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Graph concepts and terminology

We have a directed acyclic graph in which the set of nodes
represent random variables, X .

(C)

Rain?

Winter?

(A)

(E)

Slippery Road?

(D)

Wet Grass?

(B)

Sprinkler?

PaX : the parents of variable/node X

DescX : the descendents of X

NonDescX : the non-descendents of X , X \ {X} \ PaX \ DescX
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Graph concepts and terminology

We have a directed acyclic graph in which the set of nodes
represent random variables, X .

(C)

Rain?

Winter?

(A)

(E)

Slippery Road?

(D)

Wet Grass?

(B)

Sprinkler?

Trail or pipe. Any sequence of edges which connects two variables
Example: Sprinkler →Wet Grass ← Rain→ Slippery Road
N.B. The direction of the edge is not considered.

Valve. A variable in a trail
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Probability terminology and notation

We have a conditional probability distribution represented as a
table, called a conditional probability table.

A B ΘB|A
T T 0.20
T F 0.80
F T 0.75
F F 0.25

Family. The variable X and its parents PaX , B and {A} here

Parameters. The conditional probability distributions, Pr(X = x |PaX =
pa), often denoted θx|pa

Each instantiation of PaX gives a different conditional distribution for X ,
so

∑
x θx|pa = 1 for each pa.
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Probability terminology and notation

We have a conditional probability distribution represented as a
table, called a conditional probability table.

A B ΘB|A
T T 0.20
T F 0.80
F T 0.75
F F 0.25

Compatability. A parameter θx |pa is compatible with a (partial)
instantiation z if they assign the same value to common variables.
We use θx |pa∼z to indicate compatibility.

Conditional independence. I (X,Z,Y) means that X is indepen-
dent of Y given Z.
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Factorized distributions

How can we use chain rule to write Pr(A,B,C ,D,E )?

Pr(A, B, C ,D, E) = Pr(A)Pr(B|A)Pr(C |A, B)Pr(D|A, B, C)Pr(E |A, B, C ,D)

How many parameters does this require?

What if I (E , {C}, {A,B,D})?

Pr(A, B, C ,D, E) = Pr(A)Pr(B|A)Pr(C |A, B)Pr(D|A, B, C)Pr(E |C)

How many parameters does this require?

What if (additionally) I (C , {A}, {B}) and I (D, {B,C}, {A})?

Pr(A, B, C ,D, E) = Pr(A)Pr(B|A)Pr(C |A)Pr(D|B, C)Pr(E |C)

How many parameters does this require?
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Graphical structures as factorized distributions

What is the relationship between the factorized distribution and
the graphical structure?

Pr(A,B,C ,D,E ) = Pr(A)Pr(B|A)Pr(C |A)Pr(D|B,C )Pr(E |C )

(C)

Rain?

Winter?

(A)

(E)

Slippery Road?

(D)

Wet Grass?

(B)

Sprinkler?

The graph structure encodes the conditional independencies.
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Local Markov property

Local Markov property. Given a DAG structure G which encodes
conditional independencies, we interpret G to compactly represent
the following independence statements:

I (X ,PaX ,NonDescX ) for all variables X in DAG G .

These conditional independencies are denoted as Markov(G ).
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Local Markov property - Simple example

What conditional independencies are implied by the local Markov
property for this DAG?

Earthquake?
(B)(E)

Radio?
(R)

Alarm?
(A)

(C)
Call?

Burglary?
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Bayesian network definition

A Bayesian network for a set of random variables X is a pair
(G ,Θ) where

G is a DAG over X , called the structure

Θ is a set of CPDs (always CPTs in this course), one for each
X ∈ X , called the parameterization
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Sample Bayesian network

Structure Parameterization

(C)

Rain?

Winter?

(A)

(E)

Slippery Road?

(D)

Wet Grass?

(B)

Sprinkler?

A ΘA
T .6
F .4

A B ΘB|A
T T .2
T F .8
F T .75
F F .25

C E ΘE|C
T T .7
T F .3
F T 0
F F 1

A C ΘC|A
T T .8
T F .2
F T .1
F F .9

B C D ΘD|B,C

T T T .95
T T F .05
T F T .9
T F F .1
F T T .8
F T F .2
F F T 0
F F F 1
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Chain rule of Bayesian networks

Given a Bayesian network B and an instantiation z, then

Pr(z|B) =
∏

θx|pa∼z
θx |pa

That is, the probability of z is the probability of each variable given
its parents.

In the future, we will typically omit B unless we need to distinguish
between networks.
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Class work

Suppose a Bayesian network has n variables, and each variable can take
up to d values. Additionally, no variable has more than k parents.

How many parameters does an explicit distribution require?

How many parameters does a Bayesian network require? Use O (·).

Using the network on the handout, compute the following probabilities.
Remember marginalization and Bayes’ rule.

Pr(A = T,B = T,C = F,D = T,E = F)

Pr(A = T,B = T,C = F)

Pr(A = T,B = T|C = F)

Pr(A = T,B = T|C = F,D = T,E = F)
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Graphoid axioms

The local Markov property tells us that

I (X ,PaX ,NonDescX ) for all variables X in DAG G .

