
1

Software Design (C++)Software Design (C++)
5. OOP and class hierarchies5. OOP and class hierarchies

Juha VihavainenJuha Vihavainen
University of HelsinkiUniversity of Helsinki

PreviewPreview

ObjectObject--oriented programming and polymorphismoriented programming and polymorphism

OOP features in C++OOP features in C++

inheritance, base classes, derived classesinheritance, base classes, derived classes
virtualvirtual member functionsmember functions
object layout andobject layout and vtablesvtables
management ofmanagement of layered objectslayered objects
runrun--timetime class infoclass info

Technicalities:Technicalities: virtualvirtual destructorsdestructors,, privateprivate assignment,assignment,
etc.etc.

Pros and cons of OOPPros and cons of OOP

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 224.12.20144.12.2014

2

ObjectObject--oriented programmingoriented programming
OOP thinking: "OOP thinking: "programming is simulationprogramming is simulation""

in fact, the first application area (ofin fact, the first application area (of SimulaSimula 67, Norway)67, Norway)
waswas discretediscrete--event simulationevent simulation

a kind of "a kind of "anthropomorphismanthropomorphism" is central to the OO paradigm" is central to the OO paradigm
thinking in terms of "realthinking in terms of "real--world" objects (or independentworld" objects (or independent
agents) thatagents) that interactinteract with each other to get things donewith each other to get things done

"strict" interpretation of the term:"strict" interpretation of the term:
uniformuniform data abstractiondata abstraction -- "everything" is an object"everything" is an object

what is "everything" depends on the languagewhat is "everything" depends on the language
also: how strongly is data hiding enforcedalso: how strongly is data hiding enforced

needneed inheritanceinheritance ((-- or perhapsor perhaps prototypesprototypes ++ delegationdelegation))
needneed dynamic method bindingdynamic method binding (virtual operations in C++)(virtual operations in C++)

4.12.20144.12.2014 Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 33

44

What isWhat is polymorphismpolymorphism??
cancan write reusable codewrite reusable code (frameworks) for(frameworks) for classes that are notclasses that are not
known in advance (not written or even yet designed)known in advance (not written or even yet designed)

two (2) separate but related formstwo (2) separate but related forms of polymorphismof polymorphism
inclusioninclusion polymorphismpolymorphism: the: the set of derived instancesset of derived instances isis
(logically)(logically) aa subsetsubset of theof the basebase--class instancesclass instances
operation polymorphismoperation polymorphism = late binding of methods= late binding of methods

LateLate (dynamic)(dynamic) bindingbinding
existing codeexisting code (the calling code) can change behavior (conform)(the calling code) can change behavior (conform)
to appropriately deal with new kinds ofto appropriately deal with new kinds of objectsobjects
object's exact type need not be know at compile time for a callobject's exact type need not be know at compile time for a call
of a polymorphic (of a polymorphic (virtualvirtual) operation) operation
callcall is matched at run timeis matched at run time to the exact typeto the exact type of target objectof target object

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

3

Language mechanismsLanguage mechanisms
mostmost popular definition of objectpopular definition of object--orientedoriented programmingprogramming::

OOPOOP == inheritanceinheritance ++ polymorphismpolymorphism ++ encapsulationencapsulation

bbasease andand derivedderived classesclasses //// inheritanceinheritance
classclass CircleCircle :: public Shapepublic Shape {{ . . . };. . . }; //// CircleCircle isis--aa ShapeShape
also calledalso called supersuper andand subclassessubclasses

virtualvirtual functionsfunctions //// ""polymorphismpolymorphism""
virtualvirtual voidvoid drawLines ()drawLines () const;const;
alsoalso calledcalled ""runrun--time polymorphismtime polymorphism", "", "late bindinglate binding", or", or
""dynamic dispatchdynamic dispatch""

privateprivate andand protected membersprotected members //// encapsulationencapsulation
protected:protected: Shape ();Shape ();
private:private: std::vector <std::vector <Point>Point> pointspoints;;

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 554.12.20144.12.2014

66

The constructor of a derived class calls theThe constructor of a derived class calls the constructorconstructor of the baseof the base
classclass BaseBase using theusing the membermember initializerinitializer listlist

Derived (. .) :Derived (. .) : BaseBase ((ctor argumentsctor arguments),), data_(data_(. .),. .), //// note ordernote order
.

