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Models of Complex Networks to
Model Overlay Networks

e Milgram's Experiment
e Duncan Watts Random Rewiring Model

e Scale Free Networks (Power-Law Networks)

- Preferential attachment
- Evolving Copying Model (Copying Generative Model)
e Navigation in Small World

Complex
Networks
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Outline for this lecture

Error and Attack Tolerance of Complex Networks
Navigation in Complex Networks

Mathematics and the Internet: A Source of Enormous
Confusion and Great Potential

Summary on Modeling Overlay Networks



Scale-Free Model for AS-Graph
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AS Topology of skitter dataset parsed by SNAP team
http://snap.stanford.edu/data/as-skitter.html
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(Random Graph) Exponential Scale-free

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
uaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
((k) = 3.3). The network visualization was done using the Pajek program for large
network analysis: nttp://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm).
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—rror vs Afttack

e Error (Node Failure)

- random node fails (malfunction)
e Attack

- Selected node with a given property is made to fail

- Which nodes would you target if you knew the network
is a scale-free network?

 Nodes with the highest degree
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Albert, Réka, et al. "Error and attack tolerance of complex networks."
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Impact of Errors and Attacks
(Size of Largest Cluster)

S: Fraction of nodes in largest cluster
<s>: average size of isolated clusters
| ' ] B

a o, 1 b

E & = | 2
o
S%S:ﬁ\ -
/n = Failure | 1|

o e Attack | | &

N
T

Relative <s> and S

] f ] - ooo fC ...............
%': ' g%é;m Os- /f °cv{ f | :
.0 0.2 0.4 0.0 0.2 0.4

Fraction of nodes removed

Albert, Réka, et al. "Error and attack tolerance of complex networks."
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Network Response to Attacks and

Faillures
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Albert, Réka, et al. "Error and attack tolerance of complex networks."
nature 406, no. 6794 (2000): 378-382.
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(random node failures)

1 (~ : exponent of power-law
g—-1 ) m : smallest degree
N : number of nodes in the graph

| K : largest degree , K ~ mN 7T

where m ify > 3
53 E:ﬁx mY2K377 if2 <y <3
K ifl <~ <2
for 2 <y <3
22“ﬁ6”Sfﬂ:1+<i_mwﬂuawwv—2>1
3—7

Cohen's technique can be extended to errors
(No closed form for f. for errors )

Cohen, Reuven et al. "Resilience of the Internet to random
breakdowns." Physical review letters 85, no. 21 (2000): 4626.



Summary on Attack and Error
Tolerance of Complex Networks

Scale-free networks resilient to random failures but
vulnerable to tfargetted attacks



~» Clustering of Nodes
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How to Generate Scale-Free Graphs with Strong Clustering

Serrano, M. Angeles, Dmitri Krioukov, and Maridn Boguna. "Self-similarity of complex
networks and hidden metric spaces." Physical review letters 100, no. 7 (2008): 078701.




Generating Scale-Free Graphs with
Strong Clustering

Take all nodes and distribute them within an underlying circle

Assign each node an expected degree k where P(k) ~ k™7

Connect each pair of nodes with a connection probability r(d; k,k’)

d is the distance between these two nodes in the circle
d. = kK’ is also called the characteristic distance

e (di kW) = (1+ 4)

Hubs will be connected with a high probability because of large d.

Low degree nodes connected only if (hidden distance) d is small

Hubs connected to low degree nodes at moderate hidden distance
« importance of hidden distance



Path Length

(Greedy Routing)

oo

(5] (@) ~l

Greedy Routing Paths 4
T
N

Avg. Length of

3l Lol Ll 0] | | | |
103 104 10° 2.0 2.2 2.4 2.6 2.8 3.0

Network Size N Exponent 7

Path length grows polylogarithmically with the network size

Paths shorter for smaller exponents and stronger clustering

Boguna, Marian et al. "Navigability of complex networks."
Nature Physics 5, no. 1 (2009): 74-80.



Greedy Routing

e Hidden Space as the coordinate space

- Hidden space is circle in this example

e Greedy Routing: Send to neighbor who is closer to the
destination (in hidden space)

e Unsuccessful Paths: None of your neighbors are closer
To the destination in the hidden space



Success Probability
(Greedy Rou’rmg)
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Navigation in Scale Free Networks
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Implications of Result

 Internet Routing

- Routers currently exchange signals to keep cohenrent
view of network

— Network size increasing with time

- Hidden meftric space eliminates the need for control
signals exchanged to notify changes in network

e How to proceed to discover the hidden metric space

e Does Shortest Path imply Shortest Time to
destination?

- What happens in case of congestion at hubs?



Scale-Free Model for AS-Graph
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AS Topology of skitter dataset parsed by SNAP team
HELSINGIN YLIOPISTO http://snap.stanford.edu/data/as-skitter.html
HELSINGFORS UNIVERSITET Faculty of Sciences

UNIVERSITY OF HELSINKI  Department of Computer Science ~ Overlay (and P2P) 18.02.2016



Is the Scale-Free Internet A
Myth?

e What we have seen till now wrt to Preferential Attachment

— Preferential attachment results in Hubs
— Hubs vulnerable to coordinated attacks
- Why is the Internet still up and running

e Is the Scale-Free modeling paradigm consistent with the
engineered nature of the Internet and the design
constraints imposed by existing technology?

— Is the simplistic toy model too generic?

- Do the available measurements, their analysis, and their
modeling efforts support the claims made by "Error and
Attack Tolerance” paper?



Importance of Measurements

e Tool for measurement study for AS-measurements

— Traceroute

e Biagses of traceroute

- Uses IPv4 Protocol

 What about non-IPv4 protocols like MPLS?
 Entfry points fo non-IPv4 regions can aggregate to Hubs

- Only reports the interfaces traversed by the packet

e Routers can have multiple interfaces and appear on
different routes with different IP addresses



L everage Domain Knowledge

e Device Constraints

— Finite number of interfaces on routers

L . What about
- Finite capacity of routers  Overlay Networks?

e Placement of High Degree Nodes

- Edge vs Core

How would you deploy the network if you are a network
engineer?

- Leverage domain knowledge to identify driving forces
behind the design of high engineered systems such as the
Internet



Scale Free for Gnutella?
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Gnutella August 2002 dataset parsed by SNAP team
HELSINGIN YLIOPISTO http://snap.stanford.edu/data/p2p-Gnutella31.html
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Recap of Modeling Overlay
Networks

Milgram’'s Experiment
Duncan Watts Random Rewiring Model

Scale-Free Networks

- Preferential attachment

- Evolving Copying Model (Copying Generative Model)
— Scale-Free with Strong Clustering

Error and Fault Tolerance of Complex Networks

Navigation (Greedy Routing)
- In Small World (Kleinberg's Small World)
- In Complex Networks (Scale-Free with Strong Clustering)

Mathematics and the Internet: A Source of Enormous Confusion
and Great Potential



Commonly used metrics

o Clustering Coefficient
e Diameter

e Degree Distribution



Methodology

1) Make observations (conduct measurement studies)

2)Build model to explain observations

— Choose the right level of granularity (zoom level)
- Strip The problem fo a simple form

- Afttfempt to formulate the problem and model the
system

3)Validate model
— Reproduce observations/measurements
- EXxplain observations

4)Revisit step 2 (and 1) to improve understanding
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Sources for these slides

e Sasu Tarkoma "Overlay and P2P Networks”, 2015

« Datasets from Stanford Network Analysis Project (SNAP)
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