Software Design (C++)
5. OOP and class hierarchies

Juha Vihavainen
University of Helsinki

Preview

m Object-oriented programming and polymorphism
m OOP features in C++

inheritance, base classes, derived classes
virtual member functions

object layout and vtables

management of layered objects

run-time class info

m Technicalities: virtual destructors, private assignment,
etc.

= Pros and cons of OOP

4.12.2014 Juha Vihavainen / University of Helsinki

Object-oriented programming

m OOP thinking: "programming is simulation”
m in fact, the first application area (of Simula 67, Norway)
was discrete-event simulation
m akind of "anthropomorphism™ is central to the OO paradigm
m thinking in terms of “real-world" objects (or independent
agents) that interact with each other to get things done
m "strict” interpretation of the term:
m uniform data abstraction - "everything" is an object
m what is "everything" depends on the language
m also: how strongly is data hiding enforced

m need inheritance (- or perhaps prototypes + delegation)
m need dynamic method binding (virtual operations in C++)

4.12.2014 Juha Vihavainen / Univ of Helsinki 3

What is polymorphism?

m can write reusable code (frameworks) for classes that are not
known in advance (not written or even yet designed)
m two (2) separate but related forms of polymorphism

m inclusion polymorphism: the set of derived instances is
(logically) a subset of the base-class instances

m operation polymorphism = late binding of methods
Late (dynamic) binding
m existing code (the calling code) can change behavior (conform)
to appropriately deal with new kinds of objects
m Object's exact type need not be know at compile time for a call
of a polymorphic (virtual) operation
m call is matched at run time to the exact type of target object

4.12.2014 Juha Vihavainen / University of Helsinki 4

Language mechanisms

most popular definition of object-oriented programming:
OOP = inheritance + polymorphism + encapsulation
base and derived classes /I inheritance

m class Circle : public Shape { ... }; /I Circle is-a Shape
m also called super and subclasses

= virtual functions /I "polymorphism”
m virtual void drawL.ines () const;
= also called "run-time polymorphism”, "late binding", or

"dynamic dispatch"

= private and protected members /I encapsulation
m protected: Shape ();
m private: std::vector <Point> points;

4.12.2014 Juha Vihavainen / University of Helsinki 5

Calling base-class constructor

The constructor of a derived class calls the constructor of the base
class Base using the member initializer list

Derived (. .) : Base (ctor arguments), data_(..), // note order
An initializer item for the base class

= uses normal constructor call syntax with appropriate arguments
m invoked (called) before the initialization of local data members

m calling the correct constructor is the programmer's responsibility

m otherwise, the base class’s default (zero-arg.) constructor is
automatically inserted by the compiler and called (whether
right or not!)

4.12.2014 Juha Vihavainen / University of Helsinki 6

Using virtual functions

Suppose a hierarchy of shape classes such as Circle, Text, etc.

m define a base class Shape with a virtual draw method

virtual void draw () const; /I can override

n different shapes have their own unique draw operations so we need
to override draw in derived classes

n call them by calling on the draw function on the base class Shape

m the target object is provided through a pointer or a reference

» the program determines dynamically (at run time) which function is
actually executed

Shape * shape; ... shape = new Circle;
shape->draw (); /I calls Circle::draw (possibly)
m objects need to carry along internal type info (vtable ptr)

4.12.2014 Juha Vihavainen / University of Helsinki 7

What are "polymorphic” objects?

