Hidden Markov Models and Gene Prediction

Brandon Malone

Much of this material is adapted from Chapter 15 in Russell - Norvig
Many of the images were taken from the Internet

January 30, 2014

Gene Prediction

Suppose we have a long DNA sequence.

We are interested in parts of the sequence that may be genes. How can we (automatically) tell which parts may be genes?

Hidden Markov Model

What are the conditional independencies asserted by this structure?

Hidden Markov Model

What are the conditional independencies asserted by this structure? All of the obervations $\left(O_{t} s\right)$ are independent, given the state $\left(S_{t} s\right)$.

A particular state S_{t+1} is independent of all previous states given its immediate successor S_{t}.
(1) Markov Models

(2) Inference Algorithms

(3) Wrap-up

Observable Markov models

Each variable S_{t} corresponds to the state of the world at "time" t^{*}.
For a stationary first-order Markov process, the state of the world at time $t+1$ depends only upon the state at time t.

* In our running example, "time" will actually be the position in the DNA sequence.

Observable Markov models

Each variable S_{t} corresponds to the state of the world at "time" t^{*}.
For a stationary first-order Markov process, the state of the world at time $t+1$ depends only upon the state at time t.

$$
I\left(S_{t+1}, S_{t},\left\{S_{0}, S_{1}, \ldots, S_{t-1}\right)\right.
$$

* In our running example, "time" will actually be the position in the DNA sequence.

Observable Markov models - Simple class example

Given the following Markov process, calculate the probability of the follwing sequence of states: true, true, false, true, true.

			S_{t-1}	S_{t}	$\Theta_{S_{t} \mid S_{t-1}}$
	S_{0}	$\Theta_{S_{0}}$	T	T	.7
T	.5		T	F	.3
F	.5		F	T	.3
			F	F	.7

Hidden Markov models

We (often) cannot directly observe if a piece of DNA is a gene or not.

We can observe the DNA sequence, though.
So, given the DNA sequence, we would like to label each base as "Genic" or "Intergenic".

Inference algorithms

We will discuss four inference algorithms. All of the algorithms are based on the notion of messsage passing.

- The forward algorithm predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.

Inference algorithms

We will discuss four inference algorithms. All of the algorithms are based on the notion of messsage passing.

- The forward algorithm predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.

Inference algorithms

We will discuss four inference algorithms. All of the algorithms are based on the notion of messsage passing.

- The forward algorithm predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward algorithm efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.

Inference algorithms

We will discuss four inference algorithms. All of the algorithms are based on the notion of messsage passing.

- The forward algorithm predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.

The forward algorithm

Problem: Given the observations up to time $t+1$, what is the posterior probability of S_{t+1} ?

$$
\begin{aligned}
P\left(S_{t+1} \mid O_{1}, \ldots, O_{t+1}\right) & =\frac{P\left(S_{t+1}, O_{1}, \ldots, O_{t}, O_{t+1}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} \\
& =\frac{P\left(O_{t+1} \mid S_{t+1}, O_{1}, \ldots O_{t}\right) P\left(S_{t+1} \mid O_{1}, \ldots, O_{t}\right) P\left(O_{1}, \ldots O_{t}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} \\
& =\frac{P\left(O_{1}, \ldots O_{t}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} P\left(O_{t+1} \mid S_{t+1}, O_{1}, \ldots O_{t}\right) P\left(S_{t+1} \mid O_{1}, \ldots, O_{t}\right) \\
& =\frac{P\left(O_{1}, \ldots O_{t}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} P\left(O_{t+1} \mid S_{t+1}\right) P\left(S_{t+1} \mid O_{1}, \ldots, O_{t}\right) \\
& =\frac{P\left(O_{1}, \ldots O_{t}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} P\left(O_{t+1} \mid S_{t+1}\right) \sum_{S_{t}=s_{t}} P\left(S_{t+1} \mid S_{t}, O_{1}, \ldots, O_{t}\right) P\left(S_{t}=s_{t} \mid O_{1}, \ldots, O_{t}\right) \\
& =\frac{P\left(O_{1}, \ldots O_{t}\right)}{P\left(O_{1}, \ldots, O_{t+1}\right)} P\left(O_{t+1} \mid S_{t+1}\right) \sum_{S_{t}=s_{t}} P\left(S_{t+1} \mid S_{t}\right) P\left(S_{t}=s_{t} \mid O_{1}, \ldots, O_{t}\right)
\end{aligned}
$$

The forward algorithm

Problem: Given the observations up to time $t+1$, what is the posterior probability of S_{t+1} ?

```
\(P\) (next state \({ }^{\text {observations so }}\) far, next observation)
    \(\propto P\) (next observation|next state) \(\sum_{\text {current state }} P(\) next state \(\mid\) current state \() P\) (current state|observations so far)
\(P\left(S_{t+1} \mid O_{1}, O_{2}, \ldots, O_{t+1}\right) \propto P\left(O_{t+1} \mid S_{t+1}\right) \sum_{S_{t}=s_{t}} P\left(S_{t+1} \mid S_{t}\right) P\left(S_{t}=s_{t} \mid O_{1}, \ldots, O_{t}\right)\)
```


