Probabilistic Models: Spring 2014
 Lecture 3, Class work 1 solutions

These give possible ways to answer the class work questions. Other derivations are possible. (Arithmetic and substition errors are also possible. Please let me know if you come across any.)

- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T}, C=\mathrm{F}, D=\mathrm{T}, E=\mathrm{F})$

$$
\begin{aligned}
\operatorname{Pr}(a, b, \neg c, d, \neg e) & =\operatorname{Pr}(a) \operatorname{Pr}(b \mid a) \operatorname{Pr}(\neg c \mid a) \operatorname{Pr}(d \mid b, \neg c) \operatorname{Pr}(\neg e \mid \neg c) \\
& =.6 \times .2 \times .2 \times .9 \times 1 \\
& =.0216
\end{aligned}
$$

- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T}, C=\mathrm{F})$

$$
\begin{aligned}
\operatorname{Pr}(a, b, \neg c) & =\sum_{D, E} \operatorname{Pr}(a) \operatorname{Pr}(b \mid a) \operatorname{Pr}(\neg c \mid a) \operatorname{Pr}(D \mid b, \neg c) \operatorname{Pr}(\neg E \mid \neg c) \\
& =\operatorname{Pr}(a) \operatorname{Pr}(b \mid a) \operatorname{Pr}(\neg c \mid a) \sum_{D} \operatorname{Pr}(D \mid b, \neg c) \sum_{E} \operatorname{Pr}(\neg E \mid \neg c) \\
& =\operatorname{Pr}(a) \operatorname{Pr}(b \mid a) \operatorname{Pr}(\neg c \mid a) \times 1 \times 1 \\
& =.6 \times .2 \times .2 \\
& =.024
\end{aligned}
$$

- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T} \mid C=\mathrm{F})$

$$
\begin{aligned}
\operatorname{Pr}(a, b \mid \neg c) & =\frac{\operatorname{Pr}(a, b, \neg c)}{\operatorname{Pr}(\neg c)} \\
& =\frac{\operatorname{Pr}(a, b, \neg c)}{\sum_{A} \operatorname{Pr}(\neg c \mid A)} \\
& =\frac{\operatorname{Pr}(a, b, \neg c)}{\operatorname{Pr}(\neg c \mid a) \operatorname{Pr}(a)+\operatorname{Pr}(\neg c \mid \neg a) \operatorname{Pr}(\neg a)} \\
& =\frac{.024}{.2 \times .6+.9 \times .4} \\
& =.05
\end{aligned}
$$

- $\operatorname{Pr}(A=\mathrm{T}, B=\mathrm{T} \mid C=\mathrm{F}, D=\mathrm{T}, E=\mathrm{F})$
$\operatorname{Pr}(a, b \mid \neg c, d, \neg e)=\frac{\operatorname{Pr}(a, b, \neg c, d, \neg e)}{\operatorname{Pr}(\neg c, d, \neg e)}$

$$
\begin{aligned}
& =\frac{\operatorname{Pr}(a, b, \neg c, d, \neg e)}{\sum_{A, B} \operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \operatorname{Pr}(\neg c \mid A) \operatorname{Pr}(d \mid B, \neg c) \operatorname{Pr}(\neg e \mid \neg c)} \\
& =\frac{\operatorname{Pr}(a, b, \neg c, d, \neg e)}{\operatorname{Pr}(\neg e \mid \neg c) \times \sum_{A} \operatorname{Pr}(A) \operatorname{Pr}(\neg c \mid A) \times \sum_{A, B} \operatorname{Pr}(B \mid A) \operatorname{Pr}(d \mid B, \neg c)} \\
& =\frac{\operatorname{Pr}(a, b, \neg c, d, \neg e)}{\operatorname{Pr}(\neg e \mid \neg c) \times[\operatorname{Pr}(a) \operatorname{Pr}(\neg c \mid a)+\operatorname{Pr}(\neg a) \operatorname{Pr}(\neg c \mid \neg a)] \times \sum_{A, B} \operatorname{Pr}(B \mid A) \operatorname{Pr}(d \mid B, \neg c)} \\
& =\frac{.0216}{1 \times[.6 \times .2+.4 \times .9] \times \sum_{A, B} \operatorname{Pr}(B \mid A) \operatorname{Pr}(d \mid B, \neg c)}
\end{aligned}
$$

$$
=\frac{.0216}{.48 \times \sum_{A, B} \operatorname{Pr}(B \mid A) \operatorname{Pr}(d \mid B, \neg c)}
$$

$$
=\frac{.0216}{.48 \times[\operatorname{Pr}(b \mid a) \operatorname{Pr}(d \mid b, \neg c)+\operatorname{Pr}(\neg b \mid a) \operatorname{Pr}(d \mid \neg b, \neg c)+\operatorname{Pr}(b \mid \neg a) \operatorname{Pr}(d \mid b, \neg c)+\operatorname{Pr}(\neg b \mid \neg a) \operatorname{Pr}(d \mid \neg b, \neg c)]}
$$

$$
=\frac{.0216}{.48 \times[.2 \times .9+.8 \times 0+.75 \times .9+.25 \times 0]}
$$

$$
=\frac{.0216}{.48 \times .855}
$$

$$
=\frac{.0216}{.4104}
$$

$$
\approx .0526
$$