» data members defined for a class are implemented just like for
structures (records)
= with (single) inheritance, derived classes have their fields at the end

m a pointer to the base and a pointer to the derived can contain the
same address -- the derived pointer just "knows" that its fields go
farther than those inherited from the base do (see the next slide)

= member functions are passed one special hidden first parameter: this
(called self in Smalltalk and current in Eiffel..)

m non-virtual functions are regular subroutines; the compiler just calls
the appropriate version, based on static type of variables/arguments

m C++ philosophy is to avoid run-time overhead whenever possible
(holding to the legacy from C) - "don't pay for what you don't use”

» languages like Smalltalk and its "descendants™ like Java require
(much) more extensive run-time support

Juha Vihavainen / Univ of Helsinki 8

Inheritance creates layered objects

classBase{ ... }; ... class Derived : public Base { ... };
. Base * pBase = ..; Derived * pDerived = . .;
pBase — <——— pDerived
Base Base
? Derived
Don't actually know
the size of an object

. => allocated on heap
Can write code that doesn't know about ? (perhaps..)

subclasses (that may not yet exist).

m polymorphic objects need to be accessed via pointers and are
very often allocated from the heap (but not necessarily)

4.12.2014 Juha Vihavainen / Univ of Helsinki 9

Two kinds of OO polymorphism (again)

Inclusion polymorphism (subclass polymorphism)

m every instance of a subclass is also an instance of the super
classes

Base * pBase = new Derived ();

m the Derived instance will have all Base properties/features
SO we can operate on it as a Base object

Operation polymorphism (late binding/dispatch)

m a (virtual) method is bound according to the run-time type
of the target object (in "prewritten" existing reusable code)

pBase->foo (); => (*(pBase->vtable [ind])) (pBase)

. apointer to an afray of
‘ The compller generates pointers to functions f

apointer to function giaticindex this
4.12.2014 Juha Vihavainen / Univ of Helsinki 10

Late binding = virtual member functions

m polymorphic objects are self-descriptive: carry along info
about their type/class (class id) plus overridden behavior

m virtual functions are implemented by creating a dispatch table
(vtable) for the class, and putting a pointer to that table in the
data of the object (in a hidden field)

m each derived class have a different dispatch table

m in the dispatch table, functions inherited from the parent
(usually) come first, though some of these pointers may point
to overridden versions (given in derived classes)

m putting the whole dispatch table into the object itself could
save a little time, but waste a LOT of space

4.12.2014 Juha Vihavainen / Univ of Helsinki 11

Implementation of virtual methods (1/2)

class foo {
—_— F foo's vtable
double b; | * k
char c; a 1
public: n —+—>»codeform
virtual void k(... b ¥
virtual int 1(... :
virtual void m();

virtual double n(... Of course, the actual layout
depends on the implementation.

) / (object F in C-style syntax)
F;

= representation of object F begins with the address of the vtable for class foo
= allinstances (objects) of this class will point to the same vtable

= thevtable itself consists of an array of addresses, one for each virtual
method of the class (note that all this can be implemented in C)

= theremainder of F consists of the representations of its fields
4.12.2014 12

Implementation of virtual methods (2/2)

class bar : public foo { B bar’s vtable
int w; > k

public: i 1
void m(); //override

1 ——codeforbar'sm

1 ——»codeforfoo'sn

virtual double s(... b
virtual char *t(...

¢ s —+—>»codeforbar’ss

} B; i t

= here, too, object B begins with the address of its class’s vtable

= thefirst four entries represent the members for foo, except that one (m)
has been overridden and contains the address of a different subroutine

= additional virtual methods (s, t) follow the ones inherited from foo
= inside B, additional fields of bar (w) follow the ones inherited from foo

4.12.2014 13

Run-time std::type_infoin C++
m to query the type of an object, we need to be able to get from the
object to its run-time type info
m the vtable structure already is a kind of meta-data
= acommon implementation technique is to put a pointer to the
type info at the beginning of the vtable
m the type of an object can be queried by the typeid operator
std::cout << typeid (*pBase).name () << "\n'; // print type
» the compiler generates a vtable in only if your class has at least
one virtual function

» that's why you can't do a dynamic_cast<D>() on a pointer whose
static type (class) doesn't have virtual functions

= in most other object-oriented languages, objects (usually) always
carry along their type info (plus extensive other data related to the

class)
4.12.2014 Juha Vihavainen / Univ of Helsinki 14

Using late binding: virtual destructors

m abase class has a destructor Shape::~Shape () that is implicitly
called by a delete

