Probabilistic Models: Spring 2014 Document Classification Example, Solutions

We are given the following **corpus** and topics. Only the words in **bold** are in the vocabulary.

Topic	Text
Fantasy	The hobbit tricked the troll . He hid from the dragon . The dragon
	set the town on fire . The dwarf killed the dragon and became king .
Technology	Many people use a fire wall to increase their security . The security
	forum helps people configure their fire wall to prevent hackers from
	setting their computers on fire.
High Seas	The pirate sailed his ship into town . The pirate scaled the wall
	and took the king prisoner on the ship. He later set the town on
	fire.
Technology	A troll lives in this forum. Do not feed the troll; he believes he is
	king of the forum and will set any thread on fire .
Fantasy	The king beyond the wall attacked a town. A pirate works for a
	different king. Yet another king has a dragon that set a town on
	fire.

1. Convert the documents into their bag of words representation. Use this order for the words: dragon, fire, forum, king, pirate, security, ship, town, troll, wall.

Table 1: The bag of words representation of each document, **n**, and the number of times each word j occurs in documents of each topic k, $\sum_{i \in \mathbf{Z}_k} \mathbf{n}_{i,j}$. The "Total" gives $\sum_{s=1}^d \sum_{i \in \mathbf{Z}_k} \mathbf{n}_{i,s}$ for each topic.

	Bag of words					Topic		
Topic	Fantasy	Technology	High Seas	Technology	Fantasy	Fantasy	Technology	High Seas
dragon	3	0	0	0	1	4	0	0
fire	1	3	1	1	1	2	4	1
forum	0	1	0	2	0	0	3	0
king	1	0	1	1	3	4	1	1
pirate	0	0	2	0	1	1	0	2
security	0	2	0	0	0	0	2	0
ship	0	0	2	0	0	0	0	2
town	1	0	2	0	2	3	0	2
troll	1	0	0	2	0	1	2	0
wall	0	2	1	0	1	1	2	1
Total						16	14	9

- 2. Construct the naive Bayes classifier for the corpus.
 - Prior probabilities for the topics

$$Pr(C = \text{Fantasy}) = \frac{N_{\text{Fantasy}} + 1}{N + T} = \frac{3}{8}$$
$$Pr(C = \text{Technology}) = \frac{N_{\text{Technology}} + 1}{N + T} = \frac{3}{8}$$
$$Pr(C = \text{High Seas}) = \frac{N_{\text{High Seas}} + 1}{N + T} = \frac{2}{8}$$

• Conditional probabilities for the words given the topics We can calculate, for example,

$$Pr(w_t = \text{dragon}|C = \text{Fantasy}) = \frac{1 + \sum_{i \in \mathbf{Z}_{\text{Fantasy}}} \mathbf{n}_{i,\text{dragon}}}{d + \sum_{s=1}^d \sum_{i \in \mathbf{Z}_{\text{Fantasy}}} \mathbf{n}_{i,s}}$$
$$= \frac{1+4}{10+16}$$
$$= \frac{5}{26}.$$

The rest of the conditional probabilities are calculated similarly.

		Topic	
Word	Fantasy	Technology	High Seas
dragon	$\frac{5}{26}$	$\frac{1}{24}$	$\frac{1}{19}$
fire	$ \frac{5}{26} \\ \frac{3}{26} \\ \frac{1}{26} \\ \frac{5}{26} \\ \frac{2}{26} \\ \frac{1}{26} \\ \frac{1}{26} $	$\frac{5}{24}$	$\frac{2}{19}$
forum	$\frac{1}{26}$	$\frac{4}{24}$	$\frac{1}{19}$
king	$\frac{5}{26}$	$\frac{2}{24}$	$\frac{\frac{2}{19}}{\frac{3}{19}}$
pirate	$\frac{2}{26}$	$\frac{1}{24}$	$\frac{3}{19}$
security	$\frac{1}{26}$	$\frac{3}{24}$	$\frac{1}{19}$
ship		$\frac{1}{24}$	$\frac{3}{19}$
town	$\frac{4}{26}$	$\frac{1}{24}$	$\frac{3}{19}$
troll	$ \frac{\frac{1}{26}}{\frac{4}{26}} $ $ \frac{2}{26} $ $ \frac{2}{26} $	$\frac{3}{24}$	$\frac{1}{19}$
wall	$\frac{2}{26}$	$\frac{3}{24}$	$\frac{2}{19}$

- 3. Calculate the likelihood, or conditional distributions, for each document in the corpus $(Pr(\mathbf{n}_i | C = z_i))$.
- 4. Calculate the posterior probability, or classification distribution, for the following unlabeled documents $(Pr(C = k | \mathbf{n}_i))$.

Topic	Text
?	The red king and his troll attacked the town by ship. Somehow,
	the red king still set the town on fire.
?	The forum is on fire with discussion of a pirate ship which bypassed
	the security of a cruise ship. The pirate uploaded a video to the
	forum; naturally, the cruise ship was on fire.

Some useful equations

N := the number of documents T := the number of topics $N_k := \text{the number of documents from topic } k$ $\mathbf{n}_{i,j} := \text{the number of times word } j \text{ appears in document } i$ $z_i := \text{the topic of document } i$ $\mathbf{Z}_k := \text{the indices of all documents from topic } k$ $\mathbf{P}_k (Q_k, k) = \frac{N_k + 1}{k}$

$$Pr(C = k) = \frac{1}{N+T}$$

$$Pr(w_t = j | C = k) = \frac{1 + \sum_{i \in \mathbf{Z}_k} \mathbf{n}_{i,j}}{d + \sum_{s=1}^d \sum_{i \in \mathbf{Z}_k} \mathbf{n}_{i,s}}$$

$$P(\mathbf{n}_i | C = k) = P(\text{drawing } \mathbf{n}_i \text{ one way} | C = k) \times \text{number of ways to draw } \mathbf{n}_i$$

$$Pr(C = k | \mathbf{n}_i) = \frac{Pr(\mathbf{n}_i | C = k) \times Pr(C = k)}{Pr(\mathbf{n}_i)}$$