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Content Delivery
Networks



Limitations of Web Proxies
(Caching)

Inability of cache all objects/content
- Dynamic Data

- Encrypted data

Server Side Analyftics

- Hit Metering, User Demographics, etc.
Scalability

- Inability To support flash crowds



Content Delivery Networks

e Role

- Redirect content requests To an ‘optimal site

— Cache and Serve content from ‘optimal site’

- Export logs and other information to origin servers
e Redirection mechanism

— DNS redirection
- URL rewriting



Critical Issues in Deploying CDNs

Servers Placement

- Where 1o place the servers?

- How many in each location?
Content Selection

- Which content to distribute in CDNs?
Content Replication

— Proacftive push from origin server

— Cooperative vs Uncooperative Pulls

Pricing

George Pallis et al. ”Insight and perspectives for content delivery networks.”
In Communicatoins of ACM 49, 1 (January 2006),



Server Placement Problem

Given N possible locations at edge of the Internet, we
are able to place K (K<N) surrogate servers, how to
place tThem to minimize the total cost?

e Minimum K-median problem

- Given N points we need to select K centers
- Assign each input point j to a center ‘closest to it

- Minimize the sum of distances between each j and its
center

 NP-Hard



Redirection Technigues

e Routfing Strategy

- Anycast
- Load Balancing

o Application specific selection
- HTTP redirection

« Naming based redirection

— DNS
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Akamai CDN

(overview)
Client requests content from Original Server

- URLs for content in CDN modified in the original
response

Client resolves <content>.<akamai host> name
Server from the region (best server) chosen

Client fetches content from akamai server



Akamai

(initial request)
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- @ Akamai

(high level DNS server)

Akamai
(low level DNS server)
-
3 i
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(content server)
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Akamai

(subsequent request)

Content
Source % DNS Root Server
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Akamai
*§ (high level DNS server)

1
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2 (low level DNS server)
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(content server)
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Democratizing Content
Publication with Coral

(Coral CDN)



Coral Objectives

Pool resources to dissipate Flash Crowds
Work with unmodified clients
Fefch content only once from Origin

No centralized management



k- N Coral Objectives

e Pool resources to dissipate Flash Crowds
o Work with unmodified clients

e Fetch content only once from Origin

 No centralized management ST
Server

HELSINGIN YLIOPISTO - -
UNIVERSITY OF HELSINKI  Department of Computer Science ~ Overlay (and P2P)  09.02.2017

HELSINGFORS UNIVERSITET Faculty of Sciences



k- N Coral Objectives

e Pool resources to dissipate Flash Crowds
o Work with unmodified clients

e Fetch content only once from Origin

 No centralized management ST
Server

HELSINGIN YLIOPISTO - ﬁ

HELSINGFORS UNIVERSITET Faculty of Sciences
UNIVERSITY OF HELSINKI ~ Department of Computer Science ~ Overlay (and P2P)  09.02.2017




k- N Coral Objectives

e Pool resources to dissipate Flash Crowds
o Work with unmodified clients

e Fetch content only once from Origin

 No centralized management ST
Server

HELSINGIN YLIOPISTO - ﬁ

HELSINGFORS UNIVERSITET Faculty of Sciences
UNIVERSITY OF HELSINKI ~ Department of Computer Science ~ Overlay (and P2P)  09.02.2017




|

e Pool resources to dissipate Flash Crowds
o Work with unmodified clients

e Fetch content only once from Origin

 No centralized management ST
Server

Coral
Coral http prx
CDN dnssrv Coral
http prx
Coral adnssrv
~ http prx \-
dnssrv
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Using Coral

e Origin Server rewrites URLs

- abc.com — abc.com.coralhost:coralport
— Redirect clients to Coral server



Using Coral

e Origin Server rewrites URLs

- abc.com — abc.com.coralhost:coralport
— Redirect clients to Coral server

e Coral CDN Components

— DNS server

e Given address of resolver used by the client, return the
address of proxy near the client



Using Coral

e Origin Server rewrites URLs

- abc.com — abc.com.coralhost:coralport
— Redirect clients to Coral server

e Coral CDN Components

— DNS server

e Given address of resolver used by the client, return the
address of proxy near the client

- HITTP proxy
e Given the URL find nearest proxy that has content
« Cache the content (DHT)



Using Coral

e Origin Server rewrites URLs

- abc.com — abc.com.coralhost:coralport
— Redirect clients to Coral server

e Coral CDN Components

— DNS server

e Given address of resolver used by the client, return the
address of proxy near the client