AnAn initializer iteminitializer item for the base classfor the base class

uses normaluses normal constructorconstructor call syntax with appropriate argumentscall syntax with appropriate arguments
invoked (called) beforeinvoked (called) before the initialization of local data membersthe initialization of local data members

callingcalling thethe correctcorrect constructor is the programmer'sconstructor is the programmer's responsibilityresponsibility

otherwiseotherwise, the base class’s, the base class’s defaultdefault ((zerozero--arg.)arg.) constructorconstructor isis
automatically inserted by the compiler andautomatically inserted by the compiler and called (whethercalled (whether
right orright or not!)not!)

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

Calling baseCalling base--class constructorclass constructor

4

77

Using virtual functionsUsing virtual functions
SSupposeuppose a hierarchy of shape classes such asa hierarchy of shape classes such as CircleCircle,, TextText,, etcetc..

define a base classdefine a base class ShapeShape with a virtualwith a virtual drawdraw methodmethod

virtualvirtual void draw () const;void draw () const; //// can overridecan override

differentdifferent shapes haveshapes have their own uniquetheir own unique draw operations sodraw operations so we needwe need
to overrideto override drawdraw inin derivedderived classesclasses

callcall them by calling on thethem by calling on the drawdraw function on the base classfunction on the base class ShapeShape
thethe target object is provided through atarget object is provided through a pointerpointer or aor a referencereference
the program determines dynamicallythe program determines dynamically (at(at run time) which function isrun time) which function is
actually executedactually executed

ShapeShape ** shape; . . . shape = new Circle; . . .shape; . . . shape = new Circle; . . .
shapeshape-->>draw ();draw (); //// callscalls Circle::drawCircle::draw ((possiblypossibly))

objectsobjects need to carry along internalneed to carry along internal type info (type info (vtablevtable ptr)ptr)

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

What are "polymorphic" objects?What are "polymorphic" objects?
data members defined for a class are implemented just like fordata members defined for a class are implemented just like for
structures (records)structures (records)

with (single) inheritance, derived classes have their fields at the endwith (single) inheritance, derived classes have their fields at the end
a pointer to thea pointer to the basebase and a pointer to theand a pointer to the derivedderived can contain thecan contain the
same addresssame address ---- the derived pointer just "knows" that its fields gothe derived pointer just "knows" that its fields go
farther than those inherited from the base do (see the next slide)farther than those inherited from the base do (see the next slide)

member functions are passed one special hidden first parameter:member functions are passed one special hidden first parameter: thisthis
(called(called selfself inin SmalltalkSmalltalk andand currentcurrent inin Eiffel..Eiffel..))
nonnon--virtual functions are regular subroutines; the compiler just callsvirtual functions are regular subroutines; the compiler just calls
the appropriate version, based on static type of variables/argumentsthe appropriate version, based on static type of variables/arguments

C++ philosophy is to avoid runC++ philosophy is to avoid run--time overhead whenever possibletime overhead whenever possible
(holding to the legacy from C)(holding to the legacy from C) -- ""don't pay for what you don't usedon't pay for what you don't use""

languages likelanguages like SmalltalkSmalltalk and its "descendants" like Java requireand its "descendants" like Java require
(much) more extensive run(much) more extensive run--time supporttime support

Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 88

5

Inheritance createsInheritance creates layered objectslayered objects

class Base { . . . }; . . . class Derived :class Base { . . . }; . . . class Derived : public Basepublic Base { . . . };{ . . . };

. . . Base. . . Base ** pBase = . . ; DerivedpBase = . . ; Derived ** pDerived = . . ;pDerived = . . ;

polymorphic objects need to be accessed via pointers and arepolymorphic objects need to be accessed via pointers and are
very often allocated from the heap (but not necessarily)very often allocated from the heap (but not necessarily)

4.12.20144.12.2014 Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 99

Base

Derived

Base

...
?
...

pBase pDerived

...
?
...