The forward algorithm

Problem: Given the observations up to time $t+1$, what is the posterior probability of S_{t+1} ?
P (next state|observations so far, next observation)
$\propto P$ (next observation|next state) $\sum_{\text {current state }} P($ next state \mid current state $) P$ (current state|observations so far)
$\mathbf{P}\left(\mathbf{S}_{\mathbf{t}+\mathbf{1}} \mid \mathbf{O}_{\mathbf{1}}, \mathbf{O}_{\mathbf{2}}, \ldots, \mathbf{O}_{\mathbf{t}+\mathbf{1}}\right) \propto P\left(O_{t+1} \mid S_{t+1}\right) \sum_{S_{t}=s_{t}} P\left(S_{t+1} \mid S_{t}\right) \mathbf{P}\left(\mathbf{S}_{\mathbf{t}}=\mathbf{s}_{\mathbf{t}} \mid \mathbf{O}_{\mathbf{1}}, \ldots, \mathbf{O}_{\mathbf{t}}\right)$

We recursively calculate $P\left(S_{t}=s_{t} \mid O_{1}, \ldots, O_{t}\right)$, starting with $t=1$
We will refer to $P\left(S_{t} \mid O_{1}, \ldots O_{t}\right)$ as forward (t).

The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_{1}, \ldots, S_{t} ?

$$
\begin{aligned}
P\left(S_{k} \mid O_{1}, \ldots, O_{t}\right) & =\frac{P\left(S_{k}, O_{1}, \ldots, O_{t}\right)}{P\left(O_{1}, \ldots, O_{t}\right)} \\
& =\frac{P\left(O_{1}, \ldots, O_{k}\right) P\left(S_{k} \mid O_{1}, \ldots, O_{k}\right) P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}, O_{1}, \ldots, O_{k}\right)}{P\left(O_{1}, \ldots, O_{t}\right)} \\
& \propto P\left(S_{k} \mid O_{1}, \ldots, O_{k}\right) P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}, O_{1}, \ldots, O_{k}\right) \\
& \propto \operatorname{forward}(t) P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}\right)
\end{aligned}
$$

The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_{1}, \ldots, S_{t} ?

$$
\begin{aligned}
P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}\right) & =\frac{P\left(O_{k+1}, \ldots, O_{t}, S_{k}\right)}{P\left(S_{k}\right)} \\
& =\frac{\sum_{s_{k+1}=s_{k+1}} P\left(O_{k+1}, \ldots, O_{t}, s_{k}, s_{k+1}=s_{k+1}\right)}{P\left(S_{k}\right)} \\
& =\frac{\sum_{s_{k+1}=s_{k+1}} P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}, s_{k+1}=s_{k+1}\right) P\left(S_{k+1}=s_{k+1} \mid S_{k}\right) P\left(S_{k}\right)}{P\left(S_{k}\right)} \\
& =\sum_{s_{k+1}=s_{k+1}} P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}, S_{k+1}=s_{k+1}\right) P\left(S_{k+1}=s_{k_{1}} \mid S_{k}\right) \\
& =\sum_{s_{k+1}=s_{k+1}} P\left(O_{k+1}, \ldots, O_{t} \mid S_{k+1}=s_{k+1}\right) P\left(S_{k+1}=s_{k+1} \mid S_{k}\right) \\
& =\sum_{s_{k+1}=s_{k+1}} P\left(O_{k+1} \mid S_{k+1}\right) P\left(O_{k+2}, \ldots, O_{t} \mid S_{k+1}=s_{k+1}\right) P\left(S_{k+1}=s_{k+1} \mid S_{k}\right)
\end{aligned}
$$

The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_{1}, \ldots, S_{t} ?
P (remaining observations|current state)

$$
\begin{gathered}
=\sum_{\text {next state }} P(\text { next state } \mid \text { current state }) P(\text { next observation|next state }) P(\text { further observations|next state }) \\
P\left(O_{k+1}, \ldots, O_{t} \mid S_{k}\right)=\sum_{S_{k+1}=s_{k+1}} P\left(S_{k+1}=s_{k+1} \mid S_{k}\right) P\left(O_{k+1} \mid S_{k+1}\right) P\left(O_{k+2}, \ldots, O_{t} \mid S_{k+1}=s_{k+1}\right)
\end{gathered}
$$

The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_{1}, \ldots, S_{t} ?
P (remaining observations|current state)
$=\sum_{\text {next state }} P($ next state \mid current state $) P($ next observation \mid next state $) P$ (further observations|next state)
$\mathbf{P}\left(\mathbf{O}_{\mathbf{k}+\mathbf{1}}, \ldots, \mathbf{O}_{\mathbf{t}} \mid \mathbf{S}_{\mathbf{k}}\right)=\sum_{S_{k+1}=s_{k+1}} P\left(S_{k+1}=s_{k+1} \mid S_{k}\right) P\left(O_{k+1} \mid S_{k+1}\right) \mathbf{P}\left(\mathbf{O}_{\mathbf{k}+\mathbf{2}}, \ldots, \mathbf{O}_{\mathbf{t}} \mid \mathbf{S}_{\mathbf{k}+\mathbf{1}}=\mathbf{s}_{\mathbf{k}+\mathbf{1}}\right)$

We recursively calculate $P\left(O_{k+2}, \ldots, O_{t} \mid S_{k+1}=s_{k+1}\right)$, starting with $k=t$.

