Multinomial document model

Naive Bayes Classifier

Naive Bayes Classifiers and Document Classification

Brandon Malone

Much of this material is adapted from notes by Hiroshi Shimodaira Many of the images were taken from the Internet

January 24, 2014

Brandon Malone Naive Bayes Classifiers and Document Classification

イロト イポト イヨト イヨト

3

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

Document Classification

Suppose we have a large number of books. Some are about fantasy, some are about technology, and some are about the high seas.

We are given a new book. How can we (automatically) tell which topic the book belongs to?

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

The Naive Bayes Classifier

What are the conditional independencies asserted by this structure?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

The Naive Bayes Classifier

What are the conditional independencies asserted by this structure?

All of the **attributes** (A_i s, sometimes called "features") are independent, given the **class**.

Multinomial document model

Naive Bayes Classifier

Wrap-up

The Naive Bayes Classifier

What are the conditional independencies asserted by this structure?

All of the **attributes** (A_i s, sometimes called "features") are independent, given the **class**.

If all variables are binary, how many parameters do we need?

Multinomial document model

Naive Bayes Classifier

Wrap-up

The Naive Bayes Classifier

What are the conditional independencies asserted by this structure?

All of the **attributes** (A_i s, sometimes called "features") are independent, given the **class**.

If all variables are binary, how many parameters do we need?

1 for the class, plus 2 for each attribute.

- 2 Multinomial document model
- 3 Naive Bayes Classifier

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Multinomial document model

Naive Bayes Classifier

Wrap-up

Counting distinct permutations

How many distinct sequences can we make?

- 4 同 2 4 日 2 4 日 2

Multinomial document model

Naive Bayes Classifier

Wrap-up

Counting distinct permutations

How many distinct sequences can we make?

There are 16 letters, so there are $16! \approx 2 \times 10^{13}$ permutations.

(4 同) 4 ヨ) 4 ヨ)

Multinomial document model

Naive Bayes Classifier

Wrap-up

Counting distinct permutations

How many distinct sequences can we make?

There are 16 letters, so there are 16! $\approx 2\times 10^{13}$ permutations.

We can choose the "I"s 4! different ways but have the same permutation.

Multinomial document model

Naive Bayes Classifier

Wrap-up

Counting distinct permutations

How many distinct sequences can we make?

There are 16 letters, so there are 16! $\approx 2\times 10^{13}$ permutations.

We can choose the "I"s 4! different ways but have the same permutation.

$$\frac{n!}{n_1!n_2!\dots n_d!} = \frac{n!}{n_M!n_l!n_5!n_P!n_T!n_A!n_E!} = \frac{16!}{1!4!5!2!2!1!1!} \approx 1.8 \times 10^9$$

Naive Bayes Classifier

Wrap-up

Creating a distribution for the items

Suppose we now attach probabilities to each of the d items.

$$\sum_{t=1}^d p_t = 1$$
 $p_t > 0$, for all t

We can view creating our sequence as a series of independent draws from this distribution.

If order important, then the probability of our example is

$$p_M \times p_I \times p_S \times p_S \cdots \times p_E = p_M^{n_M} \times p_I^{n_I} \times p_S^{n_S} \dots p_E^{n_E} = \prod_{t=1}^d p_t^{n_d}$$

What if order is not important?

Naive Bayes Classifier

Wrap-up

Creating a distribution for the items

What if order is not important?

Say $\mathbf{n} = (n_1, \dots n_d)$ gives the number of each item we drew. Then

 $P(\mathbf{n}) = P(\text{drawing } \mathbf{n} \text{ one way}) \times \text{number of ways to draw } \mathbf{n}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Naive Bayes Classifier

Wrap-up

Creating a distribution for the items

What if order is not important?

Say $\mathbf{n} = (n_1, \dots n_d)$ gives the number of each item we drew. Then

$$P(\mathbf{n}) = P(\text{drawing } \mathbf{n} \text{ one way}) \times \text{number of ways to draw } \mathbf{n}$$
$$P(\mathbf{n}) = \prod_{t=1}^{d} p_t^{n_d} \times \frac{n!}{n_1! n_2! \dots n_d!}$$

This is called the multinomial distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト

Multinomial document model

Naive Bayes Classifier

Wrap-up

Estimating the probabilities from data

Suppose we roll a die 6 times, and we get...

What probabilities might we attach to each number?

/□ ▶ < 글 ▶ < 글

Multinomial document model

Naive Bayes Classifier

Wrap-up

Estimating the probabilities from data

Suppose we roll a die 6 times, and we get...

What probabilities might we attach to each number?

・ 同 ト ・ ヨ ト ・ ヨ

Multinomial document model

Naive Bayes Classifier

Wrap-up

Estimating the probabilities from data

Suppose we roll a die 6 times, and we get...

