Probabilistic Models: Spring 2014 Jointree Example

We are given the following Bayesian network G.

		$A T \mid f_T$	$S C \mid f_C$
$S \mid f_S$	$A \mid f_A$	T T .3	T T .8
T .4	T .2	T F .7	T F .2
F .6	F .8	F T .1	F T .1
I	I	F F .9	F F .9
	$T C P \mid f_P$	$P B D \mid f_D$	Ţ
	Т Т Т .9	T T T .8	
$S B \mid f_B$	T T F .1	T T F .2	$P X \mid f_X$
T T .6	T F T .8	T F T .7	T T .8
T F .4	T F F .2	T F F .3	T F .2
F T .5	F T T .8	F T T .7	F T .1
F F .5	F T F .2	F T F .3	F F .9
I	F F T .1	F F T .4	I
	F F F .9	F F F .6	

- 1. Construct the moral graph M_G of G
- 2. Triangulate M_G to obtain T_G . Use the following elimination ordering: A, T, X, D, P, C, B, S
- 3. Construct a jointree J_G from the triangulated graph. Use the following clusters and factor assignments:
 - $AT: f_A, f_T$
 - $TCP: f_P$

- *CPB*: trivial factor (value 1)
- $CSB: f_C, f_S, f_B$
- $PBD: f_D$
- $PX: f_X$
- Connect PX to TCP
- 4. Use J_G to calculate the following probabilities. Use CPB as the root.

(a) P(C)Some of the messages: $\bullet \begin{array}{c|c} P & M_{PX,TCP} \\ \hline T & 1 \\ F & 1 \end{array}$

F	1	
P	В	$M_{PDB,CPB}$
Т	Т	1
Т	\mathbf{F}	1
\mathbf{F}	Т	1
F	\mathbf{F}	1
B	C	$M_{CSB,CPB}$
Т	Т	.2220
Т	\mathbf{F}	.3180
\mathbf{F}	Т	.1580
F	F	.3020
	F P T F F B T T F F	

- (b) P(C, B = T) Add an evidence factor to CSB. Also, consider which messages can be reused.
- (c) P(C|B = T) Consider which messages can be reused.

Some useful equations and things

procedure FACTORELIMINATION(elimination tree T, evidence e) **for** each variable $E \in \mathbf{e}$ **do** $i \leftarrow \text{node in T}$ such that $E \in \mathbf{C}_i$ $\phi_i \leftarrow \phi_i \lambda_E$ \triangleright adding the evidence to node i **end for** Choose a root node r in T Pull messages towards rPush messages away from r **return** $\phi_i \prod_k M_{ki}$ for each $i \in T$ \triangleright joint marginal $P(\mathbf{C}_i, \mathbf{e})$ **end procedure**

 $M_{i,j} := \operatorname{project} \left(\phi_i \prod_{k \neq j} M_{k,i}, S_{i,j} \right)$