Don't actually know
the size of an object
=> allocated on heap
(perhaps..)Can write code that doesn't know about

subclasses (that may not yet exist).

TwoTwo kinds of OOkinds of OO polymorphismpolymorphism (again)(again)
InclusionInclusion polymorphismpolymorphism ((subclasssubclass polymorphismpolymorphism))

everyevery instanceinstance of aof a subclasssubclass isis alsoalso anan instanceinstance of theof the supersuper
classesclasses

BaseBase ** pBasepBase = new= new DerivedDerived ();();

thethe DerivedDerived instanceinstance willwill havehave allall BaseBase properties/featuresproperties/features
soso wewe cancan operateoperate onon itit as aas a BaseBase objectobject

OperationOperation polymorphismpolymorphism ((latelate binding/dispatchbinding/dispatch))

a (a (virtualvirtual)) methodmethod isis boundbound accordingaccording to theto the runrun--timetime typetype
of theof the targettarget objectobject (in "(in "prewrittenprewritten"" existingexisting reusablereusable codecode))

pBasepBase-->>foofoo (); =>(); => ((*(*(pBasepBase-->>vtablevtable [[indind]))])) ((pBasepBase))

4.12.20144.12.2014 Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 1010
thisa pointer to function

The compiler generates

static index

a pointer to an array of
pointers to functions

6

Late binding = virtual member functionsLate binding = virtual member functions

polymorphic objects arepolymorphic objects are selfself--descriptivedescriptive: carry along info: carry along info
about their type/class (about their type/class (class idclass id) plus overridden behavior) plus overridden behavior

virtual functions are implemented by creating a dispatch tablevirtual functions are implemented by creating a dispatch table
((vtablevtable) for the class, and putting a pointer to that table in the) for the class, and putting a pointer to that table in the
data of the object (in a hidden field)data of the object (in a hidden field)

each derived class have a different dispatch tableeach derived class have a different dispatch table

in the dispatch table, functions inherited from the parentin the dispatch table, functions inherited from the parent
(usually) come first, though some of these pointers may point(usually) come first, though some of these pointers may point
to overridden versions (given in derived classes)to overridden versions (given in derived classes)

putting the whole dispatch table into the object itself couldputting the whole dispatch table into the object itself could
save a little time, but waste asave a little time, but waste a LOTLOT of spaceof space

4.12.20144.12.2014 Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 1111

Implementation of virtual methods (1/2)Implementation of virtual methods (1/2)

4.12.20144.12.2014 1212

representation of objectrepresentation of object FF begins with the address of thebegins with the address of the vtablevtable for classfor class foofoo
all instances (objects) of this class will point to the sameall instances (objects) of this class will point to the same vtablevtable
thethe vtablevtable itself consists of an array of addresses, one for each virtualitself consists of an array of addresses, one for each virtual
method of the class (note that all this can be implemented in C)method of the class (note that all this can be implemented in C)

the remainder ofthe remainder of FF consists of the representations of its eldsconsists of the representations of its elds

Of course, the actual layout
depends on the implementation.

.

.

.

(object F in C-style syntax)

7

Implementation of virtual methods (2/2)Implementation of virtual methods (2/2)

4.12.20144.12.2014 1313

here, too, objecthere, too, object BB begins with the address ofbegins with the address of its class’sits class’s vtablevtable
the rst four entries represent the members forthe rst four entries represent the members for foofoo, except that one (, except that one (mm))
hashas been overridden and contains the address of a different subroutinebeen overridden and contains the address of a different subroutine
additional virtual methods (additional virtual methods (ss,, tt) follow the ones inherited from) follow the ones inherited from foofoo

insideinside BB,, additional elds ofadditional elds of barbar ((ww)) follow the onesfollow the ones inherited frominherited from foofoo

...