- HITTP proxy
e Given the URL find nearest proxy that has content
« Cache the content (DHT)

— Distributed Sloppy Hash Table (DSHT)



Using Coral

e Origin Server rewrites URLs

- abc.com — abc.com.coralhost:coralport
— Redirect clients to Coral server

e Coral CDN Components

— DNS server

e Given address of resolver used by the client, return the
address of proxy near the client

- HTTP proxy
e Given the URL find nearest proxy that has content
« Cache the content (DHT)

— Distributed Sloppy Hash Table (DSHT)

e No load-balancing & content locality support in Basic DHTs
(Chord)



Coral System Overview

Coral Coral
dns srv dns srv
http prx - http prx

Coral
dns srv
http prx

3,11
4
Coral 9| Coral
dns srv
dns srv ~{-
b3 - http prx
http prx, 5 A
\ \‘\ www.x.com 7
www.x.com : nyud.net/
nyud.net \ S ' - 10

1
Resolver |« -.- g Browser

Figure 1: Using CoralCDN, the steps involved in resolving a
Coralized URL and returning the corresponding file, per Sec-
tion 2.2. Rounded boxes represent CoralCDN nodes running
Coral, DNS, and HTTP servers. Solid arrows correspond to
Coral RPCs, dashed arrows to DNS traffi ¢, dotted-dashed arrows
to network probes, and dotted arrows to HTTP traffi c.

Freedman, Michael et al. "Democratizing Content
Publication with Coral." In NSDI 2004.
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Hierarchical Indexing

e Diameter, Clusters, Levels

- Each Coral Node part of several DSHTs called clusters
- Each cluster characterized by max RTT (diameter)
— Fixed hierarchy of diameters called levels

- Group of nodes can form a level-i cluster if the pair-
wise RTT less than threshold for level-i

e Paper uses 3 (levels): 20ms (2), 60ms (1),00(0)
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Hierarchical Indexing

e Diameter, Clusters, Levels

- Each Coral Node part of several DSHTs called clusters
- Each cluster characterized by max RTT (diameter)
— Fixed hierarchy of diameters called levels

- Group of nodes can form a level-i cluster if the pair-
wise RTT less than threshold for level-i

e Paper uses 3 (levels): 20ms (2), 60ms (1),00(0)
« SHA-1 for Coral Keys and Node-Ids

e Bitwise XOR is distance (Kademlia)

- Longer matching prefix numerically closer
— Key stored at node having ID “close” to key



Routing and Sloppy Storage

Freedman, Michael et al. "Democratizing Content
Publication with Coral." In NSDI 2004.
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e Routing

- Routing table size
logarithmic in total
number of nodes

Freedman, Michael et al. "Democratizing Content
Publication with Coral." In NSDI 2004.
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Routing and Sloppy Storage

e Routing

- Routing table size
logarithmic in total
number of nodes

e Sloppy Storage

— Cache key/value pairs at
nodes whose IDs are close
to the key being
referenced

— Reduces hot-spoft
congestion for popular
content

Freedman, Michael et al. "Democratizing Content
Publication with Coral." In NSDI 2004.



Routing and Sloppy Storage
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Freedman, Michael et al. "Democratizing Content
Publication with Coral." In NSDI 2004.



‘ik Coral Implemented on PlanetlLab

Global Research Network
As of Feb 2014, PlanetLab has 1181 nodes at 567 sites
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Requests / Minute

Reduction in Server Load
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Dynamics of Flash Crowds

28% of 30s epochs have no domains with a =1 OOM rate increase
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Freedman, Michael. "Experiences with Coral CDN: A
Five-Year Operational View." In NSDI 2010.



Insights from 5 year Deployment

« A large majority of its traffic does not require any
cooperative caching

- Handling of flash crowds relies on cooperative caching
e Flash Crowds

- Small fraction of CoralCDN's domains experience large
rate increases within short time periods

- Flash crowd domains’ traffic accounts for a small fraction
of the fotal requests

- Request rate increases very rarely occur on the order of
seconds

e Content delivery via untrusted nodes requires the HTTP
protocol to support end-to-end signatures for content

Infe g I"ITy Freedman, Michael. "Experiences with CoralCDN: A
Five-Year Operational View." In NSDI 2010.



Other CDNs



DAP
(Provider Portals for Applications)

o P?2P applications may be oblivious o underlying network

- Lot of infer-domain traffic (Karagiannis et al. 2005)
o Approaches to address this problem
- ISP approaches
e Block P2P, Rate-limit P2P, Cache content, etfc.

