you feel that you need a delete in your code: think again
m prefer deletes in destructors

m if you feel that you need a try-catch block: think again
= you might be able to do much better using RAII
m if you feel that you need a new operation..

m prefer scope-controlled objects, or objects that are
embedded "inline" within "owner objects"

m Uuse pointers only when need to replace a whole object "i

place" (say, replace a buffer with a new longer one)

m at least hide the dynamic allocation/deletion inside
function members

m a vector may reallocate its buffer but that is hidden

25.11.2014 Juha Vihavainen / University of Helsinki

27

Summary

m write exception-safe class libraries and reusable components

n three different levels of exception safety can be provided: basic,

strong, and nofail
m especially, the destructors require the nofail guarantee

m exception neutrality needed especially for templates (unknown

type parameters with their unknown exceptions)

m play safe to prevent bugs and to debug

= add redundant checks to verify assumptions

» always initialize everything (especially pointers) to minimize

random and unpredictable states
= remember to clean up resources (usually via destructors)
m instead of raw pointers use smart pointers (C++11)

25.11.2014 Juha Vihavainen / University of Helsinki

28

14

