Probabilistic Models: Spring 2014 Jointree Example Solutions

We are given the following Bayesian network G.

S	f_{S}
T	.4
F	.6

A	f_{A}
T	.2
F	.8

A	T	f_{T}
T	T	.3
T	F	.7
F	T	.1
F	F	.9

S	B	f_{B}
T	T	.6
T	F	.4
F	T	.5
F	F	.5

T	C	P	f_{P}
T	T	T	.9
T	T	F	.1
T	F	T	.8
T	F	F	.2
F	T	T	.8
F	T	F	.2
F	F	T	.1
F	F	F	.9

P	B	D	f_{D}
T	T	T	.8
T	T	F	.2
T	F	T	.7
T	F	F	.3
F	T	T	.7
F	T	F	.3
F	F	T	.4
F	F	F	.6

S	C	f_{C}
T	T	.8
T	F	.2
F	T	.1
F	F	.9

P	X	f_{X}
T	T	.8
T	F	.2
F	T	.1
F	F	.9

1. Construct the moral graph M_{G} of G

2. Triangulate M_{G} to obtain T_{G}. Use the following elimination ordering: A, T, X, D, P, C, B, S

3. Construct a jointree J_{G} from the triangulated graph. Use the following clusters and factor assignments:

- $A T: f_{A}, f_{T}$
- TCP: f_{P}
- $C P B$: trivial factor (value 1)
- CSB: f_{C}, f_{S}, f_{B}
- $P B D: f_{D}$
- $P X: f_{X}$
- Connect $P X$ to $T C P$

4. Use J_{G} to calculate the following probabilities. Use $C P B$ as the root.
(a) $P(C)$

All of the messages:

T	$M_{A T, T C P}$
T	.1400
F	.8600

We find this by marginalizing A from $f_{A T}$ because we project $f_{A T}$ onto the separator between $A T$ and $T C P$, which is T.

P	$M_{P X, T C P}$
T	1
F	1

We find this by marginalizing X from $f_{P X}$ because we project $f_{P X}$ onto the separator between $P X$ and $T C P$, which is P.

C	P	$M_{T C P, C P B}$
T	T	.8140
T	F	.1860
F	T	.1980
F	F	.8020

We find this by multiplying the incoming messages to $T C P$ by $f_{T C P}$, i.e. $f_{T C P} M_{A T, T C P} M_{P X, T C P}$. Then, we project that value onto the separator between $T C P$ and $C P B$, which is $C P$.

- | P | B | $M_{P D B, C P B}$ |
| :--- | :--- | :--- |
| T | T | 1 |
| T | F | 1 |
| F | T | 1 |
| F | F | 1 |

We find this by projecting $f_{P D B}$ onto the separator between $P D B$ and $C P B$, which is $P B$.

B	C	$M_{C S B, C P B}$
T	T	.2220
T	F	.3180
F	T	.1580
F	F	.3020

We find this by projecting $f_{C S B}$ onto the separator between $C S B$ and $C P B$, which is $C B$.

- | C | $P(C)$ |
| :---: | :---: |
| T | .3800 |
| F | .6200 |

We find this by multiplying all of the incoming messages to $C P B$ by $f_{C P B}$. Note that multipying factor f by the trivial factor just results in f scaled by the trivial factor (1 , in this case). So, the final distribution over the cluster is: $M_{T C P, C P B} M_{P D B, C P B} M_{C S B, C P B}$. Finally, we project that onto C since that was the original query.
(b) $P(C, B=\mathrm{T}) \quad$ Add an evidence factor to $C S B$. Also, consider which messages can be reused.
The only message which changes is the message from $C S B$ to $C P B$. All of the others can be reused. We first add the evidence factor (which assigns 1 to $B=T$ and 0 to $B=F$) to $f_{C S B}$. We then compute its message to $C P B$ as normal.

B	C	$M_{C S B, C P B}$
T	T	.2220
T	F	.3180
F	T	.0000
F	F	.0000

We then recalculate the distribution over $C P B$, which is again: $M_{T C P, C P B} M_{P D B, C P B} M_{C S B, C P B}$.
Finally, we project onto C (optionally also B, but some of the values will just be 0 , so we can leave those off).

B	C	$P(C, B=\mathrm{T})$
T	T	.2220
T	F	.3180

In general, the joint probabilities will not be the same as the message.
(c) $P(C \mid B=\mathrm{T}) \quad$ Consider which messages can be reused.

In this case, we can reuse all of the previous messages because no new evidence was added to the problem. Consequently, we can find the probability of the evidence by projecting $P(C, B=\mathrm{T})$ onto \emptyset. (You can also think of this as projecting onto B, but $P(B=\mathrm{F})$ is always 0).

-	$P(B=\mathrm{T})$
T	.5400

We can then use Bayes rule to calculate $P(C \mid B=\mathrm{T})=\frac{P(C, B=\mathrm{T})}{P(B=\mathrm{T})}$

B	C	$M_{C S B, C P B}$
T	T	.4111
T	F	.5889

Some useful equations and things

```
procedure FactorElimination(elimination tree T, evidence e)
    for each variable E E e do
            i\leftarrow node in T such that E\in C}\mp@subsup{\mathbf{C}}{i}{
            \phi}\leftarrow\mp@subsup{\psi}{i}{}\mp@subsup{\lambda}{E}{}\quad\triangleright\mathrm{ adding the evidence to node }
        end for
        Choose a root node r in T
        Pull messages towards r
        Push messages away from r
        return }\mp@subsup{\phi}{i}{}\mp@subsup{\prod}{k}{}\mp@subsup{M}{ki}{}\mathrm{ for each }i\in
    end procedure
```

$M_{i, j}:=\operatorname{project}\left(\phi_{i} \prod_{k \neq j} M_{k, i}, S_{i, j}\right)$