RunRun--timetime stdstd::::type_infotype_info in C++in C++
to query the type of an object, we need to be able to get from theto query the type of an object, we need to be able to get from the
object to its runobject to its run--time type infotime type info

thethe vtablevtable structure already is a kind of metastructure already is a kind of meta--datadata
a common implementation technique is to put a pointer to thea common implementation technique is to put a pointer to the
type infotype info at the beginning of theat the beginning of the vtablevtable
the type of an object can be queried by thethe type of an object can be queried by the typeidtypeid operatoroperator

std::cout << typeid (std::cout << typeid (**pBase).name () << 'pBase).name () << '\\n'; //n'; // print typeprint type

the compiler generates athe compiler generates a vtablevtable in only if your class has at leastin only if your class has at least
oneone virtualvirtual functionfunction
that's why you can't do athat's why you can't do a dynamic_cast<D>()dynamic_cast<D>() on a pointer whoseon a pointer whose
static type (class) doesn't have virtual functionsstatic type (class) doesn't have virtual functions

in most other objectin most other object--oriented languages, objects (usually) alwaysoriented languages, objects (usually) always
carry along their type info (plus extensive other data related to thecarry along their type info (plus extensive other data related to the
class)class)

4.12.20144.12.2014 Juha Vihavainen / Univ of HelsinkiJuha Vihavainen / Univ of Helsinki 1414

8

1515

Using late binding:Using late binding: virtualvirtual destructorsdestructors
a base class has a destructora base class has a destructor Shape::~Shape ()Shape::~Shape () that isthat is implicitlyimplicitly
called by acalled by a deletedelete

ShapeShape ** shapePtr; . . .shapePtr; . . .
delete shapePtr; //delete shapePtr; // refers to some specific shaperefers to some specific shape ((say,say, CircleCircle))

ifif aa derived objectderived object is deleted through ais deleted through a basebase--classclass pointer (as oftenpointer (as often
happens), the C++'shappens), the C++'s defaultdefault staticstatic bindingbinding strategystrategy willwill cause:cause:

the basethe base--class destructorclass destructor is called and it actsis called and it acts on the objecton the object
but thebut the potential derivedpotential derived--class resources remainclass resources remain unreleased (!)unreleased (!)

a basea base--class destructor must be declared asclass destructor must be declared as virtualvirtual toto ensure that theensure that the
right (= mostright (= most--specific) destructor willspecific) destructor will always be calledalways be called

that destructor will then callthat destructor will then call on theon the basebase destructors, anddestructors, and thethe
destruction proceeds from the subclass to its base classesdestruction proceeds from the subclass to its base classes

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

1616

when you design awhen you design a class to be possibly usedclass to be possibly used as a base class,as a base class, alwaysalways
make itsmake its destructordestructor virtualvirtual

specificallyspecifically:: ifif aa derivedderived instanceinstance isis deletedeletedd via avia a basebase pointerpointer

if the base class has no resources to release, make the destructor'sif the base class has no resources to release, make the destructor's
body emptybody empty (but you(but you must still implementmust still implement it)it)

the derivedthe derived--class destructor calls it anywayclass destructor calls it anyway (!)(!)
but thebut the compiler can often optimize away unnecessary calls ofcompiler can often optimize away unnecessary calls of
empty (inline) blocksempty (inline) blocks

aa polymorphic objectpolymorphic object (operation(operation polympolym.).) mustmust carry along extracarry along extra
type info, namely a pointer to its class'type info, namely a pointer to its class' vtablevtable (as discussed earlier)(as discussed earlier)
=>=> overheadsoverheads

note that in "plain" data types,note that in "plain" data types, the destructorsthe destructors are oftenare often notnot defineddefined
virtualvirtual,, e.g.e.g. std::std::string, std::vectorstring, std::vector dodo notnot havehave virtualvirtual destructorsdestructors

IdiomIdiom:: virtual destructorvirtual destructor

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

9

Pure virtual functionsPure virtual functions
Often, a functionOften, a function in a base classin a base class can’tcan’t be implemented at allbe implemented at all

ee.g.g.. the data/state is not available (but “hiddenthe data/state is not available (but “hidden”” in derived classes)in derived classes)
mustmust ensure that aensure that a derivedderived concreteconcrete classclass implements that functionimplements that function
solution: makesolution: make it a “it a “pure virtual functionpure virtual function” (” (= 0= 0))

How to define truly "How to define truly "abstractabstract interfaces" in C++interfaces" in C++

classclass Engine {Engine { //// interfaceinterface to electric motorsto electric motors
//// no data, andno data, and ((usuallyusually)) no constructorsno constructors ((but empty default onesbut empty default ones))
virtual void speedUp (virtual void speedUp (intint ii) = 0;) = 0; //// defineddefined in a derived classin a derived class
////
virtualvirtual ~Engine () {}~Engine () {} //// ((emptyempty)) virtualvirtual destructordestructor

}; . . .}; . . .

