
9.12.2014

1

Software Design (C++)
6. Other Useful Things in C++

Antti-Pekka Tuovinen
University of Helsinki

Outline

• String streams
• Function objects & lambdas
• Variadic templates
• Concurrency (Threads, Atomics, Futures)

9.12.2014

2

String streams

• C++ supports reading and writing in-memory
streams based on string buffers
– Can use the same operators and functions as for

other streams

• Let’s look at an example in code:
– http://www.cs.helsinki.fi/u/aptuovin/cplusplus/s1

4/strstreams.zip

Function objects
• A particularly useful kind of template is the

function object (a.k.a functor)
– used to define objects that can be called

template<typename T>
class Less_than {
private:

const T val; // value to compare against
public:

Less_than(const T& v) : val(v) { }
bool operator()(const T& x) const { return x<val; }

};

call operator

9.12.2014

3

Using functors
• Functor objects defined:

Less_than<int> lti {42}; // lti(i) will compare i to 42 using <
Less_than<string> lts {"Backus"}; // lts(s) will compare s to

// "Backus" using <

• Can be called just like functions:

void fct(int n, const string & s)
{

bool b1 = lti(n); // true if n<42
bool b2 = lts(s); // true if s<"Backus"
// ...

}

Using functors

• Function objects are widely used as
arguments to algorithms (e.g. in STL):

void f(const vector<int>& vec, const list<string>& lst, int x,
const string& s)

{
cout << "number of values less than " << x << ": "

<< count_if(vec.begin(),vec.end(),Less_than<int>{x}) << '\n';
cout << "number of values less than " << s << ": "

<< count_if(lst.begin(),lst.end(),Less_than<string>{s}) << '\n';
}

STL algorithm -
defines the type of
the function used
as a predicate

Functor
(predicate)

Comparison parameter is inlined with
the created function object – no need
for a global variable or separate
function definitions for diff. params!

9.12.2014

4

…but lambdas are even more fun!

• Lambda = an anonymous (nameless) function
defined on the spot where one is needed:

void f(const Vector<int>& vec, const list<string>& lst, int x,
const string& s) {

…
cout << count_if(vec.begin(),vec.end(),

[&](int a){ return a<x; });
…

} lambda
expression

”captured” from the
context by reference

Lambdas

• Capture list of local names used in the body
– [] capture nothing
– [=] capture all by value
– [&] capture all by reference
– [&x] capture name x by reference
– [&x,y] capture x by reference and y by value

• Compiler deduces the return type automatically
from the lambda expression (can also be
specified explicitly)

• Usually short and simple inline functions (1-liners)

9.12.2014

5

Variadic templates
• Since C++11
• A variadic template can take an arbitrary number of

template arguments
– Can be used to create functions that take variable number

of arguments
– Often the better choice because they do not impose

restrictions on the types of the arguments, do not perform
integral and floating-point promotions, and are type safe

• For an example, see
http://en.cppreference.com/w/cpp/language/paramet
er_pack

Concurrency

• C++ 11 adds
– Native support for threads
– A memory model for shared variables
– Asynchronous function calls (Futures)

• See Hans Boehm’s talk at GoingNative 2012
introducing these concepts:
– http://channel9.msdn.com/Events/GoingNative/G

oingNative-2012/Threads-and-Shared-Variables-
in-C-11

9.12.2014

6

Concurrency

• C++14 is going to add even more features to
support developers who need to write responsive
applications
– See Herb Sutter’s talk at C++ and Beyond 2012 that

discusses the current and planned features of C++
http://channel9.msdn.com/Shows/Going+Deep/C-
and-Beyond-2012-Herb-Sutter-Concurrency-and-
Parallelism

– This is an advanced level talk and it requires at least
general understanding of the concepts presented in
Boehm’s talk

