Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	0000000	

Bayesian Networks

Brandon Malone

Much of this material is adapted from Chapter 4 of Darwiche's book

January 23, 2014

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up

1 Preliminaries

- 2 Bayesian Networks
- Graphoid Axioms
- 4 d-separation

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up • o cocococo cococo cococo de cocococo de cococo de cococo de cocococo de cococo de cococo de cocococo de cocococo de cocococo d

Graph concepts and terminology

We have a **directed acyclic graph** in which the set of **nodes** represent **random variables**, \mathcal{X} .

 Pa_X : the **parents** of variable/node X

 $Desc_X$: the **descendents** of X

*NonDesc*_X: the **non-descendents** of X, $\mathcal{X} \setminus \{X\} \setminus Pa_X \setminus Desc_X$

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up • o coccocco coccocco Wrap-up coccocco Wrap-up

Graph concepts and terminology

We have a **directed acyclic graph** in which the set of **nodes** represent **random variables**, \mathcal{X} .

Trail or **pipe**. Any sequence of **edges** which connects two variables Example: Sprinkler \rightarrow Wet Grass \leftarrow Rain \rightarrow Slippery Road N.B. The direction of the edge is not considered.

Valve. A variable in a trail

A (1) > A (2) > A

We have a **conditional probability distribution** represented as a table, called a **conditional probability table**.

Α	В	$\Theta_{B A}$
Т	Т	0.20
Т	F	0.80
F	Т	0.75
F	F	0.25

Family. The variable X and its parents Pa_X , B and $\{A\}$ here

Parameters. The conditional probability distributions, $Pr(X = x | Pa_X = pa)$, often denoted $\theta_{x|pa}$

Each instantiation of Pa_X gives a different conditional distribution for X, so $\sum_x \theta_x|_{pa} = 1$ for each pa.

・ロト ・聞 ト ・ ヨト ・ ヨト …

We have a **conditional probability distribution** represented as a table, called a **conditional probability table**.

Α	В	$\Theta_{B A}$
Т	Т	0.20
Т	F	0.80
F	Т	0.75
F	F	0.25

Compatability. A parameter $\theta_{x|pa}$ is compatible with a (partial) instantiation z if they assign the same value to common variables. We use $\theta_{x|pa} \sim z$ to indicate compatibility.

Conditional independence. I(X, Z, Y) means that X is independent of Y given Z.

(4 同) 4 ヨ) 4 ヨ)

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	d distributions			

æ

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	l distributions			

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|A, B, C, D)

How many parameters does this require?

Preliminaries 00	Bayesian Networks ●○○○○○○	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	d distributions			

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|A, B, C, D)

How many parameters does this require?

What if $I(E, \{C\}, \{A, B, D\})$?

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	distributions			

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|A, B, C, D)

How many parameters does this require? What if $I(E, \{C\}, \{A, B, D\})$?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|C)

How many parameters does this require?

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	d distributions			

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|A, B, C, D)

How many parameters does this require? What if $I(E, \{C\}, \{A, B, D\})$?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|C)

How many parameters does this require? What if (additionally) $I(C, \{A\}, \{B\})$ and $I(D, \{B, C\}, \{A\})$?

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Factorized	distributions			

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|A, B, C, D)

How many parameters does this require? What if $I(E, \{C\}, \{A, B, D\})$?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A, B)Pr(D|A, B, C)Pr(E|C)

How many parameters does this require? What if (additionally) $I(C, \{A\}, \{B\})$ and $I(D, \{B, C\}, \{A\})$?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A)Pr(D|B, C)Pr(E|C)

How many parameters does this require?

伺 ト イヨ ト イヨト

What is the relationship between the factorized distribution and the graphical structure?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A)Pr(D|B, C)Pr(E|C)

イロト イポト イヨト イヨト

What is the relationship between the factorized distribution and the graphical structure?

Pr(A, B, C, D, E) = Pr(A)Pr(B|A)Pr(C|A)Pr(D|B, C)Pr(E|C)

The graph structure encodes the conditional independencies.

- ₹ ₹ >

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	○○●○○○○○	00000	0000000	
Local Ma	rkov property			

Local Markov property. Given a DAG structure G which encodes conditional independencies, we interpret G to compactly represent the following independence statements:

 $I(X, Pa_X, NonDesc_X)$ for all variables X in DAG G.