EngineEngine eeeeee;; //// errorerror:: EngineEngine is an abstract classis an abstract class

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 17174.12.20144.12.2014

pure

PurePure virtual functions (cont.)virtual functions (cont.)

A pure interface can then be used as a base classA pure interface can then be used as a base class

classclass M123 : public Engine {M123 : public Engine { //// engine modelengine model M123M123
publicpublic::

M123 ();M123 (); //// initialize, and getinitialize, and get resourcesresources
void speedUp (intvoid speedUp (int ii) ;) ; //// overridesoverrides Engine::speedUpEngine::speedUp
~ M123 ();~ M123 (); //// releaserelease resourcesresources
. //// representationrepresentation

};};
.
M123 m123;M123 m123; //// nownow OKOK

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 18184.12.20144.12.2014

10

TechnicalityTechnicality: preventing: preventing copyingcopying
If you don’t knowIf you don’t know howhow to copy an object, prevent such copying!to copy an object, prevent such copying!
E.g., classes in a class hierarchy (often) cannot be assigned (say,E.g., classes in a class hierarchy (often) cannot be assigned (say, PersonPerson))

class X { //class X { //
private:private:

X (const Shape&);X (const Shape&); //// cannot copy constructcannot copy construct
X& operator = (const X&);X& operator = (const X&); //// cannot copy assigncannot copy assign

};};
void f (X& a) {void f (X& a) {

X s2 = a;X s2 = a; //// errorerror:: nono XX copy constructorcopy constructor ((it’s privateit’s private))
a = s2;a = s2; //// errorerror:: nono XX assignmentassignment ((it’s privateit’s private))

}}

shouldshould alsoalso leaveleave themthem undefinedundefined =>=> cannotcannot ""accidentallyaccidentally"" callcall atat allall
sometimessometimes provideprovide copycopy constructionconstruction (for(for newnew),), butbut notnot assignmentassignment

Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki 19194.12.20144.12.2014

Being private cannot be called by clients.

C++11 : X (const Shape&) = delete;

2020

Pros and consPros and cons ofof OOPOOP
useful way to createuseful way to create natural and intuitivenatural and intuitive conceptual hierarchiesconceptual hierarchies

consider GUI classes:consider GUI classes: ShapeShape,, CircleCircle,, TriangleTriangle,, TextText, etc, etc..

supportssupports code reuse, extensibility, andcode reuse, extensibility, and "flexibility" at run time"flexibility" at run time
cancan cause some overhead (usually don't need to worry..)cause some overhead (usually don't need to worry..)

indirection in calls (viaindirection in calls (via vtablevtable)) plus the general callplus the general call overheadoverhead
pointerpointer downcasts anddowncasts and type recoverytype recovery (lots in "pre(lots in "pre--generic Java")generic Java")

inin many cases,many cases, templatestemplates provideprovide often asoften as flexibleflexible butbut more securemore secure
way to achieveway to achieve (a static version of)(a static version of) polymorphismpolymorphism

e.g., STL gives typee.g., STL gives type--parameterizedparameterized containers and algorithmscontainers and algorithms
inheritance & lateinheritance & late bindingbinding areare avoided in STL;avoided in STL; compilecompile--timetime
checking supportschecking supports early and more extensive errorearly and more extensive error detectiondetection
can often improvecan often improve performance (static binding, inlining, etc.)performance (static binding, inlining, etc.)

FinallyFinally: all can be: all can be combined: genericscombined: generics & inheritance && inheritance & latelate binding..binding..

4.12.20144.12.2014 Juha Vihavainen / University of HelsinkiJuha Vihavainen / University of Helsinki

