Efficient Inference with Junction Trees

Brandon Malone

Much of this material is adapted from Chapters 7 and 9 in Darwiche's book Many of the images were taken from the Internet

February 4, 2014

-∰ ► < ≣ ►

Efficient Inference with Jointrees

Suppose we have a general Bayesian network.

We can answer probabilistic queries with elimination trees.

How do we construct (good) elimination trees?

• = • • = •

æ

・聞き ・ ヨキ・ ・ ヨキ

Elimination Trees

A Bayesian network is just a set of factors.

We can use an **elimination tree**, \mathcal{T} to perform inference.

- Each factor is assigned to exactly one node.
- **2** The factors for node *i* are multiplied to give ϕ_i .

The width of the tree gives its efficiency.

So which factors go where?

Jointrees

A **jointree** for DAG G is an elimination tree whose nodes are called **clusters** which satisfies:

- Each cluster, C_i is a set of variables from G.
- Each **family** (variable and its parents) appear together in some cluster.
- All nodes on all paths between every cluster which contains X also contain X. (Running intersection)

The **separator** of edge i - j is $C_i \cap C_j$.

The **width** of a jointree is the size of its largest cluster minus one. Why would we define width that way?

伺下 イヨト イヨト

Constructing jointrees

Constructing a jointree for a DAG G consists of four steps.

- Moralizing G to create M_G
- Triangulating M_G to create T_G
- Extracting maximal cliques from T_G
- Assembling the cliques into a a join tree J_T

Moral graphs

The **moral graph** for a DAG G is an undirected graph constructed as follows:

- Add an undirected edge between every pair of variables that have a common child.
- Make all edges undirected.

Moral graphs

The **moral graph** for a DAG G is an undirected graph constructed as follows:

- Add an undirected edge between every pair of variables that have a common child.
- Make all edges undirected.

How does this relate to the Markov blanket of X?

3 N 3

Triangularization

Add a **chord** (edge) to each cycle of length greater than 3.

Triangularization

Add a **chord** (edge) to each cycle of length greater than 3.

Does it matter which edges we add?

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

Elimination orders

Elimination order for a (moral) graph: a total ordering over its nodes

We eliminate a node by adding edges to its non-adjacent neighbors.

э

イロト イポト イヨト イヨト

Triangulation to elimination trees

The (maximal) cliques in the triangulated graph are the clusters in the jointree.

Inference in Bayesian networks

procedure BUILDJOINTREE(DAG G, triangulation order π) $M_G \leftarrow$ moralize G $T_G \leftarrow$ triangulate M_G according to π $S \leftarrow$ set of maximal cliques in T_G return jointree J_G implied by S and running intersection end procedure

Inference in Bayesian networks

procedure BUILDJOINTREE(DAG G, triangulation order π) $M_G \leftarrow$ moralize G $T_G \leftarrow$ triangulate M_G according to π $S \leftarrow$ set of maximal cliques in T_G return jointree J_G implied by S and running intersection end procedure

- Evidence?
- Joint for variables not in the same cluster?

Inference in Bayesian networks

procedure BUILDJOINTREE(DAG G, triangulation order π) $M_G \leftarrow$ moralize G $T_G \leftarrow$ triangulate M_G according to π $S \leftarrow$ set of maximal cliques in T_G return jointree J_G implied by S and running intersection end procedure

- Evidence? Indicator factors
- Joint for variables not in the same cluster? Add redundant clusters respecting running intersection

During this part of the course, we have discussed:

- Concepts of probability theory
- Justifications for probability (e.g., the Dutch book argument)
- Bayesian networks as a compact, parametric representation of a probability distribution
- Equivalence among Bayesian networks
- Probabilistic inference in NBCs, HMMs, and general Bayesian networks
- Learning NBCs (and HMMs) from (complete) data

・ 同 ト ・ ヨ ト ・ ヨ ト

Next in probabilistic models

During the rest of the course, we will cover:

- Parameter learning
 - General structures, complete data
 - Fixed structures, incomplete data (EM)
- Structure learning
 - (Penalized) Likelihood and overfitting
 - Model selection algorithms