These conditional independencies are denoted as Markov(G).

What conditional independencies are implied by the local Markov property for this DAG?

э

イロト イポト イヨト イヨト

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Bayesian	network definiti	on		

A Bayesian network for a set of random variables ${\mathcal X}$ is a pair $({\mathcal G}, \Theta)$ where

- G is a DAG over \mathcal{X} , called the *structure*
- Θ is a set of CPDs (always CPTs in this course), one for each $X \in \mathcal{X}$, called the *parameterization*

Preliminaries 00	Bayesian Networks	Graphoid Axioms 00000	d-separation 0000000	Wrap-up
Sample B	ayesian network			

Structure	Parameterization
(A) Sprinkler? (B) Wet Grass? (D) (C) (B) (C) (E)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

・ロト ・部ト ・ヨト ・ヨト

æ

Given a Bayesian network ${\mathcal B}$ and an instantiation ${\boldsymbol z},$ then

$$\mathsf{Pr}(\mathbf{z}|\mathcal{B}) = \prod_{ heta_{x|pa}\sim \mathbf{z}} heta_{x|pa}$$

That is, the probability of \mathbf{z} is the probability of each variable given its parents.

In the future, we will typically omit $\ensuremath{\mathcal{B}}$ unless we need to distinguish between networks.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	○○○○○○○●	00000	0000000	
Class work				

Suppose a Bayesian network has n variables, and each variable can take up to d values. Additionally, no variable has more than k parents.

How many parameters does an explicit distribution require?

How many parameters does a Bayesian network require? Use $O(\cdot)$.

Using the network on the handout, compute the following probabilities. Remember marginalization and Bayes' rule.

- Pr(A = T, B = T, C = F, D = T, E = F)
- Pr(A = T, B = T, C = F)
- Pr(A = T, B = T | C = F)

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries 00	Bayesian Networks 00000000	Graphoid Axioms	d-separation 0000000	Wrap-up
Graphoid	axioms			

The local Markov property tells us that

 $I(X, Pa_X, NonDesc_X)$ for all variables X in DAG G.

The **graphoid axioms** allow us to derive *global* independencies based on the graph structure.

- Symmetry
- Decomposition
- Weak union
- Contraction
- Intersection

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	●○○○○	0000000	
Symmetry				

If learning something about \mathbf{Y} tells us nothing about \mathbf{X} , then learning something about \mathbf{X} tells us nothing about \mathbf{Y} .

$\textit{I}(\textbf{X},\textbf{Z},\textbf{Y}) \Leftrightarrow \textit{I}(\textbf{Y},\textbf{Z},\textbf{X})$

Note that conditional independence is always w.r.t. some set of variables ${\bf Z}$ as evidence.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	0000000	○●○○○	0000000	
Decomposi	tion			

If learning something about $\mathbf{Y} \cup \mathbf{W}$ tells us nothing about \mathbf{X} , then learning something about \mathbf{Y} or \mathbf{W} individually tells us nothing about \mathbf{X} .

$I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \text{ and } I(\mathbf{X}, \mathbf{Z}, \mathbf{W})$

This allows us to reason about subsets. In particular,

 $I(X, Pa_X, \mathbf{W})$ for all $\mathbf{W} \in NonDesc_X$.

Given the topological ordering on the variables, this axiom proves the chain rule for Bayesian networks.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	○○●○○	0000000	
Weak unior	າ			

If learning something about $\mathbf{Y}\cup\mathbf{W}$ tells us nothing about $\mathbf{X},$ then \mathbf{Y} will not make \mathbf{W} relevant.

$$I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \Rightarrow I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W})$$

In particular, X is independent of $\mathbf{W} \in NonDesc_X$ given Pa_X and the other non-descendents.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	०००●०	0000000	
Contraction	I			

If learning something about W after learning Y tells us nothing about X, then the combined information $Y \cup W$ was irrelevant to begin with.

I(X, Z, Y) and $I(X, Z \cup Y, W) \Rightarrow I(X, Z, Y \cup W)$

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	○○○○●	0000000	
Intersection				

If W is irrelevant given Y and Y is irrelevant given W, then both Y and W were irrelevant to begin with^{*}.