- P2P approaches
e Locality (Ono Project)



ITracker of P4P

o Network provider runs an iTracker

o ifracker used by ISPs fto provides additional
information regarding network fopology

- P2P networks may choose fo utilize to optimize network
dGTG dell\/er‘y appTracker

iTracker A

iTracker B

Network Provider A

Network Provider B

(=== Tracker-based control messages

-~ Trackerless control messages

Haiyong Xie et al. "P4p: provider portal for
applications.” In SIGCOMM 2008



Maygh P2P CDN

e P2P CDN on Browser

Liang Zhang et al. ”"Maygh: building a CDN from
client web browsers.” In EuroSys '13.



Maygh P2P CDN

« P2P CDN on Browser
- Leverage on WebSockets, WebRTC, WebStorage API

Liang Zhang et al. ”"Maygh: building a CDN from
client web browsers.” In EuroSys '13.



Maygh P2P CDN

P2P CDN on Browser
Leverage on WebSockets, WebRTC, WebStorage API

@® Request peer stonng X COOfdlnatOf

e
O Request X A @STUI\E . SN .
s y IS A I S
Web Site Maygh e Maygh Web Site

|- Client @ Transfer of X Client [-
L—_—J L S e— '.J

Liang Zhang et al. ”’Maygh: building a CDN from

HELSINGIN VLIOPISTO client web browsers.” In EuroSys '13.
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CDNI

(CDN Interconnection)

e Leverage collective CDN
footprint

— One CDN fo reuse
resources of another
CDN provider

- ISPs can deploy their
own CDNs

Niven-Jenkins etal. "Content distribution network
interconnection (CDNI) problem statement." RFC
6707 (2012).



CDNI

(CDN Interconnection)
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Amazon Dynamo



ACID

(Recap)

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity
— All or nothing

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity
— All or nothing
e Consistency

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity
— All or nothing
e Consistency

- Successful fransaction commits only legal results

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity
— All or nothing
e Consistency

- Successful fransaction commits only legal results

e [solation

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
o Afomicity
— All or nothing
e Consistency

- Successful fransaction commits only legal results

e [solation

— Events within a tfransaction must be hidden from other
Tfransactions running concurrently
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ACID

(Recap)
Atomicity
— All or nothing
Consistency

- Successful fransaction commits only legal results

Isolation

— Events within a tfransaction must be hidden from other
Tfransactions running concurrently

Durability

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



ACID

(Recap)
Atomicity
— All or nothing
Consistency

- Successful fransaction commits only legal results

Isolation

— Events within a tfransaction must be hidden from other
Tfransactions running concurrently

Durability

— Once a transaction has been committed its results, the
system must guarantee the results survive subsequent
malfunctions

Theo Haerder et al. "Principles of transaction-oriented database
recovery." ACM Computing Surveys. 1983.



CAP Theorem

A. Fox et al. “Harvest, yield, and scalable
tolerant systems.” HotOS. 1999.
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e C: Strong Consistency (single-copy ACID consistency)
* A: High Availability (available at all times)

e P: Partition Resilience (survive partition between replicas)
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CAP Theorem

C: Strong Consistency (single-copy ACID consistency)
A: High Availability (available at all times)

P: Partition Resilience (survive partition between replicas)

PICK ANY TWO
C A without P

C P without A
A P without C

Popular work-around — reduced consistency (eventual
consistency) or reduced availability

A. Fox et al. “Harvest, yield, and scalable
tolerant systems.” HotOS. 1999.



Two Phase Perspective of CAP

e Two phase commit

- P1. Coordinator asks databases to perform a pre-
commit and asks them if commit is possible. If all DBs
agree then proceed to P2

— P2: Coordinator asks DBs to commit

e Two phase commit supports consistency and
partitioning. How is availability violated?

— Availability of any system is the product of the
availability of the components required for the operation

o ACID provides Consitency. Partion Tolerance is
essential. How do you achieve Availability?

- BASE

Dan Pritchett. “BASE: An Acid
Alternative.” ACM Queue. 2008



BASE

e Basically available, Soft state, Eventually consistent

« Strong vs Eventual (informal comparison)

- Strong: Every replica sees every update in the same
order (atomic updates)

- Eventual: every replica will eventually see updates and
eventually agree on all values (hon-atomic updates)

e Eventual Consistency

- Database consistency will be in a state of flux but
eventually it will be consistent

- Reads might not return the results of the latest update

Dan Pritchett. “BASE: An Acid
Alternative.” ACM Queue. 2008



Reguirements from Dynamo

G. DeCandia et al. “Dynamo: Amazon’s Highly
Available Key-value Store,” In SOSP 2007.
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Reguirements from Dynamo

Key-value store

— shopping carts, seller lists, preferences, product catalog
System built using off-the-shelf hardware.

