Software Design (C++)
4. Templates and standard library
(STL)

Juha Vihavainen
University of Helsinki

Overview

m Introduction to templates (generics)

m std::vector again
m templates: specialization by code generation
m pros and cons of templates

m STL:
m containers: basic data structures
m iterators: to access elements
m algorithms: processing element sequences

1.12.2014 Juha Vihavainen / University of Helsinki

Templates

But we don’t just want a vector of double
We want vectors with any element types we specify

std::vector <double>

|

» std::vector <int>

m std::vector <Month> /I enum class type

m std::vector <std::vector <Record>> /I vector of vectors . .

m std::vector <char> /I ? why not use string . .
m std::vector <Record*> /I ? vector of pointers

|

std::vector <std::shared_ptr<Record>> // smart pointers ©

We can design our own parameterized types, called templates
= make the element type a parameter to a template

A template is able to take both built-in types and user-defined
types as element types (of course)

1.12.2014 Juha Vihavainen / University of Helsinki 3

Templates for generic programming

Code is written in terms of yet unknown types that are to
be later specified

Also called “parametric polymorphism”

m parameterization of types and functions by types -
and by integer values, in C++

Reduces duplication of source code

Provides flexibility and performance

= providing good performance is essential: real time and
numeric calculations

m providing flexibility is essential
m e.g., C++ standard containers

1.12.2014 Juha Vihavainen / University of Helsinki 4

Templates for generic (cont.)

m Template definitions and specializations (instantiations)

template <typename T, int N>
class Buffer { ...

b

Buffer () {buff [0]=T(; ... } // assumesN>=1
T buff [N];

‘ use static size for this buffer ‘

template <typename T, int N>
void fill (Buffer <T,N>& buffer) { /* ... */ } ...

/I for a class template, specify the template arguments:
Buffer <char, 1024> buf; // for buf, T ischar and N is 1024

/Il for a function template, the compiler (usually) deduces arguments:
fill (buf); // herealso, T is char and N is 1024: that’s what buf has

/I the same as: fill <char, 1024> (buf);

1.12.2014 Juha Vihavainen / University of Helsinki 5

Parameterize with element type

/I an almost real vector of Ts:
template <typename T> /I or (originally) "class T"

class vector {
void push_back (T const&);

b

std:
std:
std:
std:
std:
std:

produce separate push_back for each
instantiation: uses T::T (T const&) to
place the new item at the end

:vector <double> vd; — /I T is double

:vector <int> vi; /I Tisint

:vector <std::vector <int>> wvi; // T is vector <int>
:vector <char> vc; /I Tischar

:vector <double*> vpd; /I T is double*

:vector <std::shared_ptr <E>>spe; // T isshared_ptr <E>

1.12.2014 Juha Vihavainen / University of Helsinki 6

Essentially, std::vector is something like:
template <typename T> /I read “for all types T
class vector {
public:
explicit vector (int s) : sz (s), elem (new T [s]), space (s) {. ..}
T& operator [] (int n) { return elem [n]; } // access: return reference

int size () const { return sz; } Il ... etc.
vector () : sz (0), elem (nullptr), space (0); // zero-arg. constructor
vector (vector const&); /I copy ctor
vector& operator = (vector const&); /I copy assignment
~ vector () { delete [] elem; } /I destructor
private:
int sz; Il the size
T * elem; /I a pointer to the elements
int space; /I size + free space

h

m This original template is analyzed only partially. The use of T is type
checked when the template is actually instantiated (and compiled).

Essentially, std::vector <double> is something like

/I a new class is instantiated (generated) from the template and compiled:
class _vector { // the compiler generates from: ""vector <double>""
public: /I uses some internal name for vector<double>

explicit _vector (int s) : sz (s), elem (new double [s]), space (s){ ... }

double& operator [] (intn){ ... } /I access element
int size () const { return sz; } Il ... etc.
_vector () : sz (0), elem (nullptr), space (0) {} // zero-arg. ctor
_vector (_vector const&); /I copy ctor
_vector& operator = (_vector const&); /I copy assignment
~ _vector () { delete [] elem; } /I destructor
private:
int sz; Il the size
double * elem; /I a pointer to the elements
int space; /I size + free space

j
m Member functions are instantiated only if called

1.12.2014 Juha Vihavainen / University of Helsinki 8

Templates: “no free lunch”

Template instantiation generates custom (type-specialized) code
n => efficient but may involve memory overhead (replicated binary)
m however, only those templates used/called are actually instantiated

Sometimes poor diagnostics (obscure messages) -- at least historically
Delayed error messages: only when "source" actually gets generated..