 $I(X, Z \cup W, Y)$ and $I(X, Z \cup Y, W) \Rightarrow I(X, Z, Y \cup W)$

* This holds only when the distribution is strictly positive.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	●○○○○○○	
Paths and	valves			

A **pipe** is a path from one variable to another.

Three types of **valves** compose a pipe.

The "common effect" is often referred to as a "v-structure" when X and Y are not connected.

We can consider independence as "flow" through a pipe.

In particular, X and Y are independent given Z if all pipes between them are closed. A pipe is closed if any of its values are closed.

Formally, this is called **d-separation** and is written dsep(X, Z, Y).

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○●○○○○	
Complexity	of d-separation	on		

How many paths are there between nodes in X and Y?

So is d-separation practically useful?

How many paths are there between nodes in X and Y?

So is d-separation practically useful?

Testing dsep(X, Z, Y) is equivalent to testing if X and Y are connected in a new graph.

- Delete outgoing edges from nodes in Z
- (Recursively) Delete any leaf which does not belong to $\textbf{X} \cup \textbf{Y} \cup \textbf{Z}$

So we can determine d-separation in linear time and space.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○○●○○○	
Markov bl	anket			

The **Markov blanket** for a variable X is a set of variables **B** such that $X \notin \mathbf{B}$ and $I(X, \mathbf{B}, \mathbf{V} \setminus \mathbf{B} \setminus \{X\})$.

Which variables **B** d-separate a variable *X* from all of the other variables $(\mathbf{V} \setminus \mathbf{B} \setminus \{X\})$?

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○○○○○○	
Markov bl	anket			

The **Markov blanket** for a variable X is a set of variables **B** such that $X \notin \mathbf{B}$ and $I(X, \mathbf{B}, \mathbf{V} \setminus \mathbf{B} \setminus \{X\})$.

Which variables **B** d-separate a variable X from all of the other variables $(\mathbf{V} \setminus \mathbf{B} \setminus \{X\})$?

The parents, children and spouses.

Every independence found by d-separation is true for any distribution which factorizes according to the BN.

There *could* be independencies that d-separation cannot find (because it only uses the structure).

What are the independencies given by these networks?

Every independence found by d-separation is true for any distribution which factorizes according to the BN.

There *could* be independencies that d-separation cannot find (because it only uses the structure).

What are the independencies given by these networks?

Different network structures can result in the same independencies. These networks are **Markov equivalent**.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○○○●○	
Terminolog	y for d-separa	tion		

A BN is an **independence map** (I-MAP) of Pr if every independence declared by d-separation holds in Pr.

An I-MAP is **minimal** if it ceases to be an I-MAP when any edge is deleted.

A BN is a **dependency map** (D-MAP) of Pr if the lack of d-separation implies a dependence in Pr.

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○○○○●	
Class work				

Use the network on the handout (the Asian network) to answer the following independence questions.

- List the Markov blanket of all variables.
- dsep(P, {A, T, C, S, B, D}, X)
- dsep(P, {T, C}, {A, S})
- *dsep*(*P*, {*C*, *D*}, *B*)
- dsep(B, S, P)
- dsep({B, C}, S, P)
- dsep({B, C}, P, {A, T, X})

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	○○○○○●	
Class work				

Use the network on the handout (the Asian network) to answer the following independence questions.

- List the Markov blanket of all variables.
- dsep(P, {A, T, C, S, B, D}, X) No
- *dsep*(*P*, {*T*, *C*}, {*A*, *S*}) Yes
- *dsep*(*P*, {*C*, *D*}, *B*) No
- dsep(B, S, P) Yes
- dsep({B, C}, S, P) No
- dsep({B, C}, P, {A, T, X}) No

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up
00	00000000	00000	0000000	
Recap				

During this class, we discussed

- Basic terminology and notation for probability and graphs
- Bayesian networks as a parameterized model
- BNs as a factorization of a joint probability distribution
- BNs as a concise representation of conditional independencies based on d-separation
- Equivalence among BNs based on induced independencies

Preliminaries	Bayesian Networks	Graphoid Axioms	d-separation	Wrap-up		
00	00000000	00000	0000000			
Next time	Next time in probabilistic models					

- Discriminitive vs. generative learning
- Multinomial naive Bayes for document classification

• Hidden Markov models for gene prediction

