
Probabilistic Models: Spring 2014

Gene Finding Example

We are given the following hidden Markov model describing the (simplified)
behavior of DNA.
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1. Use the forward algorithm to calculate the predictive posterior distribution over S1 . . . S4 given the following observations: AT , AT ,
CG, AT .

Table 1: The forward messages.
Time t P (St = genic|O1 . . . Ot) P (St = intergenic|O1 . . . Ot)

1 0.8182 0.1818
2 0.8834 0.1166
3 0.1907 0.8093
4 0.7308 0.2692

2. Use the backward algorithm to calculate the smoothed posterior distribution over S1 given the observations: AT , AT .

Note that we can reuse the forward message from the previous question. So we just need to compute the backward message.

P (O2 = AT|S1 = genic) =
∑
S2

P (O2 = AT|S2)P (S2|S1 = genic)P (O3 . . . Ot|S2)

We do not have any more observations, so we can drop the third term.

= P (O2 = AT|S2 = genic)P (S2 = genic|S1 = genic)+

P (O2 = AT|S2 = intergenic)P (S2 = intergenic|S1 = genic)

= .9(.7) + .2(.3)

= .69

Similarly, P (O2 = AT|S1 = intergenic) = .41. Combining this with the forward message, we get that

P (S1 = genic|O1 = AT, O2 = AT) ∝ 0.8182(0.69), and

P (S1 = intergenic|O1 = AT, O2 = AT) ∝ 0.1818(0.41).



Multiplying and then normalizing gives that

P (S1 = genic|O1 = AT, O2 = AT) ≈ 0.883, and

P (S1 = intergenic|O1 = AT, O2 = AT) ≈ 0.117.

3. Use the Viterbi algorithm to find the most likely instantiation of S1 . . . S4 given the observations: AT , AT , CG, CG.

To find the most likely instantiation of S1, we need to find the value of S0 which maximizes P (S1 = s1, S0|O1 = AT) for each value
of S1.

First, we consider when S1 = genic.

P (S1 = s1|O1 = AT) ∝ P (O1 = AT|S0, S1 = genic)P (S1 = genic|S0)

= P (O1 = AT| S1 = genic) max
S0

P (S1 = genic|S0)P (S0)

We now consider S0 = genic

= P (O1 = AT|S1 = genic)P (S1 = genic|S0 = genic)P (S0 = genic)

= .9(.7)(.5)

= 0.315

We now consider S0 = intergenic

= P (O1 = AT|S1 = genic)P (S1 = genic|S0 = intergenic)P (S0 = intergenic)

= .9(.3)(.5)

= 0.135

We take the max over S0 and find that P (S1 = s1|O1 = AT) ∝ 0.315.

A similar set of calculations shows that P (S1 = s1|O1 = AT) ∝ 0.070. Since this is the first state on the path, we normalize these
values to find that P (S1|O1 = AT) ≈< 0.8182, 0.1818 >.

To find the most likely instantiation of S2, we need to find the value of S1 which maximizes P (S2 = s2, S1|O1 = AT, O2 = AT for
each value of S2.



First, we consider when S2 = genic.

P (S2 = s2, S1|O1 = AT, O2 = AT) ∝ P (O2 = AT|S2 = genic)P (S2 = genic|S1)

= P (O2 = AT| S2 = genic) max
S1

P (S2 = genic|S1) max
s0

P (s0, s1|O1 = AT)

The second “max” is simply the numbers we calculated in the previous step.

We now consider S1 = genic

= P (O2 = AT|S2 = genic)P (S2 = genic|S1 = genic) max
s0

P (s0, s1|O1 = AT)

= .9(.7)(.8182)

= 0.5155

We now consider S1 = intergenic

= P (O2 = AT|S2 = genic)P (S2 = genic|S0 = intergenic) max
s0

P (s0, s1|O1 = AT)

= .9(.3)(.1818)

= 0.0491

We take the max over S1 and find that P (S2 = genic, S1 = s1|O1 = AT, O2 = AT) ∝ 0.5155.

A similar set of calculations shows that P (S2 = intergenic, S1 = s1|O1 = AT, O2 = AT) ∝ 0.0491. Since this is not the first state on
the path, these values give us the probabilities of the paths and do not need to be normalized.

Similar calculations show that the values for all of the states are as follows.



Table 2: The path probabilities.
Time t P (S1 . . . St = genic|O1 . . . Ot−1) P (S1 . . . St = intergenic|O1 . . . Ot−1)

1 0.8182 0.1818
2 0.5155 0.0491
3 0.0361 0.1237
4 0.0037 0.0693

Some useful equations

The forward algorithm

P (next state|observations so far, next observation) ∝ P (next observation|next state)
∑

current state

P (next state| current state)P (current state|observations so far)

P (St+1|O1, O2, . . . , Ot+1) ∝ P (Ot+1|St+1)
∑

St=st

P (St+1 |St)P (St = st|O1, . . . , Ot)

The backward algorithm

P (Sk|O1, . . . , Ot) ∝ forward(k)P (Ok+1, . . . , Ot| Sk)

P (remaining observations| current state) =
∑

next state

P (next state|current state)P (next observation| next state)P (further observations|next state)

P (Ok+1, . . . , Ot| Sk) =
∑

Sk+1=sk+1

P (Sk+1 = sk+1|Sk)P (Ok+1|Sk+1)P (Ok+2, . . . , Ot| Sk+1 = sk+1)



The Viterbi algorithm

max
path so far

P (path so far, next state in path| observations so far, next observation)

∝ P (next observation | next state)
{

max
current state

P (next state| current state)
{

max
previous states

P (previous states, current state|observations so far

}}
max
s1...st

P (s1 . . . st, St+1|O1 . . . Ot+1) ∝ P (Ot+1|St+1)

{
max
st

P (St+1|st)
{

max
s1...st−1

P (s1 . . . st−1, st| O1 . . . Ot)

}}


