

Overlay (and P2P) Networks

Part II

- Summary
 - Kademlia
 - Sybil
 - Summary

Samu Varjonen

Ashwin Rao

Kademlia

Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer Information System Based on the XOR Metric.

A nice video summarizing Kademlia

https://www.youtube.com/watch?v=w9UObz8o8lY

Sybil

John R. Douceur. 2002. The Sybil Attack. In Revised Papers from the First International Workshop on Peer-to-Peer Systems (IPTPS '01).

Summary

27.02.2017

U	Unstructured or semi structured networks				
	BitTorrent	Freenet v0.7	Gnutella v0.4	Gnutella v0.7	
on	Centralized model	Similar to DHTs, two modes (darknet and opennet), two tiers	Flat topology (random graph), equal peers	Random graph with two tiers. Two kinds of nodes, regular and ulta nodes. Ultra nodes are	

Flooding mechanism

Flooding mechanism

Search until Time-To-Live

expires, no guarantee to

Constant (reverse path

state, max rate and TTL

determine max state)

Performance degrades

grows. No central point.

when the number of peer

locate data

Keywords and text strings

are used to identify data

objects. Assumes small

Clustering using node

(opennet). Location swapping (darknet).

Live, no guarantee to

locate data. With small

world property $O(log(n)^2)$

hops are required, where n is the number of nodes.

With small world property

No central point of failure

 $O(\log(n)^2)$

location and file identifier.

Path folding optimization

Search based on Hop-To-

world structure for

efficiency

connectivity hubs

the ultra nodes

Selective flooding

Search until Time-To-Live

expires, second tier

improves efficiency, no

guarantee to locate data

Constant (regular to ultra,

ultra to ultra). Ultra nodes

have to manage leaf node

Performance degrades

when the number of peer

grows. Hubs are central

points that can be taken

mechanism

state.

out.

Selective flooding using

Decentralization

Foundation

Routing function

Routing

performance

Routing state

Reliability

Tracker

Tracker

data, good

popular data

may occur

pieces

Guarantee to locate

performance for

Constant, choking

Tracker keeps track

of the peers and

Structured networks

	CAN	Chord	Kademlia	Pastry	Tapestry
Foundation	Multi-dimensional space (d- dimensional torus)	Circular space	XOR metric	Plaxton-style mesh	Plaxton-style mesh
Routing function	Maps (key,value) pairs to coordinate space	Matching key and nodeID	Matching key and nodeID	Matching key and prefix in nodeID	Suffix matching
System parameters	Number of peers N, number of dimensions d	Number of peers N	Number of peers N, base of peer identifier B	Number of peers N, base of peer identifier B	Number of peers N, base of peer identifier B
Routing performance	O(dN ^{1/d})	O(log N)	O(log _B N) + small constant	O(log _B N)	O(log _B N)
Routing state	2d	log N	$Blog_B N + B$	2Blog _B N	log _B N
Joins/leaves	2d	(log N) ²	log _B N + small constant	log _B N	log _B N

Summary of Datastores and Related Systems

Name	Туре	Data placement	Data can be located	Replication	Stabilization
Dynamo	1-hop DHT	Key→node, consistent hashing	Yes	Yes, clockwise nodes	Eventual consistency: anti-entropy, gossip
Chord	Wide-area DHT	Key→node, based on consistent hashing	Yes	Add-on	Stabilization mechanism
PAST	Wide-area DHT	Key→node, based on Plaxton mesh	Yes	Yes, close-by nodes	Part of Pastry routing
Freenet	P2P	Key→closest node, approximate small world routing table	No guarantee	Yes, reverse- path	Path folding (opennet) and location swapping (darknet)
Gnutella	P2P	Client	No guarantee	No	No (ultranode layer in principle)

Rendezvous, replication, multicast, ... **Hybrids** Coral Layered Node id clustering Ring **Proximity** Bloom Filt. Tit-for-tat Trees/ cubes Kademlia Limited Location flooding swapping Track Consistent hashing Flooding Depth first er **XOR** Gnutella BT Freenet **DHTs** Random Small world N/A Unstructured Structured

Internet (TCP/IP)

Consistent hashing alleviates network problems and eventual consistency can be achieved through replication Good for name/value data. and synchronization note flat address space, one node is responsible, churn is a concern Good for arbitrary data and search functions, can aggregate routing info, structure improves scalability Example: Dynamo Examples: Lookup: Chord, CAN, Kademlia Examples: Example: Bit Torrent Replication, Gossip, etc. Gnutella and Storage: PAST Rendezvous: Scribe (for multicast), i3 Freenet Selective flooding Limited flooding / depth first / Bloom filters Tracker Consistent hash (O(1) DHT) DHT Search Storage Rendezvous Search Storage Rendezvous Search Storage Rendezvous Cluster Wide-area Wide-area (unstructured) (structured) Internet (TCP/IP)

Main theme	Prerequisites	Approaches learning goals	Meets learning goals	Deepens learning goals
Overlay and peer- to-peer networks: definitions and systems	Basics of data communications and distributed systems (Introduction to Data Communications, Distributed Systems)	Knowledge of how to define the concepts of overlay and peer-to-peer networks, and state their central features Ability to describe at least one system in detail	Ability of being able to compare different overlay and p2p networks in a qualitative manner Ability to assess the suitability of different systems to different use cases	Ability to give one's own definition of the central concepts and discuss the key design and deployment issues
Distributed hash tables	Basics of data communications and distributed systems (Introduction to Data Communications, Distributed Systems) Big-O-notation and basics of algorithmic complexity	Knowledge of the concepts of structured and unstructured networks and the ability to classify solutions into these two categories Knowledge of the basics of distributed hash tables Ability to describe at least one distributed hash table algorithm in detail	Ability of being able to compare different distributed hash table algorithms Ability of designing distributed hash table-based applications Knowledge of key performance issues of distributed hash table systems and the ability to analyze these systems	The knowledge of choosing a suitable distributed hash table design for a problem Familiarity with the state of the art
Reliability and performance modelling	Basics of probability theory Basics of reliability in distributed systems	Ability to model and assess the reliability of overlay and peer-to-peer networks by using probability theory Knowledge of the most important factors pertaining to reliability	Ability of analytically analyzing the reliability and performance of overlay and peer-to-peer networks Understanding of the design issues that are pertinent for reliable systems	Familiarity with the state of the art
Content distribution	Introduction to Data Communications	Knowledge of the basic content distribution solutions Ability to describe at least one overlay and p2p network based content distribution solution	Knowledge of different content distribution systes and the ability to compare them in detail Knowledge of several content distribution techniques	Familiarity with the state of the art
Security	Basics of computer security	Knowledge of the basic security issues with overlay and p2p networks Knowledge of the sybil attack concept	Ability to discuss how security problems and limitations can be solved Knowledge of how to prevent sybil attacks	Knowledge of how to prevent sybil attacks Familiarity with the state of the art

Have a nice spring!

(Remember to submit course feedback)