Used templates must be fully defined in each separate translation unit
m need the template source code to be specialized by the instantiation
m S0 (usually) must place template definitions in header files
» the new extern template (C++11) feature suppresses multiple

implicit extra instantiations of templates: a way of avoiding
significant redundant work by the compiler and linker

Usually: no problems using available template-based libraries
m such as the C++ standard library: e.g., std::vector, std::sort()
= initially, should probably only write simple templates yourself..

1.12.2014 Juha Vihavainen / University of Helsinki 9

STL background

the STL was developed by Alex Stepanov, originally implemented for
Ada (80's - 90's)

in 1997, STL was accepted by the C++ Standards Committee as part
of the standard C++

adopting STL strongly affected various language features of C++,
especially those features offered by templates

supports basic data types such as vectors, lists, associative maps, sets,
and algorithms such as sorting

n efficient and compatible with C computation model
= not object-oriented: uses value-copy semantics (copy ctor, assign)

= many operations (called "algorithms™) are defined as stand-alone
functions

m uses templates for reusability
m provides exception safety for all operations (on some level)

1.12.2014 Juha Vihavainen / University of Helsinki 10

STL examples

std::vector <std::string> v; .. // some code to initialize v
v.push_back ('123"); .. /I can grow dynamically

if (! v.empty ()
std::cout << v.size () << std::endl;

std::vector <std::string> v1 = v; // make a new copy of v (copy ctor)

std::list <std::string> list (v.begin (), v.end ());

/I makes a list copy of v using iterators
std::list <std::string> list1;
std::swap (list, list1); /I swap two lists (efficiently)

/I actually calls: "list.swap (list1)

typedef std::shared_ptr <std::vector <int>> VectPtr;
VectPtr f (std::vector<int> v) { // copy constructs local variable!
..V [7] =11; .. return VectPtr (new std::vector<int> (v)); }

1.12.2014 Juha Vihavainen / University of Helsinki 11

Basic principles of STL

m STL containers are type-parameterized templates, rather than
classes with inheritance and dynamic binding

= e.g., no common base class for all of the containers
= no virtual functions and late binding used

m however, containers implement a (somewhat) uniform service
interface with similarly named operations (insert, erase, size..)

m the standard std::string was defined first but later extended to
cover STL-like services (e.g., to provide iterators)

m STL collections do not directly support I/O operations

m istream_iterator <T> and ostream_iterator <T> can represent
10 streams as STL compatible iterators

m 50 O can be achieved using STL algorithms (std::copy, etc.)

1.12.2014 Juha Vihavainen / University of Helsinki 12

Components of STL

1. Containers, for holding (homogeneous) collections of values: a
container itself manages (owns) its elements and their memory

2. lterators are syntactically and semantically similar to C-like
pointers; different containers provide different iterators but with a
similar pointer-like interface

3. Algorithms are functions that operate on containers via iterators;
iterators are given as (generic) parameters; the algorithm and the
container must support compatible iterators (using implicit
generic constraints)

In addition, STL provides, for example

n functors: objects to be "called" as if they were functions ("(...)")

m various adapters, for adapting components to provide a
different public interface (std::stack, std::queue)

1.12.2014 Juha Vihavainen / University of Helsinki 13
#include <iostream> /I std::cin, std::cout, std::cerr
#include <vector> I std::vector
#include <algorithm> /I std::reverse, std::sort..
int main () {
std::vector <double> v; /I buffer for input data
double d;
while (std::cin >>d) v.push_back (d); // read elements until EOF
if (! std::cin.eof ()) { /I check how input failed

std::cerr << "Input error\n™; return 1;}
std::reverse (v.begin (), v.end ());
std::cout << "elements in reverse order:\n'";
for (const auto x : v) std::cout << x << "\n’;

}

1.12.2014 Juha Vihavainen / University of Helsinki 14

‘ loop local that cannot be modified

STL algorithms

m STL algorithms are implemented for efficiency, having an
associated time complexity (constant, linear, logarithmic)

m They are defined as function templates, parameterized by
iterators to access the containers they operate on:

std::vector <int>v; ... /I initialize v
5 std:sort (v.begin (), v.end ()); /I instantiates sort
the same | Std::deque <double> d; /I double-ended queue
template . /I initialize d
T std:isort (d.begin (), d.end ()); /I instantiate, again

» If a general algorithm, such as sorting, is not available for a specific
container (since iterators may not be compatible),
it is provided as a member operation (e.g., for std::list)

1.12.2014 Juha Vihavainen / University of Helsinki 15

Introduction to STL containers

m A container holds a homogeneous collection of values
Container <T>c; ... /I initially empty
c.push_back (value); /I can grow dynamically
= When you insert an element into a container, you always insert
a value copy of a given object
m the element type T must provide copying of values
m Heterogeneous (polymorphic) collections are represented as
containers storing pointers to a base class

m brings out all memory management problems (C pointers)
m can use std::shared_ptr (with reference counting)
m can use std::unique_ptr (with its single-owner semantics)

m Containers support constant-time swaps (usually)

1.12.2014 Juha Vihavainen / University of Helsinki 16

Intr. to STL containers (cont.)

