Bayesian Networks

Brandon Malone

Much of this material is adapted from Chapter 4 of Darwiche's book

January 23, 2014
(1) Preliminaries
(2) Bayesian Networks
(3) Graphoid Axioms

4 d-separation
(5) Wrap-up

Graph concepts and terminology

We have a directed acyclic graph in which the set of nodes represent random variables, \mathcal{X}.

Pax: the parents of variable/node X
Desc $_{X}$: the descendents of X
NonDesc C_{X} the non-descendents of $X, \mathcal{X} \backslash\{X\} \backslash \operatorname{Pa}_{X} \backslash \operatorname{Desc}_{X}$

Graph concepts and terminology

We have a directed acyclic graph in which the set of nodes represent random variables, \mathcal{X}.

Trail or pipe. Any sequence of edges which connects two variables
Example: Sprinkler \rightarrow Wet Grass \leftarrow Rain \rightarrow Slippery Road N.B. The direction of the edge is not considered.

Valve. A variable in a trail

Probability terminology and notation

We have a conditional probability distribution represented as a table, called a conditional probability table.

A	B	$\Theta_{B \mid A}$
T	T	0.20
T	F	0.80
F	T	0.75
F	F	0.25

Family. The variable X and its parents Pa_{X}, B and $\{A\}$ here
Parameters. The conditional probability distributions, $\operatorname{Pr}(X=x \mid \operatorname{Pax}=$ $p a$), often denoted $\theta_{x \mid p a}$

Each instantiation of Pa_{X} gives a different conditional distribution for X, so $\sum_{x} \theta_{x \mid p a}=1$ for each pa.

Probability terminology and notation

We have a conditional probability distribution represented as a table, called a conditional probability table.

A	B	$\Theta_{B \mid A}$
T	T	0.20
T	F	0.80
F	T	0.75
F	F	0.25

Compatability. A parameter $\theta_{x \mid p a}$ is compatible with a (partial) instantiation \mathbf{z} if they assign the same value to common variables. We use $\theta_{x \mid p a} \sim \mathbf{z}$ to indicate compatibility.

Conditional independence. $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ means that \mathbf{X} is independent of \mathbf{Y} given \mathbf{Z}.

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid A, B, C, D)
$$

How many parameters does this require?

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid A, B, C, D)
$$

How many parameters does this require?
What if $I(E,\{C\},\{A, B, D\})$?

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid A, B, C, D)
$$

How many parameters does this require?
What if $I(E,\{C\},\{A, B, D\})$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid C)
$$

How many parameters does this require?

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid A, B, C, D)
$$

How many parameters does this require?
What if $I(E,\{C\},\{A, B, D\})$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid C)
$$

How many parameters does this require?
What if (additionally) $I(C,\{A\},\{B\})$ and $I(D,\{B, C\},\{A\})$?

Factorized distributions

How can we use chain rule to write $\operatorname{Pr}(A, B, C, D, E)$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid A, B, C, D)
$$

How many parameters does this require?
What if $I(E,\{C\},\{A, B, D\})$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A, B) \operatorname{Pr}(D \mid A, B, C) \operatorname{Pr}(E \mid C)
$$

How many parameters does this require?
What if (additionally) $I(C,\{A\},\{B\})$ and $I(D,\{B, C\},\{A\})$?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A) \operatorname{Pr}(D \mid B, C) \operatorname{Pr}(E \mid C)
$$

How many parameters does this require?

Graphical structures as factorized distributions

What is the relationship between the factorized distribution and the graphical structure?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A) \operatorname{Pr}(D \mid B, C) \operatorname{Pr}(E \mid C)
$$

Graphical structures as factorized distributions

What is the relationship between the factorized distribution and the graphical structure?

$$
\operatorname{Pr}(A, B, C, D, E)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(C \mid A) \operatorname{Pr}(D \mid B, C) \operatorname{Pr}(E \mid C)
$$

The graph structure encodes the conditional independencies.

Local Markov property

Local Markov property. Given a DAG structure G which encodes conditional independencies, we interpret G to compactly represent the following independence statements:
$I\left(X\right.$, Pax $_{X}$, NonDescx $)$ for all variables X in DAG G.
These conditional independencies are denoted as $\operatorname{Markov}(G)$.

