Factor Elimination

Brandon Malone

Much of this material is adapted from Chapters 6 and 7 in Darwiche's book Many of the images were taken from the Internet

January 30, 2014

Inference in Bayesian networks

Suppose we have a general Bayesian network.

We would like to answer multiple probabilistic queries using this network. How can we efficiently answer these queries?
(1) Factors

(2) Elimination Trees

(3) Inference via Message Passing
(4) Wrap-up

Factors

A factor f is a function which assigns a non-negative number to each instantiation of a set of variables.

B	C	D	$f_{1}(B, C, D)\left(\Theta_{D \mid B, C}\right)$
T	T	T	.95
T	T	F	.05
T	F	T	.9
T	F	F	.1
F	T	T	.8
F	T	F	.2
F	F	T	0
F	F	F	1

D	E	$f_{2}(D, E)\left(\Theta_{D, E}\right)$
T	T	.448
T	F	.192
F	T	.112
F	F	.248

vars (f) denotes the variables over which f is defined.
$f\left(X_{1}, \ldots, X_{n}\right)$ will indicate that f is defined over X_{1}, \ldots, X_{n}.

Summing out (a.k.a., marginalizing or projecting)

We sum out X from $f(\mathbf{Y} \cup X)$ by adding together rows which have common values for all other variables.

$$
\left(\sum_{x} f\right)(\mathbf{y}):=\sum_{x} f(x, y)
$$

D	E	$f_{2}(D, E)\left(\Theta_{D, E}\right)$			
T	T	.448			
T	F	.192			
F	T	.112			
F	F	.248	$\quad \Rightarrow \quad$	E	$\sum_{D} f(E)\left(\Theta_{E}\right)$
:---:	:---				
T	.56				

Summation is commutative.

$$
\sum_{Y} \sum_{X} f=\sum_{X} \sum_{Y} f
$$

So we will use the notation $\sum_{\mathbf{x}} f$ to mean "sum out the set of variables \mathbf{X} from $f^{\prime \prime}$.

Summing out (a.k.a., marginalizing or projecting)

We sum out X from $f(\mathbf{Y} \cup X)$ by adding together rows which have common values for all other variables.

$$
\left(\sum_{x} f\right)(\mathbf{y}):=\sum_{x} f(x, y)
$$

D	E	$f_{2}(D, E)\left(\Theta_{D, E}\right)$	\Rightarrow	E	$\sum_{D} f(E)\left(\Theta_{E}\right)$
T	T	. 448			
T	F	. 192		T	. 56
F	T	. 112		F	. 44
F	F	. 248			

We will sometimes project f onto a subset of its variables \mathbf{Q}.

$$
\operatorname{project}(f, \mathbf{Q}):=\sum_{\operatorname{vars}(f) \backslash \mathbf{Q}} f
$$

That is, we sum out all variables in f except for those in \mathbf{Q}.

Multiplication

We multiply two factors f_{1} and f_{2} by multiplying the rows which assign the same values to variables in common.

$$
\begin{aligned}
f_{1}(\mathbf{X}) \cdot f_{2}(\mathbf{Y}) & :=\left(f_{1} f_{2}\right)(\mathbf{X} \cup \mathbf{Y}) \\
\left(f_{1} f_{2}\right)(\mathbf{z}) & :=f_{1}(\mathbf{x}) f_{2}(\mathbf{y}) \quad \text { where } \mathbf{x} \sim \mathbf{z} \text { and } \mathbf{y} \sim \mathbf{z}
\end{aligned}
$$

B	C	D	$f_{1}(B, C, D)$
T	T	T	.95
T	T	F	.05
T	F	T	.9
T	F	F	.1
F	T	T	.8
F	T	F	.2
F	F	T	0
F	F	F	1

D	E	$f_{2}(D, E)$
T	T	.448
T	F	.192
F	T	.112
F	F	.248

B	C	D	E	$f_{1}(B, C, D) f_{2}(D, E)$
T	T	T	T	$.4256=(.95)(.448)$
T	T	T	F	$.1824=(.95)(.192)$
T	T	F	T	$.0056=(.05)(.112)$
\vdots	\vdots	\vdots	\vdots	\vdots
F	F	F	F	$.2480=(1)(.248)$

Multiplication is commutative and associative.

Bayesian networks as factors

A Bayesian network is simply a set of factors ("factored representation of a probability distribution").