Platform must scale to support continuous growth

Address tradeoff of high-availability, guaranteed
performance, cost-effectiveness, and performance
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Reguirements from Dynamo

Key-value store

— shopping carts, seller lists, preferences, product catalog

System built using off-the-shelf hardware.

Platform must scale to support continuous growth

Address tradeoff of high-availability, guaranteed
performance, cost-effectiveness, and performance

"The system needs to have scalable and robust solutions for load
balancing, membership and failure detection, failure recovery, replica
synchronization, overload handling, state transfer, concurrency and job
scheduling, request marshalling, request routing, system monitoring and
alarming, and configuration management”

G. DeCandia et al. “Dynamo: Amazon’s Highly
Available Key-value Store,” In SOSP 2007.



Partitioning and Replication
in Dynamo
e Consistent Hashing DHT
- Virtual nodes in DHT

/ Key K
- Each physical node added @ @

as multiple virtual nodes

\ : NodesB,C
: : \ i and D store

e Each data-item replicated @ @ ' keysin
. . range (A,B)
IN N I"IOdQS i including

\ :
. N /
— Each virtual node @ @

responsible for tThe region
between it and its Nth
predecessor

— Preference List: list of
nodes (in (multiple
datacenters) storing a key

G. DeCandia et al. “Dynamo: Amazon’s Highly
Available Key-value Store,” In SOSP 2007.



API

e get (key)
- may return many versions of the same object
« put(key, context, object)

- Context: encodes system metadata and includes
information such as the version of the object

- may retfurn to its caller before the update has been
applied at all the replicas

- An object may have different version sub-histories
 Vector clock based versioning

e One vector clock associated with every version of objects



Data Versioning

Obijects versions: D1, D2, D3, ...
Assume object is shopping cart.

Requirements: additions to the cart % d}wgi 2
don’t get lost but deletions can be ERTIETREN S0
lost

D1 ([Sx,1])

write
handled by Sx

all versions of the object
D2 ([Sx,2]) committed to the system are
returned when read

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnrten by

D5 ([Sx,3],[Sy.11[Sz,1])

G. DeCandia et al. “Dynamo: Amazon’s Highly
Available Key-value Store,” In SOSP 2007.
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e Read + Write involves N nodes from the preference list

- R: minimum number of nodes for Read
- W: minimum number of nodes for Write



Sloppy Quorum

e Read + Write involves N nodes from the preference list

- R: minimum number of nodes for Read
- W: minimum number of nodes for Write

e R+W>N

- R =W =5 - high consistency but system is vulherable
o network partitions

- R =W =1 - weak consistency with failure

- Typical values of (N, R, W) = (3,2,2) = balance between
performance and consistency



Read and Write Operations
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Read and Write Operations

e Coordinator

— Node responsible for read/writes
- First node in the preference list

e Write Operation

— New vector clock from coordinator

- Write locally and forward to N-1 nodes, if W-1 nodes
respond Then write was successful

e Read Operation

- Forward reqguest to N-1 nodes, if R-1 nodes respond
then forward fo user

— User resolves conflicts and writes back result



Membership Changes

o Gossip-based Protocol fo propagate membership
changes

- Each node contacts a peer chosen at random every
second and the two nodes efficiently reconcile their
persisted membership change histories

e Each node is aware of the key ranges handled by its
peers
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Handling Failures: Hinted Handoff

Imagine A goes down
and N=3

Keys stored by A will now
be stored by D

D is hinted in the
metadata that it is
storing keys meant for A

When A recovers, the

keys at D are now copied
To A

/ Key K
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Nodes B, C
and D store
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. range (A,B)
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" Handling Failures: Merkle Trees

e Minimize the amount of
transferred data

e Merkle Tree:
— Leaves are hashes of
keys
— Parents are hashes of
children

e Each node maintains
seperate Merkle tree for
each key-range
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G. DeCandia et al.
“Dynamo:
Amazon’s Highly

Available Key-value

Store,” In SOSP
2007.

Summary

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability
High Availability Vector clocks with Version size 1s
for writes reconciliation during decoupled from
reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoff availability and

durability guarantee
when some of the
replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
information.
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