We will refer to $P\left(O_{k+2}, \ldots, O_{t} \mid S_{k+1}=s_{k+1}\right)$ as $\operatorname{backward}(t)$.

The forward-backward algorithm

procedure FORWARDBACKWARD(observations $O_{1} \ldots O_{t}$, prior
$\left.P\left(S_{0}\right)\right)$
forward $_{0} \leftarrow P\left(S_{0}\right)$
for i in 1 to t do
forward $_{i} \leftarrow$ forward forward $\left._{i-1}, O_{i}\right)$
end for
$b \leftarrow \overrightarrow{1}$
for i in t downto 1 do
smoothed $_{i} \leftarrow$ normalize $\left(\right.$ forward $\left._{i} \times b\right)$ $b \leftarrow \operatorname{backward}\left(b, O_{i}\right)$
end for
return b
end procedure

The Viterbi algorithm

Problem: Given the observations up to time t, what is the most likely instantiation of S_{1}, \ldots, S_{t} ?

We can think about this as a path-finding problem.

The probability of a state is the probability of the most likely path to that state.

The Viterbi algorithm

Problem: Given the observations up to time t, what is the most likely instantiation of S_{1}, \ldots, S_{t} ?

We can think about this as a path-finding problem.

$$
\begin{gathered}
\max _{\text {path so far }} P(\text { path so far, next state in path|observations so far, next observation) } \\
\propto P\left(\text { next observation|next state) } \left\{\max _{\text {current state }} P(\text { next state|current state })\right.\right. \\
\max _{\text {previous states }} P(\text { previous states, current state|observations so far }\} \\
\max _{s_{1} \ldots s_{t}} P\left(s_{1} \ldots s_{t}, S_{t+1} \mid O_{1} \ldots O_{t+1}\right) \\
\propto P\left(O_{t+1} \mid S_{t+1}\right)\left\{\max _{s_{t}} P\left(S_{t+1} \mid s_{t}\right)\left\{\max _{s_{1} \ldots s_{t-1}} P\left(s_{1} \ldots s_{t-1}, s_{t} \mid O_{1} \ldots O_{t}\right)\right\}\right\}
\end{gathered}
$$

The Viterbi algorithm

Problem: Given the observations up to time t, what is the most likely instantiation of S_{1}, \ldots, S_{t} ?

We can think about this as a path-finding problem.

$$
\begin{aligned}
& \max _{\text {path so far }} P(\text { path so far, next state in path|observations so far, next observation) } \\
& \propto P(\text { next observation } \mid \text { next state })\left\{\max _{\text {current state }} P(\text { next state|current state })\right. \\
& \max _{\text {previous states }} P(\text { previous states, current state|observations so far }\} \\
& \max _{\mathbf{s}_{\mathbf{1}} \ldots \mathbf{s}_{\mathbf{t}}}^{\operatorname{Pr}\left(\mathbf{s}_{\mathbf{1}} \ldots \mathbf{s}_{\mathbf{t}}, \mathbf{S}_{\mathbf{t}+\mathbf{1}} \mid \mathbf{O}_{\mathbf{1}} \ldots \mathbf{O}_{\mathbf{t}+\mathbf{1}}\right)} \\
& \\
& \propto P\left(O_{t+1} \mid S_{t+1}\right)\left\{\max _{s_{t}} P\left(S_{t+1} \mid s_{t}\right)\left\{\max _{\mathbf{m}_{\mathbf{1}} \ldots \mathbf{s}_{\mathbf{t}-\mathbf{1}}} \mathbf{P}\left(\mathbf{s}_{\mathbf{1}} \ldots \mathbf{s}_{\mathbf{t}-\mathbf{1}}, \mathbf{s}_{\mathbf{t}} \mid \mathbf{O}_{\mathbf{1}} \ldots \mathbf{O}_{\mathbf{t}}\right)\right\}\right.
\end{aligned}
$$

Recap

During this section, we discussed

- Stationary, first-order Markov processes
- Hidden Markov models (HMMs)
- Prediction in HMMs with the forward algorithm
- Posterior probability calcuations with the backward algorithm
- Efficient calculations with the forward-backward algorithm
- Identifying the most likely instantiation of the state variables with the Viterbi algorithm

Next in probabilistic models

- The belief propagation algorithm for efficient inference in polytree networks