Local Markov property - Simple example

What conditional independencies are implied by the local Markov property for this DAG?

Bayesian network definition

A Bayesian network for a set of random variables \mathcal{X} is a pair (G, Θ) where

- G is a DAG over \mathcal{X}, called the structure
- Θ is a set of CPDs (always CPTs in this course), one for each $X \in \mathcal{X}$, called the parameterization

Sample Bayesian network

Chain rule of Bayesian networks

Given a Bayesian network \mathcal{B} and an instantiation z, then

$$
\operatorname{Pr}(\mathbf{z} \mid \mathcal{B})=\prod_{\theta_{x \mid p a} \sim z} \theta_{x \mid p a}
$$

That is, the probability $\mathbf{z} \mathbf{z}$ is the probability of each variable given its parents.

In the future, we will typically omit \mathcal{B} unless we need to distinguish between networks.

Class work

Suppose a Bayesian network has n variables, and each variable can take up to d values. Additionally, no variable has more than k parents.

How many parameters does an explicit distribution require?
How many parameters does a Bayesian network require? Use $\mathrm{O}(\cdot)$.
Using the network on the handout, compute the following probabilities. Remember marginalization and Bayes' rule.

- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T}, C=\mathrm{F}, D=\mathrm{T}, E=\mathrm{F})$
- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T}, C=\mathrm{F})$
- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T} \mid C=\mathrm{F})$
- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T} \mid C=\mathrm{F}, D=\mathrm{T}, E=\mathrm{F})$

Graphoid axioms

The local Markov property tells us that

$$
I\left(X, \text { Pa }_{X}, \text { NonDesc } x\right) \text { for all variables } X \text { in DAG } G .
$$

The graphoid axioms allow us to derive global independencies based on the graph structure.

- Symmetry
- Decomposition
- Weak union
- Contraction
- Intersection

Symmetry

If learning something about \mathbf{Y} tells us nothing about \mathbf{X}, then learning something about \mathbf{X} tells us nothing about \mathbf{Y}.

$$
I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \Leftrightarrow I(\mathbf{Y}, \mathbf{Z}, \mathbf{X})
$$

Note that conditional independence is always w.r.t. some set of variables \mathbf{Z} as evidence.

Decomposition

If learning something about $\mathbf{Y} \cup \mathbf{W}$ tells us nothing about \mathbf{X}, then learning something about \mathbf{Y} or \mathbf{W} individually tells us nothing about \mathbf{X}.

$$
I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \text { and } I(\mathbf{X}, \mathbf{Z}, \mathbf{W})
$$

This allows us to reason about subsets. In particular,

$$
I\left(X, \operatorname{Pa}_{X}, \mathbf{W}\right) \quad \text { for all } \mathbf{W} \in \text { NonDesc }_{X} .
$$

Given the topological ordering on the variables, this axiom proves the chain rule for Bayesian networks.

Weak union

If learning something about $\mathbf{Y} \cup \mathbf{W}$ tells us nothing about \mathbf{X}, then \mathbf{Y} will not make \mathbf{W} relevant.

$$
I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W})
$$

In particular, X is independent of $\mathbf{W} \in \operatorname{NonDesc}_{X}$ given Pax and the other non-descendents.

Contraction

If learning something about \mathbf{W} after learning \mathbf{Y} tells us nothing about \mathbf{X}, then the combined information $\mathbf{Y} \cup \mathbf{W}$ was irrelevant to begin with.

$$
I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \text { and } I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})
$$

Intersection

If \mathbf{W} is irrelevant given \mathbf{Y} and \mathbf{Y} is irrelevant given \mathbf{W}, then both \mathbf{Y} and \mathbf{W} were irrelevant to begin with*.

$$
I(\mathbf{X}, \mathbf{Z} \cup \mathbf{W}, \mathbf{Y}) \text { and } I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})
$$

* This holds only when the distribution is strictly positive.

Paths and valves

A pipe is a path from one variable to another.
Three types of valves compose a pipe.

