Probabilistic Models: Spring 2014 Document Classification Example

We are given the following corpus and topics. Only the words in bold are in the vocabulary.

Topic	Text
Fantasy	The hobbit tricked the troll. He hid from the dragon. The dragon set the town on fire. The dwarf killed the dragon and became king.
Technology	Many people use a fire wall to increase their security. The security forum helps people configure their fire wall to prevent hackers from setting their computers on fire.
High Seas	The pirate sailed his ship into town. The pirate scaled the wall and took the king prisoner on the ship. He later set the town on fire.
Technology	A troll lives in this forum. Do not feed the troll; he believes he is king of the forum and will set any thread on fire.
Fantasy	The king beyond the wall attacked a town. A pirate works for a different king. Yet another king has a dragon that set a town on fire.

1. Convert the documents into their bag of words representation. Use this order for the words: dragon, fire, forum, king, pirate, security, ship, town, troll, wall.
2. Construct the naive Bayes classifier for the corpus.
3. Calculate the likelihood, or conditional distributions, for each document in the corpus $\left(\operatorname{Pr}\left(\mathbf{n}_{i} \mid C=z_{i}\right)\right)$.
4. Calculate the posterior probability, or classification distribution, for the following unlabeled documents $\left(\operatorname{Pr}\left(C=k \mid \mathbf{n}_{i}\right)\right)$.

Topic	Text
$?$	The red king and his troll attacked the town by ship. Somehow, the red king still set the town on fire.
$?$	The forum is on fire with discussion of a pirate ship which bypassed the security of a cruise ship. The pirate uploaded a video to the forum; naturally, the cruise ship was on fire.

Some useful equations

$$
\begin{aligned}
N & :=\text { the number of documents } \\
T & :=\text { the number of topics } \\
N_{k} & :=\text { the number of documents from topic } k \\
\mathbf{n}_{i, j} & :=\text { the number of times word } j \text { appears in document } i \\
z_{i} & :=\text { the topic of document } i \\
\mathbf{Z}_{k} & :=\text { the indices of all documents from topic } k
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(C=k) & =\frac{N_{k}+1}{N+T} \\
\operatorname{Pr}\left(w_{t}=j \mid C=k\right) & =\frac{1+\sum_{i \in \mathbf{Z}_{k}} \mathbf{n}_{i, j}}{d+\sum_{s=1}^{d} \sum_{i \in \mathbf{Z}_{k}} \mathbf{n}_{i, s}}
\end{aligned}
$$

$P\left(\mathbf{n}_{i} \mid C=k\right)=P\left(\right.$ drawing \mathbf{n}_{i} one way $\left.\mid C=k\right) \times$ number of ways to draw \mathbf{n}_{i}
$\operatorname{Pr}\left(C=k \mid \mathbf{n}_{i}\right)=\frac{\operatorname{Pr}\left(\mathbf{n}_{i} \mid C=k\right) \times \operatorname{Pr}(C=k)}{\operatorname{Pr}\left(\mathbf{n}_{i}\right)}$