The graphoid axioms allow us to derive global independencies
based on the graph structure.

Symmetry

Decomposition

Weak union

Contraction

Intersection
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Symmetry

If learning something about Y tells us nothing about X, then
learning something about X tells us nothing about Y.

I (X,Z,Y)⇔ I (Y,Z,X)

Note that conditional independence is always w.r.t. some set of
variables Z as evidence.
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Decomposition

If learning something about Y ∪W tells us nothing about X, then
learning something about Y or W individually tells us nothing
about X.

I (X,Z,Y ∪W)⇒ I (X,Z,Y) and I (X,Z,W)

This allows us to reason about subsets. In particular,

I (X ,PaX ,W) for all W ∈ NonDescX .

Given the topological ordering on the variables, this axiom proves
the chain rule for Bayesian networks.
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Weak union

If learning something about Y ∪W tells us nothing about X, then
Y will not make W relevant.

I (X,Z,Y ∪W)⇒ I (X,Z ∪ Y,W)

In particular, X is independent of W ∈ NonDescX given PaX and
the other non-descendents.
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Contraction

If learning something about W after learning Y tells us nothing
about X, then the combined information Y ∪W was irrelevant to
begin with.

I (X,Z,Y) and I (X,Z ∪ Y,W)⇒ I (X,Z,Y ∪W)
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Intersection

If W is irrelevant given Y and Y is irrelevant given W, then both
Y and W were irrelevant to begin with∗.

I (X,Z ∪W,Y) and I (X,Z ∪ Y,W)⇒ I (X,Z,Y ∪W)

∗ This holds only when the distribution is strictly positive.
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Paths and valves

A pipe is a path from one variable to another.

Three types of valves compose a pipe.

X W Y
Chain

X W Y
Common cause

X W Y
Common effect

The “common effect” is often referred to as a “v-structure” when
X and Y are not connected.
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Open and closed valves

We can consider independence as “flow” through a pipe.

In particular, X and Y are independent given Z if all pipes between
them are closed. A pipe is closed if any of its valves are closed.

X W Y
Closed iff W ∈ Z

X W Y
Closed iff W ∈ Z

X W Y
Closed iff W ,DescW /∈ Z

Formally, this is called d-separation and is written dsep(X,Z,Y).
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Complexity of d-separation

How many paths are there between nodes in X and Y?

So is d-separation practically useful?

Testing dsep(X,Z,Y) is equivalent to testing if X and Y are
connected in a new graph.

Delete outgoing edges from nodes in Z

(Recursively) Delete any leaf which does not belong to
X ∪ Y ∪ Z

So we can determine d-separation in linear time and space.
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Markov blanket

The Markov blanket for a variable X is a set of variables B such
that X /∈ B and I (X ,B,V \ B \ {X}.

Which variables B d-separate a variable X from all of the other
variables (V \ B \ {X})?

The parents, children and spouses.
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Soundness, completeness and equivalence

Every independence found by d-separation is true for any
distribution which factorizes according to the BN.

There could be independencies that d-separation cannot find
(because it only uses the structure).

What are the independencies given by these networks?

Y ZX Y ZX

Different network structures can result in the same independencies.
These networks are Markov equivalent.
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Terminology for d-separation

A BN is an independence map (I-MAP) of Pr if every
independence declared by d-separation holds in Pr .

An I-MAP is minimal if it ceases to be an I-MAP when any edge
is deleted.

A BN is a dependency map (D-MAP) of Pr if the lack of
d-separation implies a dependence in Pr .
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Class work

Use the network on the handout (the Asian network) to answer the
following independence questions.

List the Markov blanket of all variables.

dsep(P, {A,T ,C ,S ,B,D},X )

No

dsep(P, {T ,C}, {A,S})

Yes

dsep(P, {C ,D},B)

No

dsep(B,S ,P)

Yes

dsep({B,C},S ,P)

No

dsep({B,C},P, {A,T ,X})

No
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Class work

Use the network on the handout (the Asian network) to answer the
following independence questions.

List the Markov blanket of all variables.

dsep(P, {A,T ,C ,S ,B,D},X ) No

dsep(P, {T ,C}, {A,S}) Yes

dsep(P, {C ,D},B) No

dsep(B,S ,P) Yes

dsep({B,C},S ,P) No

dsep({B,C},P, {A,T ,X}) No

Brandon Malone Bayesian Networks



Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up

Recap

During this class, we discussed

Basic terminology and notation for probability and graphs

Bayesian networks as a parameterized model

BNs as a factorization of a joint probability distribution

BNs as a concise representation of conditional independencies
based on d-separation

Equivalence among BNs based on induced independencies
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Next time in probabilistic models

Discriminitive vs. generative learning

Multinomial naive Bayes for document classification

A1 A2 A3 Am

C

Hidden Markov models for gene prediction

S2 S3 SnS1

O1 O2 O3 On
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