What probabilities might we attach to each number?

$$p_t = \frac{n_t}{\sum_{u=1}^d n_u}$$

These are called the maximum likelihood parameters.

A (1) < A (1) < A (1) < A (1) </p>

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

The zero probability problem

Suppose we use the maximum likelihood parameters. What is the probability of rolling a 3?

3

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

The zero probability problem

Suppose we use the maximum likelihood parameters. What is the probability of rolling a 3?

A simple correction is to add a "pseudocount" to each item.

$$p_t = \frac{n_t + 1}{d + \sum_{u=1}^d n_u}$$

This is sometimes called "smoothing," and we will return to this problem.

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

Documents as bags of words

We can view documents as a **bag of words**, in which we discard the order among words and simply count occurrences.

So a document D^i is $\mathbf{n}_i = (n_{i,1}, \dots, n_{i,d})$, where $n_{i,t}$ gives the count of word t in D^i .

Our **vocabulary** consists of *d* words.

伺下 イヨト イヨト

A generative model for a document

Suppose we want to create a document (bag of words) of K words.

Further, suppose we are given the distribution for the vocabulary $(p_t \text{ for each word})$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

A generative model for a document

Suppose we want to create a document (bag of words) of K words.

Further, suppose we are given the distribution for the vocabulary $(p_t \text{ for each word})$.

A simple technique is to draw from the distribution K times.

Figure: A simple generative model using plate notation

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

Documents about a topic

Suppose I want to write a book about fantasy.

Am I likely to use the same words as if I were writing a book about technology?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Multinomial document model

Naive Bayes Classifier 0000 Wrap-up

Documents about a topic

Suppose I want to write a book about fantasy.

Am I likely to use the same words as if I were writing a book about technology?

Maybe...

Multinomial document model

Naive Bayes Classifier

Wrap-up

Documents about a topic

Suppose I want to write a book about fantasy.

Am I likely to use the same words as if I were writing a book about technology?

... but probably not.

So the probability distribution of my words *depends* upon the topic of my book.

Naive Bayes Classifier

A generative model for documents about a topic

Suppose we want to create a document of K words *about fantasy*.

Further, suppose we are given the distribution for the vocabulary given that the topic is fantasy ($P(w_t|C = \text{fantasy})$ for each word).

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Naive Bayes Classifier

A generative model for documents about a topic

Suppose we want to create a document of *K* words *about fantasy*.

Further, suppose we are given the distribution for the vocabulary given that the topic is fantasy ($P(w_t|C = \text{fantasy})$ for each word).

A simple technique is to draw from the distribution K times.

Figure: A conditional generative model using plate notation

We assume the word probabilities are independent given the topic! This is called the (multinomial) naive Bayes classifier.

(4 同) 4 ヨ) 4 ヨ)

A generative model for documents about a topic

Suppose we want to create a document of *K* words *about fantasy*.

Further, suppose we are given the distribution for the vocabulary given that the topic is fantasy ($P(w_t|C = \text{fantasy})$ for each word).

A simple technique is to draw from the distribution K times.

Figure: A conditional generative model as an explicit graphical model

We assume the word probabilities are independent given the topic! This is called the (multinomial) naive Bayes classifier.

・吊 ・ チョ ・ ・ ヨ

Naive Bayes Classifier ●○○○

Reasoning forward about documents

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$ and are told that it is about fantasy.

What is the **likelihood** of this document, $Pr(\mathbf{n}_i | C = \text{fantasy})$?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Naive Bayes Classifier ●○○○ Wrap-up

Reasoning forward about documents

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$ and are told that it is about fantasy.

What is the **likelihood** of this document, $Pr(\mathbf{n}_i | C = \text{fantasy})$?

 $P(\mathbf{n}_i | C = \text{fantasy}) = P(\text{drawing } \mathbf{n}_i \text{ one way} | C = \text{fantasy}) \times \text{number of ways to draw } \mathbf{n}_i$

(4 同) 4 ヨ) 4 ヨ)

Naive Bayes Classifier ●○○○ Wrap-up

Reasoning forward about documents

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$ and are told that it is about fantasy.

What is the **likelihood** of this document, $Pr(\mathbf{n}_i | C = \text{fantasy})$?

 $P(\mathbf{n}_i | C = \text{fantasy}) = P(\text{drawing } \mathbf{n}_i \text{ one way} | C = \text{fantasy}) \times \text{number of ways to draw } \mathbf{n}_i$

$$=\prod_{t=1}^{d} Pr(w_t|C = \text{fantasy})^{n_d} \times \frac{n!}{n_1!n_2!\dots n_d!}$$

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$.

What is the **posterior probability** that this document is about fantasy, $Pr(C = \text{fantasy}|\mathbf{n}_i)$?

(4月) (4日) (4日)

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$.

