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How to Generate Scale-Free Graphs with Strong Clustering

Serrano, M. Angeles, Dmitri Krioukov, and Maridn Boguna. "Self-similarity of complex
networks and hidden metric spaces." Physical review letters 100, no. 7 (2008): 078701.
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Greedy Routing

e Hidden Space as the coordinate space

— Hidden space is circle in this example

e Greedy Routing: Send to neighbor who is closer to the
destination (in hidden space)

e Unsuccessful Paths: None of your neighbors are closer
To the destination in the hidden space



Success Probability
(Greedy Routing)

Boguna, Marian et al.
"Navigability of complex networks."
Nature Physics 5, no. 1 (2009): 74-80.
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Implications of Result

 Internet Routing

- Routers currently exchange signals to keep cohenrent
view of network

— Network size increasing with time

- Hidden meftric space eliminates the need for control
signals exchanged to notify changes in network

e How to proceed to discover the hidden metric space

e Does Shortest Path imply Shortest Time to
destination?

- What happens in case of congestion at hubs?



Mathematics and the

Infernet: A Source of
Enormous Confusion
and Great Potential
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Is the Scale-Free Internet A
Myth?

e What we have seen till now wrt to Preferential Attachment

— Preferential attachment results in Hubs
— Hubs vulnerable to coordinated attacks
- Why is the Internet still up and running

e Is the Scale-Free modeling paradigm consistent with the
engineered nature of the Internet and the design
constraints imposed by existing technology?

— Is the simplistic toy model too generic?

- Do the available measurements, their analysis, and their
modeling efforts support the claims made by "Error and
Attack Tolerance” paper?
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Importance of Measurements

e Tool for measurement study for AS-measurements

— Traceroute

e Biagses of traceroute

- Uses IPv4 Protocol

« What about non-IPv4 protocols like MPLS?
 Entfry points fo non-IPv4 regions can aggregate to Hubs

- Only reports the interfaces traversed by the packet

e Routers can have multiple interfaces and appear on
different routes with different IP addresses
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L everage Domain Knowledge

e Device Constraints

— Finite number of interfaces on routers

L . What about
- Finite capacity of routers ~ Overlay Networks?

e Placement of High Degree Nodes

- Edge vs Core

How would you deploy the network if you are a network
engineer?

- Leverage domain knowledge to identify driving forces
behind the design of high engineered systems such as the
Internet
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Recap of Modeling Overlay
Networks

Milgram’'s Experiment
Duncan Watts Random Rewiring Model

Scale-Free Networks

- Preferential attachment

- Evolving Copying Model (Copying Generative Model)
— Scale-Free with Strong Clustering

Error and Fault Tolerance of Complex Networks

Navigation (Greedy Routing)
- In Small World (Kleinberg's Small World)
—- In Complex Networks (Scale-Free with Strong Clustering)

Mathematics and the Internet: A Source of Enormous Confusion
and Great Potential



Commonly used metrics

o Clustering Coefficient
e Diameter

e Degree Distribution



Methodology

1) Make observations (conduct measurement studies)

2)Build model to explain observations

— Choose the right level of granularity (zoom level)
- Strip The problem fo a simple form

- Attfempt to formulate the problem and model the
system

3)Validate model
— Reproduce observations/measurements
- EXxplain observations

4)Revisit step 2 (and 1) to improve understanding
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Internet Indirection
Architecture (I3)

http://i3.cs.berkeley.edu/

Ion Stoica et al. 2002. ”Internet indirection infrastructure.”
In SIGCOMM '02.
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Distributed lookup protocol
- Given a key, map the key to a node
Assign a unique m-bit key (identifier) to a node

- Consistent hashing (of IP address) generates keys

Identifiers (nodes) ordered in a circle module as 2™

- Every node has predecessor and successor

A key k is assigned to a node whose identifier is equal
to or follows k the identifier space.

— k stored on successor(k)

Routing table (at most m entries on each node)

- i entry = first node succeeds node by at least 21
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Chord Properties

e Each node responsible for = K/N keys

- K = total #keys, N = total #nodes

- When a node joins or leaves the network only O(K/N)
keys will be relocated

e Relocation is local to the node

» Lookups take O(log N) messages

» O(log2z N) messages required to re-establish routing
invariants after join/leave

- Each node's successor is correctly maintained

- For every key (k), the node responsible for K is
successor(k)
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Packet's Perspective of Internet
Services

Unicast: One fixed source to one fixed destination
Broadcast: One source to all destinations

Multicast: One fixed source to multiple destinations who
are part of a group

Anycast: One source to exactly one destination who is a
member of a group

Internet Services using Unicast, Broadcast, Multicast,
and Anycast are built over the point-to-point abstraction

Can we use another abstraction?
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Rendezvous-based Communication

Source sends packets to a logical identifier. Receivers
express inferest in packets sent to an idenftifier

Packet is a pair (id, data) m bits

' & R

id data

— id = host/object/session/...

Receivers use triggers (id, addr) to express interest

- Forward packet with identifier (id) to receiver with IP
address (addr)

Packet sent fo receivers if the
— the interest (id;) from receiver is a longest prefix match

— the match is longer than matching threshold k (k < m)

Abstraction decouples the act of sending
from the act of receiving
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API to Implement Indirection

SendPacket (p)
InsertTrigger(t)
RemoveTrigger(t)

API Implemented in an i3 Overlay Network

Overlay Consists of i3 Servers

o Store Triggers

o Forward packets using IP between i3 nodes and end-
hosts

— Packets are not stored at the Servers

« Implemented using Chord (or any other DHT)
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Benefits of 13

Support for mobility

« On moving to new address (addr'), receiver sends new
trigger (id, addr’)

e Receivers periodically refresh friggers
Multicast

e Source is agnostic to the set of receivers
 Receiver agnostic to the set of sources
e Trigger chains can be used to minimize triggers

Anycast

e Id contains a common prefix component and a suffix
Anonymity
Service Composition

o Stacked identifiers
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SIP

e Session Initiation Protocol

- An Application-layer control (signaling) protocol for
creating, modifying and tferminating sessions with one or
more participants

— Sessions include Internet multimedia conferences,
Internet telephone calls and multimedia distribution

- Members can communicate via multicast or mesh of
unicast relations, or a combination of the two

— Text based, model similar to HTTP

J. Rosenberg et al. "RFC 3261: SIP:
session initiation protocol." (2003).



Network Elements

(2) Invite
e User-agent

- End-point components

HELSINGIN VIIOPISTO http://sipsense.com/
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Network Elements

User-agent

- End-point components

SIP Registrar, Location Server, and Proxy
- Helps users resolve the IP address of each other
Feature Servers

— Value added services (call forwarding, recording, etc.)
Session Border Controller

- Protect a SIP sub-network from attacks

Gateways: Signalling Gateway and Media Gateway

— Transcode Media

- Support inferaction with non-SIP clients
http://sipsense.com/
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P2P SIP

e Can we leverage P2P technologies to implement SIP?

- Do away with central servers

N\
Y )
Clients

Only Servers in DHT
Unmodified Clients

2 z

All Clients in DHT
Requires modification of
clients

Kundan Singh et al. "Peer-to-peer internet
telephony using SIP." In NOSSDAYV 2005



P2P SIP

e Can we leverage P2P technologies to implement SIP?

- Do away with central servers

N\

2 Y
by
Clients ] _ .
Only Servers in DHT é" CII_(;:'ntsr:]n c?fHTt' - Super-nodes in DHT
Unmodified Clients clf;?]l:;es odification o

Kundan Singh et al. "Peer-to-peer internet
telephony using SIP." In NOSSDAYV 2005
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