X	$f_{X}=\Theta_{X}$	X	Y	$f_{Y}=\Theta_{Y \mid X}$	Y	Z	$f_{Z}=\Theta_{Z \mid Y}$
		T	T	. 9	T	T	. 3
T	. 6	T	F	. 1	T	F	. 7
F	. 4	F	T	. 2	F	T	. 5
		F	F	. 8	F	F	. 5

Factor elimination

procedure FACTORELIMINATION1 (Bayesian network \mathcal{N}, query variable Q) $\mathcal{S} \leftarrow$ CPTs of \mathcal{N}
$f_{r} \leftarrow$ some factor in \mathcal{S} which contains Q
while \mathcal{S} has more than one factor do remove a factor $f_{i} \neq f_{r}$ from \mathcal{S}
$\mathbf{V} \leftarrow$ variables in f_{i} but not in \mathcal{S} $f_{j} \leftarrow f_{j} \sum_{\mathbf{V}} f_{i}$ for some factor f_{j} in \mathcal{S}
end while
return the prior marginal of $Q, \operatorname{project}\left(f_{r}, Q\right)$
end procedure

Incorporating evidence into factors

Given some evidence \mathbf{e}, we can create a reducted factor which incorporates e.

$$
f^{\mathrm{e}}(\mathbf{x})= \begin{cases}f(\mathbf{x}) & \text { if } \mathbf{x} \sim \mathbf{e} \\ 0 & \text { otherwise }\end{cases}
$$

D	E	$f_{2}(D, E)$		D	E
T	T	.448	$f_{2}^{\mathrm{e}}(D, E)$		
T	F	$.192 \quad$ Given evidence e: $E=\mathrm{T}$	T	F	0
F	T	.112		F	T
F	F	.248	.112		
		F	F	0	

We can now compute joint marginals, $P(Q, \mathbf{e})$ by using $f^{\mathbf{e}}$ instead of f. What about computing the probability of evidence $P(e)$?

Incorporating evidence into factors

Given some evidence \mathbf{e}, we can create a reducted factor which incorporates e.

$$
f^{\mathrm{e}}(\mathbf{x})= \begin{cases}f(\mathbf{x}) & \text { if } \mathbf{x} \sim \mathbf{e} \\ 0 & \text { otherwise }\end{cases}
$$

D	E	$f_{2}(D, E)$		D	E
T	$f_{2}^{\mathrm{e}}(D, E)$				
T	.448		T	.448	
T	F	.192	Given evidence e: $E=\mathrm{T}$	T	F
F	T	.112	0		
F	F	.248	F	T	.112
		F	F	0	

We can now compute joint marginals, $P(Q, \mathbf{e})$ by using $f^{\mathbf{e}}$ instead of f. What about computing the probability of evidence $P(e)$?

Reduce the factors and then eliminate everything.

Factor elimination - Simple class example

Use this Bayesian network to compute the prior marginal of Z.

- Compute the prior marginal, $P(Z)$.
- Compute the prior marginal, $P(Y, Z)$.
- Compute the joint marginal, $P(X, Z=\mathrm{T})$.

Elimination trees

In what order should we eliminate factors?

Elimination trees

In what order should we eliminate factors?

We can use an elimination tree, \mathcal{T}.
(1) Each factor is assigned to exactly one node.
(2) The factors for node i are multiplied to give ϕ_{i}.
vars(i) denotes the variables appearing in factor ϕ_{i}.

Elimination trees

In what order should we eliminate factors?

$r \leftarrow$ some node in \mathcal{T} which contains Q
while \mathcal{T} has more than one node do
remove a node $i \neq r$ which has a single neighbor j from \mathcal{T}
$\mathbf{V} \leftarrow$ variables in ϕ_{i} but not in \mathcal{T}
$\phi_{j} \leftarrow \phi_{j} \sum_{\mathbf{V}} \phi_{i}$
end while
$\operatorname{project}\left(\phi_{r}, Q\right)$

Separators

The separator of edge $i-j, \mathbf{S}_{i j}$, is the intersection of variables that occur on the i side of the edge and on the j side of the edge.

Separators

The separator of edge $i-j, \mathbf{S}_{i j}$, is the intersection of variables that occur on the i side of the edge and on the j side of the edge.

Separators

The separator of edge $i-j, \mathbf{S}_{i j}$, is the intersection of variables that occur on the i side of the edge and on the j side of the edge.

$$
\sum_{\mathbf{V}} \phi_{i}=\operatorname{project}\left(\phi_{i}, \mathbf{S}_{i j}\right)
$$

What is the space complexity of the resulting factor?

Clusters

The cluster of a node, \mathbf{C}_{i} is vars (i) combined with the separators of its edges.

$$
\mathbf{C}_{i}:=\operatorname{vars}(i) \cup \bigcup_{j} \mathbf{S}_{i j}
$$

Clusters

The cluster of a node, \mathbf{C}_{i} is vars(i) combined with the separators of its edges.

$$
\mathbf{C}_{i}:=\operatorname{vars}(i) \cup \bigcup_{j} \mathbf{S}_{i j}
$$

Clusters

The cluster of a node, \mathbf{C}_{i} is vars(i) combined with the separators of its edges.

$$
\mathbf{C}_{i}:=\operatorname{vars}(i) \cup \bigcup_{j} \mathbf{S}_{i j}
$$

When ϕ_{i} is selected, it will be a factor over exactly \mathbf{C}_{i}.
What is the space complexity of this factor?