= in sequence containers, each element is placed in a certain
relative position: as first, second, etc.:

std::vector <T> vectors, sequences of varying length
std::deque <T> deques (with operations at either end)
std::list <T> doubly-linked lists

std::forward_list <T> singly-linked lists

m associative containers are used to represent sorted collections

std::map <KeyType, ValueType> (ordered search tree)
std::unordered_map <KeyType, ValueType> (hash map)

m for a map, provide operator < for the key type
m for a hash map, provide std::hash<Key> for the key type
m also sets and multi-key/value versions

1.12.2014 Juha Vihavainen / University of Helsinki 17

Intr. to STL containers (cont.)

m Standard containers are somewhat interchangeable - in principle,
you can choose the one that is the most efficient for your needs

m however, interfaces and services are not exactly identical

» changing a container may well involve changes to the client
source code (that calls the services of a container)

» Different kinds of algorithms require different kinds of iterators

m once you choose a container, you can apply only those
algorithms that accept a compatible iterator

m Container adapters are used to adapt containers for the use of
specific interfaces (e.g., push (. ..), pop (), etc.)

n for example, std::stack and std::queue are adapters of
sequences; the actual container (deque) is a protected member

1.12.2014 Juha Vihavainen / University of Helsinki 18

Iterators (again)

= an iterator provides access to elements in a container; every iterator it
has to support (at least)

*it it-> to access the current element or its member
++it to move to the next element

it==itl "pointer" equality

it!=itl "pointer" inequality

m container classes provide iterators in a uniform way as standardized
typedef names within the class definition

std::vector<std::string>::iterator Il is a typedef
std::vector<std::string>::const_iterator

begin () points to the first element (if any)
end () points beyond the last (end marker)

m const_iterators are required for const-qualified containers

1.12.2014 Juha Vihavainen / University of Helsinki 19

Iterators (cont.)

Range
first [first, last) — last

first+1 last-1

G
<

Container

C::iterator first = c.begin (), last = c.end ();

= acontainer holds a set of values, of type C::value_type (typedef)

m an iterator points to an element of this container, or just beyond
the last proper element (a special past-the-end value)

m it can be dereferenced by using the operator *
(e.g., "*it"), and the operator -> (e.g., "it->op ()")

1.12.2014 Juha Vihavainen / University of Helsinki 20

10

Iterators (cont.)

m Iterators are syntactically compatible with C pointers

Container c;

Container::iterator it; /I ashorter form:

for (it = c.begin (); it '=c.end (); ++it) { // for (auto& x:¢c) ..
. it=>0p (); ... std::cout << *it; ...

} ‘ to allow modifications to the container ‘

m Could use a range-for statement, or an algorithm: for_each, copy

= Non-const iterators support overwrite semantics: can modify or
overwrite the elements already stored in the container

m Generic algorithms are not written for a particular container class in
STL but use iterators instead

m There are iterator adapters that support insertion semantics (i.e., while
writing through an iterator, inserts a new element at that point)

1.12.2014 Juha Vihavainen / University of Helsinki 21

Using iterators within function templates

template <typename It, typename T> // a sample function template

bool contains (It first, It beyond, T const& value) {
while (first != beyond && *first != value) ++first;
/I note implicit constraints on It first and T value

.

S — ‘ Why not '<’ comparison? ‘
/I can operate on any primitive array:
inta[100]; ... /I initialize elements of a

bool b = contains (a, a+100,42); «

/I can operate on any STL sequence: ‘ the same source code ‘
std::vector <std::string>v; ... / Il initialize v

b = contains (v.begin (), v.end (), "42");

1.12.2014 Juha Vihavainen / University of Helsinki 22

11

Iterators: summary

Validity of iterators is not guaranteed (as usual in C/C++)

n especially, modifying the organization of a container may
invalidate any existing iterators and references (this depends on
the kind of container and modification)

For array-like structures, iterators are (usually) native C-style
pointers to elements of the array (e.g., std::vector)

n efficient: uses direct addresses and pointer arithmetics

= may have the same security problems as other native pointers

m some libraries may provide optional special checked iterators
For other containers (e.g., std::list), iterators are provided as
abstractions defined as classes

» with properly overloaded operators ++, *, —>, etc.

m but traverse links between nodes instead of address calculations

1.12.2014 Juha Vihavainen / University of Helsinki 23

Summary

C++ containers are based on generic templates

Templates provide compile-time polymorphism via type
parametrization

m STL templates don't use such object-oriented features as
inheritance or late binding of methods

Templates are instantiated, and these instantiations are then
compiled (in a selected manner)

STL provides containers, iterators, and algorithms

1.12.2014 Juha Vihavainen / University of Helsinki 24

12