What is the **posterior probability** that this document is about fantasy, $Pr(C = \text{fantasy}|\mathbf{n}_i)$?

$$Pr(C = \text{fantasy}|\mathbf{n}_i) = \frac{Pr(\mathbf{n}_i|C = \text{fantasy}) \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$

(4月) (4日) (4日)

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$.

What is the **posterior probability** that this document is about fantasy, $Pr(C = \text{fantasy}|\mathbf{n}_i)$?

$$Pr(C = \text{fantasy}|\mathbf{n}_i) = \frac{Pr(\mathbf{n}_i|C = \text{fantasy}) \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$
$$= \frac{\prod_{t=1}^{d} Pr(w_t|C = \text{fantasy})^{n_d} \times \frac{n!}{n_1!n_2!\dots n_d!} \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$

(4月) (4日) (4日)

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$.

What is the **posterior probability** that this document is about fantasy, $Pr(C = \text{fantasy}|\mathbf{n}_i)$?

$$Pr(C = \text{fantasy}|\mathbf{n}_i) = \frac{Pr(\mathbf{n}_i|C = \text{fantasy}) \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$
$$= \frac{\prod_{t=1}^{d} Pr(w_t|C = \text{fantasy})^{n_d} \times \frac{n!}{n_1!n_2!\dots n_d!} \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$

Do we need to know the exact probability for classification?

(4 同) 4 ヨ) 4 ヨ)

Suppose we are given a naive Bayes classifier $(Pr(w_t|C) \text{ for all words and topics and } Pr(C) \text{ for all topics}).$

Further, suppose we are given a document $D_i = \mathbf{n}_i$.

What is the **posterior probability** that this document is about fantasy, $Pr(C = \text{fantasy}|\mathbf{n}_i)$?

$$Pr(C = \text{fantasy}|\mathbf{n}_i) = \frac{Pr(\mathbf{n}_i|C = \text{fantasy}) \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$
$$= \frac{\prod_{t=1}^d Pr(w_t|C = \text{fantasy})^{n_d} \times \frac{n!}{n_1!n_2!\dots n_d!} \times Pr(C = \text{fantasy})}{Pr(\mathbf{n}_i)}$$

Do we need to know the exact probability for classification?

$$Pr(C = \text{fantasy}|\mathbf{n}_i) \propto \prod_{t=1}^{d} Pr(w_t|C = \text{fantasy})^{n_d} \times \frac{n!}{n_1!n_2!\dots n_d!} \times Pr(C = \text{fantasy})$$

The topic of \mathbf{n}_i is arg max_k $Pr(C = k|\mathbf{n}_i)$.

Naive Bayes Classifier

Wrap-up

Learning naive Bayes classifiers from data

Suppose we are given N documents and their topics. How can we learn a naive Bayes classifier from this?

Pr(*C* = *k*). The (smoothed) proportion of documents which belong to topic *k*

$$Pr(C=k)=\frac{N_k+1}{N+T}$$

• $Pr(w_t|C = k)$. The (smoothed) proportion of the times w_t appears in a document from topic k.

 $Pr(w_t|C=k) = \frac{1 + \text{number of times } w_t \text{ appears in a document from topic } k}{d + \text{number of words in all documents from topic } k}$ $Pr(w_t|C=k) = \frac{1 + \sum_{i \text{ such that } z_i = k} \mathbf{n}_{i,t}}{1 + \sum_{i \text{ such that } z_i = k} \mathbf{n}_{i,t}}$

$$Pr(w_t | C = k) = \frac{1}{d + \sum_{s=1}^d \sum_{i \text{ such that } z_i = k}^N \mathbf{n}_{i,t}}$$

- N_k . The number of documents from topic k
- T. The number of topics
- z_i . An indicator which gives the topic k of \mathbf{n}_i
- $n_{i,t}$. The number of times word w_t appears in document $\mathbf{n}_{i \supset i} \rightarrow (i \ge i) \rightarrow (i \ge i)$

Class work

Convert the documents in the **corpus** on the handout into their bag of words representation.

Construct the naive Bayes classifier for the corpus.

Calculate the likelihood, or **conditional distributions**, for each document in the corpus $(Pr(\mathbf{n}_i | C = z_i))$.

Calculate the posterior probability, or **classification distribution**, for the unlabeled documents $(Pr(C = k|\mathbf{n}_i))$.

- 4 同 2 4 日 2 4 日 2

Recap

During this section, we discussed

- The multinomial distribution
- Estimating the (smoothed) parameters for a multinomial distribution from data
- The multinomial bag of words representation of text documents
- Independence assumptions in a naive Bayes classifier (NBC)
- Calculating likelihood using an NBC
- Calculating posterior probability using an NBC
- Learning an NBC from data

Naive Bayes Classifier

Next in probabilistic models

- Markov models for modeling time series and sequences
- Hidden Markov models for gene prediction

• Forward-backward algorithm for finding the most likely instantiation of a set of hidden variables