Clusters

The cluster of a node, \mathbf{C}_{i} is vars(i) combined with the separators of its edges.

$$
\mathbf{C}_{i}:=\operatorname{vars}(i) \cup \bigcup_{j} \mathbf{S}_{i j}
$$

When ϕ_{i} is selected, it will be a factor over exactly \mathbf{C}_{i}.
What is the space complexity of this factor?
The width of a tree is the size of its largest cluster minus one.

Are all elimination trees equally efficient?

Inference via message passing

For HMMs and NBCs, we could answer queries without destroying the structure.

Can we do the same thing for elimination trees? (And why might we want to?)

Inference via message passing

For HMMs and NBCs, we could answer queries without destroying the structure.

Can we do the same thing for elimination trees? (And why might we want to?)

Suppose we choose 7 as the root. What choices do we really have in nodes we select to remove?

Messages between neighbors

When can we eliminate 4 ?

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What do we do to eliminate $\mathbf{1}$?

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What do we do to eliminate $\mathbf{1}$
(1) Calculate $\sum_{\mathbf{V}} \phi_{1}=\operatorname{project}\left(\phi_{1}, \mathcal{S}_{1,4}\right):=M_{1,4}$
(2) Update $\phi_{4} \leftarrow \phi_{4} M_{1,4}$

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What do we do to eliminate 2 ?

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What do we do to eliminate 2 ?
(1) Update $\phi_{4} \leftarrow \phi_{4} M_{2,4}$
(2) So ϕ_{4} is now $\phi_{4} M_{1,4} M_{2,4}$

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What is $M_{4,7}$?

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
What is $M_{4,7}$?
$\operatorname{project}\left(\phi_{4} M_{1,4} M_{2,4}, \mathcal{S}_{4,7}\right)$

Messages between neighbors

When can we eliminate 4 ?
After we eliminate 1 and 2.
In general, $M_{i, j}:=\operatorname{project}\left(\phi_{i} \prod_{k \neq j} M_{k, i}, \mathcal{S}_{i, j}\right)$.

Reusing messages

Suppose we now choose $\mathbf{6}$ as the root.

Reusing messages

Suppose we now choose 6 as the root.

Only two of the messages actually change.

Reusing messages

Suppose we now choose 6 as the root.

In general, we can compute all messages w.r.t. a single root by
(1) pulling messages towards the root
(2) pushing messages away from the root

The prior marginal for \mathbf{C}_{i} is $\phi_{i} \prod_{k} M_{k, i}$ (the product of incoming messages).

Handling evidence

Suppose we are given some evidence \mathbf{e}, and we are interested in the joint marginals $P\left(\mathbf{C}_{i}, \mathbf{e}\right)^{*}$. How can we handle the evidence?

* Of course, we can then use the definitions to compute conditional values.

Handling evidence

Suppose we are given some evidence \mathbf{e}, and we are interested in the joint marginals $P\left(\mathbf{C}_{i}, \mathbf{e}\right)^{*}$. How can we handle the evidence?

We can add an indicator factor, λ_{E} for each $E \in \mathbf{e}$.

$$
\lambda_{E}(e)= \begin{cases}1 & \text { if } e \sim \mathbf{e} \\ 0 & \text { otherwise }\end{cases}
$$

We then add λ_{E} to node i such that $E \in \mathbf{C}_{i}$.
We can reuse those messages until receiving additional evidence which invalidates λ_{E}.

* Of course, we can then use the definitions to compute conditional values.

Factor elimination algorithm

procedure FACTORELIMINATION(elimination tree \mathcal{T}, evidence e)
for each variable $E \in \mathbf{e}$ do
$i \leftarrow$ node in \mathcal{T} such that $E \in \mathbf{C}_{i}$

$$
\phi_{i} \leftarrow \phi_{i} \lambda_{E}
$$

\triangleright adding the evidence to node i
end for
Choose a root node r in \mathcal{T}
Pull messages towards r
Push messages away from r
return $\phi_{i} \prod_{k} M_{k i}$ for each $i \in \mathcal{T} \quad \triangleright$ joint marginal $P\left(\mathbf{C}_{i}, \mathbf{e}\right)$ end procedure

Recap

During this section, we discussed

- Factors and their operations
- Bayesian network inference as factor elimination
- Message passing to efficiently answer queries on elimination trees

Next in probabilistic models

The jointree algorithm, which gives a procedure for creating efficient elimination trees