The "common effect" is often referred to as a " v-structure" when X and Y are not connected.

Open and closed valves

We can consider independence as "flow" through a pipe.
In particular, \mathbf{X} and \mathbf{Y} are independent given \mathbf{Z} if all pipes between them are closed. A pipe is closed if any of its valves are closed.

Formally, this is called d-separation and is written $\operatorname{dsep}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$.

Complexity of d-separation

How many paths are there between nodes in \mathbf{X} and \mathbf{Y} ?
So is d-separation practically useful?

Complexity of d-separation

How many paths are there between nodes in \mathbf{X} and \mathbf{Y} ?
So is d-separation practically useful?
Testing $\operatorname{dsep}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ is equivalent to testing if \mathbf{X} and \mathbf{Y} are connected in a new graph.

- Delete outgoing edges from nodes in \mathbf{Z}
- (Recursively) Delete any leaf which does not belong to $\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$

So we can determine d-separation in linear time and space.

Markov blanket

The Markov blanket for a variable X is a set of variables \mathbf{B} such that $X \notin \mathbf{B}$ and $I(X, \mathbf{B}, \mathbf{V} \backslash \mathbf{B} \backslash\{X\}$.

Which variables \mathbf{B} d-separate a variable X from all of the other variables ($\mathbf{V} \backslash \mathbf{B} \backslash\{X\}$)?

Markov blanket

The Markov blanket for a variable X is a set of variables \mathbf{B} such that $X \notin \mathbf{B}$ and $I(X, \mathbf{B}, \mathbf{V} \backslash \mathbf{B} \backslash\{X\}$.

Which variables \mathbf{B} d-separate a variable X from all of the other variables ($\mathbf{V} \backslash \mathbf{B} \backslash\{X\}$)?

The parents, children and spouses.

Soundness, completeness and equivalence

Every independence found by d-separation is true for any distribution which factorizes according to the BN.

There could be independencies that d-separation cannot find (because it only uses the structure).

What are the independencies given by these networks?

Soundness, completeness and equivalence

Every independence found by d-separation is true for any distribution which factorizes according to the BN.

There could be independencies that d-separation cannot find (because it only uses the structure).

What are the independencies given by these networks?

Different network structures can result in the same independencies. These networks are Markov equivalent.

Terminology for d-separation

A BN is an independence map (I-MAP) of Pr if every independence declared by d-separation holds in Pr.

An I-MAP is minimal if it ceases to be an I-MAP when any edge is deleted.

A BN is a dependency map (D-MAP) of Pr if the lack of d-separation implies a dependence in Pr.

Class work

Use the network on the handout (the Asian network) to answer the following independence questions.

- List the Markov blanket of all variables.
- $\operatorname{dsep}(P,\{A, T, C, S, B, D\}, X)$
- $\operatorname{dsep}(P,\{T, C\},\{A, S\})$
- $\operatorname{dsep}(P,\{C, D\}, B)$
- $\operatorname{dsep}(B, S, P)$
- $\operatorname{dsep}(\{B, C\}, S, P)$
- $\operatorname{dsep}(\{B, C\}, P,\{A, T, X\})$

Class work

Use the network on the handout (the Asian network) to answer the following independence questions.

- List the Markov blanket of all variables.
- $\operatorname{dsep}(P,\{A, T, C, S, B, D\}, X)$ No
- $\operatorname{dsep}(P,\{T, C\},\{A, S\})$ Yes
- $\operatorname{dsep}(P,\{C, D\}, B)$ No
- dsep (B, S, P) Yes
- $\operatorname{dsep}(\{B, C\}, S, P)$ No
- $\operatorname{dsep}(\{B, C\}, P,\{A, T, X\})$ No

Recap

During this class, we discussed

- Basic terminology and notation for probability and graphs
- Bayesian networks as a parameterized model
- BNs as a factorization of a joint probability distribution
- BNs as a concise representation of conditional independencies based on d-separation
- Equivalence among BNs based on induced independencies

Next time in probabilistic models

- Discriminitive vs. generative learning
- Multinomial naive Bayes for document classification

- Hidden Markov models for gene prediction