Shape * shapePtr;
delete shapePtr; // refers to some specific shape (say, Circle)

n if aderived object is deleted through a base-class pointer (as often
happens), the C++'s default static binding strategy will cause:

m the base-class destructor is called and it acts on the object
» but the potential derived-class resources remain unreleased (!)

m abase-class destructor must be declared as virtual to ensure that the
right (= most-specific) destructor will always be called

m that destructor will then call on the base destructors, and the
destruction proceeds from the subclass to its base classes

4.12.2014 Juha Vihavainen / University of Helsinki 15

Idiom: virtual destructor

= when you design a class to be possibly used as a base class, always
make its destructor virtual

n specifically: if a derived instance is deleted via a base pointer
m if the base class has no resources to release, make the destructor's
body empty (but you must still implement it)

» the derived-class destructor calls it anyway (1)

» but the compiler can often optimize away unnecessary calls of
empty (inline) blocks

= apolymorphic object (operation polym.) must carry along extra
type info, namely a pointer to its class' vtable (as discussed earlier)
=> overheads

m note that in "plain” data types, the destructors are often not defined

V|rtual e.g. std::string, std::vector do not have virtual destructors
4.12.2014 Juha Vihavainen / University of Helsinki 16

Pure virtual functions
Often, a function in a base class can’t be implemented at all

m e.g. the data/state is not available (but “hidden” in derived classes)
= must ensure that a derived concrete class implements that function
m solution: make it a “pure virtual function” (= 0)

How to define truly "abstract interfaces" in C++

class Engine { ... /I interface to electric motors
/I no data, and (usually) no constructors (but empty default ones)
virtual void speedUp (inti) =0; // defined in a derived class
I .

virtual ~Engine () {} /I (empty) virtual destructor

Engine eee; /I error: Engine is an abstract class
4.12.2014 Juha Vihavainen / University of Helsinki 17

Pure virtual functions (cont.)

A pure interface can then be used as a base class

class M123 : public Engine { /I engine model M123

public:
M123 (); /I initialize, and get resources
void speedUp (inti); ... /I overrides Engine::speedUp
~M123 (); /I release resources
e /I representation

3

M123 m123; /I now OK

4.12.2014 Juha Vihavainen / University of Helsinki 18

Technicality: preventing copying

If you don’t know how to copy an object, prevent such copying!
E.g., classes in a class hierarchy (often) cannot be assigned (say, Person)

classX { /I ...

private: ‘ Being private cannot be called by clients. ‘
X (const Shape&); s /I cannot copy construct
X& operator = (const X&); /I cannot copy assign

b

void f (X& a) {
Xs2=a; ... [l error: no X copy constructor (it’s private)
a=s2; /I error: no X assignment (it’s private)

} C++11: X (const Shape&) = delete; ‘

» should also leave them undefined => cannot "accidentally" call at all
m sometimes provide copy construction (for new), but not assignment

4.12.2014 Juha Vihavainen / University of Helsinki 19

Pros and cons of OOP

» useful way to create natural and intuitive conceptual hierarchies
m consider GUI classes: Shape, Circle, Triangle, Text, etc.

m supports code reuse, extensibility, and "flexibility" at run time
= can cause some overhead (usually don't need to worry..)
m indirection in calls (via vtable) plus the general call overhead
m pointer downcasts and type recovery (lots in "pre-generic Java")
= in many cases, templates provide often as flexible but more secure
way to achieve (a static version of) polymorphism
m e.g., STL gives type-parameterized containers and algorithms

» inheritance & late binding are avoided in STL; compile-time
checking supports early and more extensive error detection

m can often improve performance (static binding, inlining, etc.)
Finally: all can be combined: generics & inheritance & late binding..

4.12.2014 Juha Vihavainen / University of Helsinki 20

10

